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Section 2 Introduction 

The Landsat Data Continuity Mission’s (LDCM), Landsat 8 (L8), is the latest satellite in the 40 year 
history of the Landsat program.   Before the data are made available, they will be radiometrically and 
geometrically corrected using processing inputs from the Calibration Parameter File (CPF), and Bias 
Parameter File (BPF), and Radiometric Look-Up Table (RLUT).  The Calibration Validation Team 
(CVT) will ensure that these files are monitored and updated over the life of the mission.  The Image 
Assessment System (IAS) was developed to assess data on-orbit and to monitor changes temporally. 
The radiometric, geometric and spatial performance of the OLI and TIRS sensors will be continually 
monitored, characterized and calibrated on-orbit.  Data that are processed by the LPGS system will 
also be trended to a database for later analysis by the Calibration Validation Team (CVT).  The CVT 
will monitor the performance of L8 data on a daily basis by trending the results of radiometric and 
geometric algorithms processed on all data.  Through regular evaluation of the stored results in the 
database, changes in instrument behavior can be monitored and corrected over time. The CVT will 
monitor the changes in the sensor and determine what should be updated in the CPF, BPF, and 
RLUT in order to create better image products while maintaining a level of consistency for 
comparability through time.    This document details all of the radiometric and geometric processing 
algorithms for the image assessment and data processing of the Landsat 8 sensors.    
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Section 3 Document Overview 

This document explains the methods for the geometric and radiometric characterization and 
calibration of the LDCM OLI and TIRS instruments implemented within the USGS EROS DPAS. A 
brief overview of the instruments and their data is provided, followed by discussions of the design 
philosophy, data flow diagrams and algorithm descriptions developed within the Cal/Val Toolkit 
(CVTK) for geometric and radiometric characterization and calibration.   
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Section 4 Instrument Overviews 

The Landsat Data Continuity Mission (LDCM) is a joint mission formulated by the National 
Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS).  The LDCM 
is a remote sensing satellite mission providing coverage of the Earth’s land surfaces.  This mission 
continues the 30+ years of global data collection and distribution provided by the Landsat series of 
satellites. 
 
The space segment consists of an observatory that will be launched into a 705 km, 10:00 AM 
equatorial crossing sun synchronous orbit consistent with Landsat-7. The spacecraft will 
accommodate the OLI and TIRS. The spacecraft is being developed by General Dynamics 
Aerospace Information Systems. 

4.1 OLI  

The OLI instrument will image the Earth in 9 spectral bands which cover the visible, near-Infrared 
(VNIR) and Short Wave IR (SWIR) portions of the electromagnetic spectrum (see Table 1).  Seven of 
the spectral bands are narrowed and refined from the Landsat-7 Enhanced Thematic Mapper Plus 
(ETM+) bands; a coastal/aerosol and a cirrus detection band have been added.  All bands will be 
acquired at 12-bit radiometric resolution; 8 bands will be 30 meters and 1 band, the panchromatic 
band, will be 15 meters (see Table 1). 
 
The OLI instrument is a pushbroom sensor being supplied by Ball Aerospace Technology Company.  
The telescope contains four mirrors with a front aperture stop that is 135 mm.  The Focal Plane Array 
(FPA) is comprised of 14 Sensor Chip Assemblies (SCA) as shown in Figure 1 that is passively 
cooled.  Each SCA contains 494 detectors with an additional 12 video reference pixels that don’t 
respond to light. 

4.1.1 On-Board Calibrators  

The OLI provides both internal calibration sources such as lamps to ensure radiometric accuracy as 
well as capabilities to perform solar and lunar calibrations within the field of view constraints. 
 
Solar Calibration and Linearity: The spacecraft must point the sun-viewing boresight at the sun and 
track it.  To assure the calibration returns valid results, there must be a glint-free field of view for the 
diffuser as defined in the ICD.  During solar looks, the solar array will be angled to prevent it from 
infringing on the glint-free field of view. 
 
Lunar Calibration:  The spacecraft must perform sweeps across the moon to image the moon on all 
14 FPMs.  Since the moon is only large enough to subtend on 1 FPM, it will require 14 sweeps across 
the moon (over multiple orbits if necessary) with the spacecraft yawing to place the moon on each of 
the FPMs. 

4.1.2 Geolocation Calibration Activities 

The following geolocation calibration activities require spacecraft operations: 
 
Star Field Calibration:  A section of the sky that is visible to both star trackers and the instrument 
must be imaged to locate stars against the star catalog.  This will occur during commissioning only. 
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Calibration Data:  In order to perform the calibration, the raw star tracker and gyro data for ground 
processing must be available. 

 

Figure 1:  OLI focal plane assembly 

Table 1:  Spectral ranges and pixel sizes of OLI bands 

# Band Center Wavelength 

(nm) 

Center 

Wavelength 

Tolerance 

(±nm) 

Minimum 

Lower 

Band Edge 

(nm) 

Maximum 

Upper 

Band Edge 

(nm) 

1 Coastal Aerosol 443 2 433 453 

2 Blue 482 5 450 515 

3 Green 562 5 525 600 

4 Red 655 5 630 680 

5 NIR 865 5 845 885 

6 SWIR1 1610 10 1560 1660 

7 SWIR2* 2200 10 2100 2300 

8 Panchromatic** 590 10 500 680 

9 Cirrus 1375 5 1360 1390 

4.2 TIRS  

The Thermal Infrared Sensor (TIRS) is a 2-band thermal imager at 10.8 and 12 microns. Both bands 
will have a spatial resolution of 100 meters operating in a pushbroom method to achieve a 188-km 
swath width.  The Focal Plane Array (FPA) is comprised of 3 Sensor Chip Assemblies with Quantum 
Well Infrared Photometers (QWIPs), and will be built in-house at the NASA Goddard Space Flight 
Center. The FPA will be cryo-cooled to 43 K with an optical assembly passively cooled to 180K.  A 
scene select mirror in the optical path will allow calibration with 2 sources; a variable temperature 
blackbody and space views.  
 

The optical design is a four-element refractive design with a 107.8 mm clear aperture.  Three of the 
elements are based on germanium and the fourth on zinc selenide.  TIRS has two spectral bands 
achieved through interference filters.  The filters are thermally connected to the focal plane and 
operate at somewhat higher temperature.  Transmission characteristics are tailored for each band.  
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Very good out of band rejection is required to perform precise spectral radiometry and the in-band 
transmission must be high enough to meet the detector sensitivity goals.  In addition, filter placement 
must accommodate a 2.5 second simultaneity requirement between 10.8 and 12 um measurements 
and all data must be collected within 170 rows of detector pixels. 
 
TIRS relies on QWIP detectors coupled with existing Indigo 9803 640 x 512 pixel ROICs to give the 
previously-mentioned 185 km swath in 3 arrays with 35 pixel overlap between arrays.   

4.2.1 Onboard calibrator 

A key component for the TIRS sensor is the onboard calibrator.  The calibrator will be a curved-plate 
blackbody with V-grooves to improve emissivity.  The design and coating will be very similar to that 
used for MODIS to give high emissivity and controllable temperature.  The output from the blackbody 
will be NIST traceable and capable of providing sources of two temperatures between 265 and 330 K 
within two orbits.  Set point control of the blackbody will be 2 K with the capability to change the 
temperature by 6 K per half orbit. 

4.2.2 Scene-select mirror 

A scene-select mirror rotates around the optical axis on a 45-degree plane to provide the telescope 
with a view to nadir (earth), space (cold calibration “target”), and on-board blackbody (hot calibration 
target).  The mirror is based on a solid aluminum blank diamond turned flat and super polished.  The 
size of the mirror is 206.5 x 148.5 mm 
 

 

Figure 2:  TIRS focal plane assembly 
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Table 2:  Spectral ranges and pixel sizes of TIRS bands 

# Band Center 
Wavelength 
(nm) 

Center Wavelength 
Tolerance (±nm) 

Minimum Lower 
Band Edge (nm) 

Maximum Upper 
Band Edge (nm) 

10 Thermal 1 10800 200 10300 11300 

11 Thermal 2 12000 200 11500 12500 
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Section 5 Characterization and Calibration Overview 

As used in this document, characterization is the process of measuring and evaluating the geometric 
and radiometric performance of the OLI and TIRS instruments.  Calibration is the process of using the 
information obtained during characterization to update the calibration parameters associated with the 
both instruments.  The following characterization and calibration routines for each instrument are 
discussed.  
 
All calibration parameters are stored in an American Standard Code for Information Interchange 
(ASCII) file that can be accessed during processing.  The file containing these parameters is referred 
to as the Calibration Parameter File (CPF) in this document. 
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Section 6 Process Flows 

In order to perform the characterization, calibration and correction functions, described in the LDCM 
Government Calibration and Validation Plan, each of the algorithms (described below in Sections 3 
and 4) are linked together in a processing flow.  This processing flow is separated into OLI geometry, 
OLI radiometry, TIRS geometry, and TIRS radiometry. 

6.1 OLI Geometry 
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6.2 OLI Radiometry 
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6.3 TIRS Geometry 
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6.4 TIRS Radiometry 
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Section 7 Algorithms 

7.1 Common Geometry Algorithms 

7.1.1 Coordinate Systems 

7.1.1.1 Coordinate System Definitions 

There are ten coordinate systems used by the LDCM IAS geometric algorithms.  These coordinate 
systems are referred to frequently in the remainder of this document and are briefly defined here to 
provide context for the subsequent discussion.  They are presented in the order in which they would 
be used to transform a detector and sample time into a ground position. 

1. OLI Instrument Line-of-Sight (LOS) Coordinate System 

The OLI LOS coordinate system is used to define the band and detector pointing directions 
relative to the instrument axes. These pointing directions are used to construct LOS vectors for 
individual detector samples. This coordinate system is defined so that the Z-axis is parallel to 
the telescope boresight axis and is positive toward the OLI aperture. The origin is where this 
axis intersects the OLI focal plane. The X-axis is parallel to the along-track direction, with the 
positive direction toward the leading, odd numbered, SCAs (see Figure 6.1.1.1-1). The Y-axis 
is in the across-track direction with the positive direction toward SCA01. This definition makes 
the OLI coordinate system nominally parallel to the spacecraft coordinate system, with the 
difference being due to residual misalignment between the OLI and the spacecraft body.  

 

Figure 6.1.1.1.1.  OLI Line-of-Sight Coordinate System 

2. TIRS Instrument Coordinate System 
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The orientations of the TIRS detector LOS directions and of the TIRS scene select mirror 
(SSM) are both defined within the TIRS instrument coordinate system. TIRS LOS coordinates 
define the band and detector pointing directions relative to the instrument axes. These pointing 
directions are used to construct LOS vectors for individual detector samples. These vectors 
are reflected off of the SSM to direct them out the TIRS aperture for Earth viewing. The TIRS 
LOS model is formulated so that the effect of a nominally pointed SSM is included in the 
definition of the detector lines-of-sight, with departures from nominal SSM pointing causing 
perturbations to these lines-of-sight. This formulation allows TIRS LOS construction to be very 
similar to OLI, and is described in detail below, in the TIRS Line-of-Sight Model Creation 
algorithm. 

The TIRS coordinate system is defined so that the Z-axis is parallel to the TIRS boresight axis 
and is positive toward the TIRS aperture. The origin is where this axis intersects the TIRS focal 
plane. The X-axis is parallel to the along-track direction, with the positive direction toward the 
leading SCA, SCA02 (see Figure 6.1.1.1-2). The Y-axis is in the across-track direction with the 
positive direction toward SCA03. This definition makes the TIRS coordinate system nominally 
parallel to the spacecraft coordinate system, with the difference being due to residual 
misalignment between the TIRS and the spacecraft body. 

 

Figure 6.1.1.1-2.  TIRS Line-of-Sight Coordinates 

3. Spacecraft Coordinate System 

The spacecraft coordinate system is the spacecraft-body-fixed coordinate system used to 
relate the locations and orientations of the various spacecraft components to one another and 
to the OLI and TIRS instruments. It is defined with the +Z axis in the Earth facing direction, the 
+X axis in the nominal direction of flight, and the +Y axis toward the cold side of the spacecraft 
(opposite the solar array). This coordinate system is useful during observatory integration and 
prelaunch test where it is used to determine the prelaunch positions and alignments of the 
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attitude control sensors (star trackers and SIRU) and instrument payloads (OLI and TIRS). The 
spacecraft coordinate system is nominally the same as the navigation reference system (see 
below) used for spacecraft attitude determination and control. However, for reasons explained 
below, these two coordinate systems are treated separately. 

4. Navigation Reference Coordinate System  

The navigation reference frame (a.k.a., the attitude control system reference) is the spacecraft-
body-fixed coordinate system used for spacecraft attitude determination and control.  The 
coordinate axes are defined by the spacecraft attitude control system (ACS), which attempts to 
keep the navigation reference frame aligned with the (yaw-steered) orbital coordinate system 
(for nominal nadir pointing) so that the OLI and TIRS boresight axes are always pointing 
toward the center of the Earth.  It is the orientation of this coordinate system relative to the 
inertial coordinate system that is captured in spacecraft attitude data. 

Ideally, the navigation reference frame is the same as the spacecraft coordinate system. In 
practice, the navigation frame is based on the orientation of the absolute attitude sensor (i.e., 
star tracker) being used for attitude determination. Any errors in the orientation knowledge for 
this tracker with respect to the spacecraft body frame will lead to differences between the 
spacecraft and navigation coordinate systems. This becomes important if the absolute attitude 
sensor is changed, for example by switching from the primary to the redundant star tracker 
during on-orbit operations. Such an event would effectively redefine the navigation frame to be 
based on the redundant tracker with the difference between the spacecraft and navigation 
frames now resulting from redundant tracker alignment knowledge errors, rather than from 
primary tracker alignment knowledge errors. This redefinition would require updates to the on-
orbit instrument-to-ACS alignment calibrations. So, the spacecraft and navigation reference 
coordinate systems are different because the spacecraft coordinate system is fixed but the 
navigation reference can change. 

5. SIRU Coordinate System 

The spacecraft orientation rate data provided by the spacecraft attitude control system’s 
inertial measurement unit are referenced to the Space Inertial Reference Unit (SIRU) 
coordinate system. The SIRU consists of four rotation-sensitive axes. This configuration 
provides redundancy to protect against the failure of any one axis. The four SIRU axis 
directions are determined relative to the SIRU coordinate system, the orientation of which is 
itself measured relative to the spacecraft coordinate system both prelaunch and on-orbit, as 
part of the ACS calibration procedure. This alignment transformation is used by the IAS to 
convert the SIRU data contained in the LDCM spacecraft ancillary data to the navigation 
reference coordinate system for blending with the ACS quaternions. 

6. Orbital Coordinate System 

The orbital coordinate system is centered at the spacecraft, and its orientation is based on the 
spacecraft position in inertial space (see Figure 6.1.1.1-3).  The origin is the spacecraft’s 
center of mass, with the Z-axis pointing from the spacecraft’s center of mass to the Earth’s 
center of mass.  The Y-axis is the normalized cross product of the Z-axis and the 
instantaneous (inertial) velocity vector and corresponds to the negative of the instantaneous 
angular momentum vector direction.  The X-axis is the cross product of the Y and Z-axes. The 
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orbital coordinate system is used to convert spacecraft attitude, expressed as ECI quaternions, 
to roll-pitch-yaw Euler angles. 
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Figure 6.1.1.1-3.  Orbital Coordinate System 

7. ECI J2000 Coordinate System 

The Earth-Centered Inertial (ECI) coordinate system of epoch J2000 is space-fixed with its 
origin at the Earth's center of mass (see Figure 6.1.1.1-).  The Z-axis corresponds to the mean 
north celestial pole of epoch J2000.0.  The X-axis is based on the mean vernal equinox of 
epoch J2000.0.  The Y-axis is the cross product of the Z and X axes.  This coordinate system 
is described in detail in the Explanatory Supplement to the Astronomical Almanac published by 
the U.S. Naval Observatory. Data in the ECI coordinate system are present in the LDCM 
spacecraft ancillary data form of attitude quaternions that relate the navigation frame to the 
ECI J2000 coordinate system. 
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Figure 6.1.1.1-4.  Earth-Centered Inertial (ECI) Coordinate System 

8. ECEF Coordinate System 

The Earth-Centered Earth Fixed (ECEF) coordinate system is Earth-fixed with its origin at the 
Earth’s center of mass (see Figure 6.1.1.1-).  It corresponds to the Conventional Terrestrial 
System defined by the Bureau International de l’Heure (BIH), which is the same as the U.S. 
Department of Defense World Geodetic System 1984 (WGS84) geocentric reference system.  
This coordinate system is described in the Supplement to Department of Defense World 
Geodetic System 1984 Technical Report, Part 1: Methods, Techniques, and Data Used in 
WGS84 Development, TR 8350.2-A, published by the National Geospatial-Intelligence Agency 
(NGA)Error! Reference source not found.. 
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Figure 6.1.1.1-5.  Earth-Centered Earth Fixed (ECEF) Coordinate System 

9. Geodetic Coordinate System 

The geodetic coordinate system is based on the WGS84 reference frame with coordinates 
expressed in latitude, longitude, and height above the reference Earth ellipsoid (see Figure 
6.1.1.1-).  No ellipsoid is required by the definition of the ECEF coordinate system, but the 
geodetic coordinate system depends on the selection of an Earth ellipsoid.  Latitude and 
longitude are defined as the angle between the ellipsoid normal and its projection onto the 
equator and the angle between the local meridian and the Greenwich meridian, respectively.  
The scene center and scene corner coordinates in the Level 0R product metadata are 
expressed in the geodetic coordinate system. 
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Figure 6.1.1.1-6.  Geodetic Coordinate System 

10.  Map Projection Coordinate System 

Level 1 products are generated with respect to a map projection coordinate system, such as 
the Universal Transverse Mercator, which provides mapping from latitude and longitude to a 
plane coordinate system that is an approximation of a Cartesian coordinate system for a 
portion of the Earth’s surface.  It is used for convenience as a method of providing digital 
image data in an Earth-referenced grid that is compatible with other ground-referenced data 
sets.  Although the map projection coordinate system is only an approximation of a true local 
Cartesian coordinate system at the Earth’s surface, the mathematical relationship between the 
map projection and geodetic coordinate systems is defined precisely and unambiguously. 

7.1.1.2 Coordinate Transformations 

There are eight key transformations that relate the ten coordinate systems used by the IAS geometric 
algorithms. These transformations are referred to frequently in the remainder of this document and 
are defined here. They are presented in the logical order in which a detector and sample number 
would be transformed into a ground position. 
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1. OLI-to-Navigation Reference Transformation 

The relationship between the OLI instrument and navigation reference coordinate systems is 
described by the OLI instrument alignment matrix.  The transformation from sensor 
coordinates to navigation reference coordinates is a three-dimensional rotation, implemented 
as a matrix multiplication, and an offset to account for the distance between the ACS reference 
and the instrument aperture. This spacecraft center of mass-to-sensor offset is measured 
prelaunch and is not expected to be updated on-orbit. The ACS-to-OLI transformation matrix is 
initially defined as a static (non-time varying) rotation, with improved estimates provided post-
launch. Subsequent analysis may detect repeatable variations with time, which can be 
effectively modeled, making this a (slowly) time-varying transformation. The nominal rotation 
matrix is the identity matrix. 

2. TIRS-to-Navigation Reference Transformation 

The relationship between the TIRS instrument and navigation reference coordinate systems is 
described by the TIRS instrument alignment matrix. Like the OLI, the transformation from 
sensor coordinates to navigation reference coordinates is a three-dimensional rotation, 
implemented as a matrix multiplication, and an offset to account for the distance between the 
ACS reference and the instrument aperture. This spacecraft center of mass-to-sensor offset is 
measured prelaunch and is not expected to be updated on-orbit. The ACS-to-TIRS 
transformation matrix measured directly prelaunch. Post-launch, improved estimates will be 
provided by estimating the OLI-to-TIRS alignment and combining that with the ACS-to-OLI 
alignment mentioned above. Note that any TIRS pointing offsets that are due to errors in SSM 
alignment  knowledge will be attributed to the overall ACS-to-TIRS alignment by the on-orbit 
calibration. The nominal ACS-to-TIRS rotation matrix is the identity matrix. 

3. SIRU-to-Navigation Reference Transformation 

The SIRU coordinate system is related to the navigation reference coordinate system by the 
SIRU alignment matrix, which captures the orientation of the SIRU axes with respect to the 
navigation base.  This transformation is applied to the SIRU measurements present in the 
spacecraft ancillary data prior to their integration with the ACS quaternions.  The SIRU 
alignment is measured pre-flight and is nominally oriented with a 45-degree rotation about the 
X-axis, relative to the spacecraft/navigation reference coordinate system. 

4. Navigation Reference-to-Orbital Transformation 

The relationship between the navigation reference and orbital coordinate systems is defined by 
the spacecraft attitude.  This transformation is a three-dimensional rotation matrix with the 
components of the rotation matrix being functions of the spacecraft roll, pitch, and yaw attitude 
angles. The nature of the functions of roll, pitch, and yaw depends on the exact definition of 
these angles. The conventions adopted in the LDCM model are described below in the 
Ancillary Data Preprocessing algorithm.  Since the spacecraft attitude is constantly changing, 
this transformation is time varying.  The nominal rotation matrix consists of a latitude-
dependent rotation about the Z-axis (yaw). This “yaw-steering” is designed to compensate for 
the effects of Earth rotation as spacecraft motion passes the OLI and TIRS detector arrays 
over the Earth’s surface. 

5. Orbital-to-ECI Transformation 
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The relationship between the orbital and ECI coordinate systems is based on the spacecraft's 
instantaneous ECI position and velocity vectors.  The rotation matrix to convert from orbital to 
ECI can be constructed by forming the orbital coordinate system axes in ECI coordinates: 

 
P = spacecraft position vector in ECI 
V = spacecraft velocity vector in ECI 
Teci/orb = rotation matrix from orbital to ECI 
 
b3 = –p / |p| (nadir vector direction) 
b2 = (b3 x v) / |b3 x v| (negative of angular momentum vector direction) 
b1 = b2 x b3 (circular velocity vector direction) 
Teci/orb = [ b1  b2  b3 ] 

6. ECI-to-ECEF Transformation 

The transformation from ECI-to-ECEF coordinates is a time-varying rotation due primarily to 
the Earth’s rotation, but it also contains more slowly varying terms for precession, astronomic 
nutation, and polar wander.  The ECI-to-ECEF rotation matrix can be expressed as a 
composite of these transformations: 

 
Tecr/eci = A B C D 

 

A = polar motion 

B = sidereal time 

C = astronomic nutation 

D = precession 

Each of these transformation terms is described in more detail below in the Ancillary Data 
Preprocessing algorithm. Note that LDCM uses the precession, nutation, and sidereal time 
definitions from the IAU resolutions of 1997-2000 as described in U.S. Naval Observatory 
Circular 179. This is a newer formulation than was used in the heritage Landsat 7 system. 

7. ECEF-to-Geodetic Transformation 

The relationship between ECEF and geodetic coordinates can be expressed simply in its direct 
form: 

 
e2 = 1 – b2 / a2 
N = a / (1 – e2 sin2(lat))1/2 
X = (N + h) cos(lat) cos(lon) 
Y = (N + h) cos(lat) sin(lon) 
Z = (N (1 – e2) + h) sin(lat) 
 

where: 
 

X, Y, Z = ECEF coordinates 
lat, lon, h = geodetic coordinates 
N = ellipsoid radius of curvature in the prime vertical 
e2 = ellipsoid eccentricity squared 
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a, b = ellipsoid semi-major and semi-minor axes 
 

The closed-form solution for the general inverse problem (the problem of interest here) 
involves the solution of a quadratic equation and is not typically used in practice.  Instead, an 
iterative solution is used for latitude and height for points that do not lie on the ellipsoid 
surface. 

8. Geodetic-to-Map Projection Transformation 

The transformation from geodetic coordinates to the output map projection depends on the 
type of projection selected.  The mathematics for the forward and inverse transformations for 
the Universal Transverse Mercator (UTM), Lambert Conformal Conic, Transverse Mercator, 
Oblique Mercator, Polyconic, Polar Stereo Graphic, and the Space Oblique Mercator (SOM) 
are given in John P. Snyder’s Map Projections – A Working Manual, USGS Professional Paper 
1395. 

7.1.2 Time Systems  

Four time systems are of primary interest for the IAS geometric algorithms: International Atomic Time 
(Temps Atomique International [TAI]), Universal Time—Coordinated (UTC), Universal Time—
Corrected for polar motion (UT1), and Spacecraft Time (the readout of the spacecraft clock, derived 
from GPS time). Spacecraft Time is the time system used for the spacecraft time codes found in the 
Level 0R ancillary data (including image time codes). UTC is the standard reference for civil 
timekeeping. UTC is adjusted periodically by whole leap seconds to keep it within 0.9 seconds of 
UT1. UT1 is based on the actual rotation of the Earth and is needed to provide the transformation 
from stellar-referenced inertial coordinates (ECI) to terrestrial-referenced Earth-fixed coordinates 
(ECEF). TAI provides a uniform, continuous time stream that is not interrupted by leap seconds or 
other periodic adjustments. It provides a consistent reference for resolving ambiguities arising from 
the insertion of leap seconds into UTC, which can lead to consecutive seconds with the same UTC 
time. Spacecraft time is based on GPS time which is, itself, a fixed offset from TAI. These and a 
variety of other time systems, and their relationships, are described in the Explanatory Supplement to 
the Astronomical Almanac, mentioned previously. The significance of each of these time systems with 
respect to the IAS geometric algorithms is described below. 

1. Spacecraft Time 

In accordance with the LDCM Spacecraft to Ground Interface Control Document (70-P58230P, 
Rev C), the LDCM spacecraft clock reports time as TAI seconds since the spacecraft (J2000) 
epoch, defined as follows: 

January 1, 2000, 11:59:27.816 TAI 

which is the same as: 

January 1, 2000, 11:58:55.816 UTC. 

Epoch J2000 occurred at January 1, 2000 12:00:00 Barycentric Dynamical Time (TDB). At the 
time of the J2000 epoch, Terrestrial Dynamical Time (TDT) differed from TDB by 
approximately 73 microseconds (ref. Explanatory Supplement to the Astronomical Almanac). 
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This small difference is ignored in the definition above, and the epoch is effectively taken to be 
January 1, 2000, 12:00:00 TDT. Since TDT is defined to be TAI + 32.184 seconds, we have 
11:59:27.816 TAI + 32.184 sec = 12:00:00 TDT. Furthermore, at the time of the J2000 epoch, 
TAI and UTC differed by 32 accumulated leap seconds, so 11:58:55.816 UTC + 32.000 sec = 
11:59:27.816 TAI. Note from the above that the relationship between spacecraft time and TAI 
is fixed but the relationship between spacecraft time and UTC changes over time, with the 
offset increasing by one second each time a new leap second is declared. Note that as of the 
2013 LDCM launch date, three additional leap seconds had been declared (in January 2006, 
January 2009, and July 2012). 

The LDCM flight software maintains the accuracy of the spacecraft clock using time data from 
the on-board GPS receiver(s). The spacecraft clock is then used to time tag the spacecraft 
ancillary data and to provide a timing reference for the OLI and TIRS instruments. Spacecraft 
time is used to define the times at which the flight software generates filtered attitude and 
ephemeris estimates based on the input GPS, star tracker, and SIRU data. These estimates 
are included in the spacecraft ancillary data stream for use by ground processing. Also 
included in the ancillary data are the raw SIRU measurements. Individual SIRU observations 
are time tagged using a clock/counter internal to the SIRU itself, but the SIRU ancillary data 
also includes SIRU time synch events that make it possible to relate the SIRU clock to 
spacecraft time. 

The spacecraft clock also provides time synchronization signals to the OLI and TIRS 
instruments once per second. Both instruments use this one pulse per second signal to 
regulate their internal clocks, thereby registering the image time codes to spacecraft time. Note 
that any instrument clock rate errors will be manifested as (small) step discontinuities in the 
image time codes, which correspond to the 1 PPS updates. The resulting time code 
irregularities are corrected when the OLI and TIRS geometric models are created, as 
described below in the OLI LOS Model Creation algorithm and the TIRS LOS Model Creation 
algorithm.  

2. UTC 

As mentioned above, UTC is maintained within 0.9 seconds of UT1 by the occasional insertion 
of leap seconds. A table of leap seconds relating UTC to TAI is maintained in the LDCM 
Calibration Parameter File (CPF) to support the spacecraft time to UTC conversion. To convert 
spacecraft time to UTC, the number of additional leap seconds declared since the spacecraft 
epoch are subtracted from the reported spacecraft seconds since epoch and the result is 
added to the UTC representation of the epoch presented above. Leap second information can 
be obtained from the International Earth Rotation Service (IERS) in their Bulletin C 
publications. 

3. UT1 

UT1 represents time with respect to the actual rotation of the Earth and is used by the IAS 
algorithms, which transform inertial ECI coordinates or lines of sight to Earth-fixed ECEF 
coordinates.  Failure to account for the difference between UT1 and UTC in these algorithms 
can lead to ground position errors as large as 400 meters at the equator (assuming the 
maximum 0.9-second UT1-UTC difference).  The UT1-UTC correction typically varies at the 
rate of approximately 2 milliseconds per day, corresponding to an Earth rotation error of about 
1 meter.  Thus, UT1-UTC corrections should be interpolated or predicted to the actual image 



LDCM-ADEF-001 
Version 3 

 

acquisition time to avoid introducing errors of this magnitude.  The UT1-UTC offset, along with 
the polar wander Earth orientation parameters, can be obtained from IERS Bulletin B (for 
retrospective data) and Bulletin A (for predicted data). Tables of the UT1-UTC and polar 
wander Earth orientation parameters are also maintained in the LDCM CPF. 

4. TAI 

Although the IAS algorithms do not operate directly in TAI, it underlies the definition of 
spacecraft time, as noted above. As such, it can be helpful to use TAI as a standard reference 
that can be related to UTC, using the CPF leap second file, and to spacecraft time, via the 
constant offset, to assist IAS operations staff in anomaly resolution. 

7.1.3 Scene Framing Algorithm 

7.1.3.1 Background/Introduction 

The LDCM scene framing algorithm uses the spacecraft ancillary data, preprocessed to perform 
scaling, coordinate conversion and to repair errors, and the image timing information to determine the 
locations of scene centers within the interval. It then assigns Worldwide Reference System-2 (WRS-
2) path row coordinates to these scene centers for purposes of subsequent metadata generation. 
 
The Landsat heritage scene framing algorithm will be used to frame nadir-pointing data and to 
determine the nadir path/row references for off-nadir acquisitions, but the LDCM capability to point 
(roll) up to 15 degrees off-nadir will lead to data acquisitions that do not fall on the regular WRS-2 
reference grid and will, in some cases, fall entirely outside the heritage WRS-2 coverage area for 
acquisitions near the poles. These additional complications require adjustments to the heritage 
algorithm to address both the scene definition (i.e., where do we declare the scene centers) aspect of 
scene framing and the WRS-2 grid (path/row) assignment aspect of scene framing. This algorithm 
addresses those requirements.  
 
The algorithm developed here separates the scene definition and WRS-2 labeling aspects of the 
scene framing problem.  It also uses different logic for high-latitude (polar region) and low latitude 
(non-polar) acquisitions.  At high latitudes, off-nadir acquisitions will be poorly aligned with and will 
sometimes fall outside of the WRS-2 grid, so the heritage (nadir) orbit-based approach to scene 
center time definition is used in those areas.  Using the nadir path/row for scene and interval 
identification also ensures unique ids as well as consistency with planned acquisitions.  Furthermore, 
to help in identifying coverage of off-nadir acquisitions, especially near the poles, target WRS-2 
labeling is determined and any imagery falling outside the WRS-2 grid uses special target row 
numbering.  
 
For non-polar regions, the guiding principle is to make even off-nadir scenes as consistent as 
possible in coverage with the nadir acquisitions of the same region by using a "row-based" approach 
to scene definition.  Defining scene centers at the locations where the Operational Land Imager 
(OLI)1 boresight crosses the latitudes that correspond to WRS-2 row centers makes the off-nadir 
scene latitude bounds align with the nadir-viewing scenes from adjacent paths. This should lead to 
greater consistency in scene coverage and improve the interoperability of nadir and off-nadir data2.   

                                            
1
 For any Thermal Infrared Sensor (TIRS) only earth acquisitions, the TIRS boresight is used. 

2
 In contrast, framing all off-nadir data based on the spacecraft position instead of the boresight location was rejected, as 

it would lead to off-nadir scenes exhibiting an along-track shift relative to the adjacent path nadir data. 
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Therefore, for non-polar regions, scene path/row computation is based on the boresight Line-of-Sight 
(LOS) intersection location.  The basic principle in this portion of the algorithm is to treat the boresight 
location as if it were a sub-satellite point. We can then compute a corresponding orbital central travel 
angle and apparent descending node based on the nominal Landsat orbital inclination.  The actual 
orbit data are used to determine whether the scene is ascending or descending mode and the central 
travel angle and descending node are adjusted accordingly.  The central travel angle is used to derive 
the WRS-2 row and the descending node longitude yields the (fractional) path.  Since the scene 
definition logic is defined by WRS-2 row crossings, for non-polar data the off-nadir scene paths will 
typically be fractional and the row will be an integer.  Whereas in polar areas the off-nadir scenes 
target WRS-2 paths and rows will be fractional. These fractional WRS-2 path/rows will have to be 
rounded to the nearest path/row that represents the data.  Target WRS-2 coordinates of nadir 
pointing scenes should be integers in both regions.   Also, if the scene center falls too far off the 
WRS-2 grid, special target row numbers will be assigned (880-88x for the North Pole and 990-99x for 
the South Pole).  

It’s important to note that in the metadata the wrs_path/wrs_row values are always the nadir or orbital 
path/row of the satellite (and they’re also used for the scene ids) and the target path/row is the LOS 
path/row.  In the non-polar regions, the target row and orbital wrs_row should be equal for nadir 
viewing imagery.  The target path should be between wrs_path-1 and wrs_path+1 at low latitudes but 
could vary by more at higher latitudes (approaching the polar regions).  In the polar region, off-nadir 
target path/row will vary quite a bit from the orbital values.  

7.1.3.2 Dependencies 

The scene framing algorithm assumes that ancillary data for the full imaging interval with 8 seconds 
of extra ancillary data before and after the imagery, is available to provide the required geometric 
support data, that a Calibration Parameter File (CPF) containing Earth orientation parameters and 
OLI & TIRS alignment and offset information is available, and that the image time codes are 
available. 
 
At a minimum four seconds of ancillary data are required before and after the imagery to construct 
consistent attitude and ephemeris time histories for the data set in order to achieve LDCM 
geolocation accuracy requirements.  An additional four seconds is added as an allowance for late 
starts/stops, bad/partial frames at the beginning/end, etc…  Also, not all of the instrument telemetry is 
actually updated in every ancillary data frame so it takes multiple (up to 4) frames to be guaranteed of 
getting a fresh sample. 
 
For calibration collects (lamp, solar, shutter, black body, deep space, etc.) the geolocation framing is 
not done and a minimum of two seconds of ancillary are expected before and after the imagery. 
 
A check to ensure the imagery is fully covered by ancillary data should be done at a minimum for all 
intervals.  To avoid potential framing errors a check for at least 4 seconds of ancillary data before and 
after the imagery, for earth collects may be prudent.  If there is insufficient ancillary data to cover the 
imagery or processing results in framing errors the imagery may have to be trimmed to fit within the 
available ancillary in order to process the data.  A tool would have to be written to do this or ingest 
updated to “trim” imagery to fit within the ancillary data. 
 
Addendum to image trimming:  In order to support mission data files from a Live Downlink (like ICs 
would receive) image “trimming” is being looked at as an Ingest enhancement.  Top option being 
considered is to not actually remove the imagery but to indicate an interval start/stop frame that fits 
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within the ancillary data, where processing would begin/finish.  In that way no data is thrown away 
and there could potentially be updates to “extrapolate” the extent of the ancillary such that sometime 
in the future this imagery could be processed. 

7.1.3.3 Inputs 

The scene framing algorithm and its component sub-algorithms use the inputs listed in the following 
table. Note that some of these “inputs” are implementation conveniences (e.g., using an ODL 
parameter file to convey the values of and pointers to the input data). 
 
Algorithm Inputs 

ODL File (implementation) 

  CPF 

    Spacecraft TAI Epoch Time Reference 

    Earth orientation parameters (UT1UTC, pole wander, leap seconds) 

    OLI/TIRS Focal Plane Parameters 

    OLI/TIRS  Parameters  

    Attitude Parameters 

    Orbit Parameters 

WRS-2 Scene average elevation look-up file 

Preprocessed Ancillary Data 

    Attitude Data 

        Attitude data UTC epoch: Year, Day of Year, Seconds of Day 

        Time from epoch (one per sample, nominally 50 Hz) in seconds 

        ECI quaternion (vector: q1, q2, q3, scalar: q4) (one per sample) 

        ECEF quaternion (one per sample) 

        Body rate estimate (roll, pitch, yaw rate) (one per sample) in 
radians/second 

        Roll, pitch, yaw estimate (one per sample) in radians 

  Ephemeris Data  

        Ephemeris data UTC epoch:  Year, Day of Year, Seconds of Day 

        Time from epoch (one per sample, nominally 1 Hz) in seconds 

        ECI position estimate (X, Y, Z) (one set per sample) in meters 

        ECI velocity estimate (Vx, Vy, Vz) (one set per sample) in 
meters/second 

        ECEF position estimate (X, Y, Z) (one set per sample) in meters 

        ECEF velocity estimate (Vx, Vy, Vz) (one set per sample) in 
meters/second 

  L0R Data Contents 

    OLI Image Time Codes (one per frame) 

    TIRS Image Time Codes (one per frame) 

Instrument-specific minimum number of frames per full scene 
(O:7001,T:2801) 

Instrument-specific minimum number of overlap frames per scene (O:1322 
[756 FOV + 566 overlap],  T:1080 [800FOV + 168 overlap+ 112 
misalignment]) 

Number of polar region rows for nadir scene center calculations (6) 

Minimum latitude for special target row numbering (82.61deg) [Highest 
latitude if the roll shifts the imagery ~50% off the nadir pointing ground 
coverage.] 

  
Note that both ECI and ECEF attitude and ephemeris data are specified as inputs but the baseline 
algorithm makes use of only the ECEF versions. 
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7.1.3.4 Outputs 

The scene framing algorithm outputs are shown in the following table. 
 
Scene Framing Data 

    Number of scenes in the interval 

    For each scene in the interval: 

        Scene center time:  year, day of year, seconds of day UTC 

        Scene start time:  year, day of year, seconds of day UTC 

        Scene stop time:  year, day of year, seconds of day UTC 

        Scene corner information. 

        OLI start/center/stop frame numbers 

        TIRS start/center/stop frame numbers 

        Assigned orbital WRS-2 path 

        Assigned orbital WRS-2 row 

        Assigned target WRS-2 path 

        Assigned target WRS-2 row 

 

7.1.3.4.1 Approach Overview 

Scene Framing basically consists of the following: 
a. Using the ephemeris data, determine the WRS-2 orbital (i.e. nadir) range – this is also called the 

“heritage method”. 
b. Determine scene center times for each row at the focal plane boresight position (OLI: Boresight is 

located between SCA7 & 8, TIRS: Boresight is located in the middle of SCA A, B, & C).  This is 
performed by three different methods, depending on the row identified: 

i. LOS latitude crossing for non-polar rows, 
ii. Nadir position for Polar Region Rows (within +/-6 rows of the poles), 
iii. Zero Z-Velocity time for Polar Rows (246 or 122).  

c. Determine each instrument’s scene center frame number based on the center time, from which 
the start and stop frame numbers and times are also, determined using each instrument’s 
minimum frame counts (given above).    

d. Check and adjust scene start/stop times to ensure adequate overlap.  This is mainly needed for 
off-nadir collects that transition to/from the polar region rows. 

e. From each scene’s center coordinates, determine the closest Target Path/Row. This helps 
determine closest WRS-2 coverage for off-nadir imaging.  Also, for extremely high latitude, special 
target row numbers are used (88x and 99x) to help identify imagery viewed “off the WRS-2 grid” 
around the poles. 

f. Scene metadata (corner points, sun azimuth/elevation, etc) are then completed. 
 

7.1.3.5 Prototype Code 

None 
 
Note: The functionality described in this algorithm relies on geometric processing capabilities 
described in other LDCM/OLI/TIRS algorithm description documents. These algorithms will be 
referenced as necessary. 

7.1.3.5.1 Scene Sizes 

Full scene declaration is based on a minimum number of frames (OLI: 7001, TIRS:2801), anything 
less is considered a partial scene. See Appendix A:  Scene Sizing Background for an overview of the 
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fields-of-view and calculations to define the number of OLI and TIRS frames in a full WRS-2 scene. 
The LDCM imaging instruments (OLI and TIRS) are push broom instruments with significantly large 
fields-of-view in the along-track direction.  In addition, both instruments have redundant detectors 
which can be selected for active imaging. Since it is desirable to have a constant minimum frame size 
for Level-0 scenes to be considered “full”, the minimum scene frame size for each instrument is set 
large enough to always ensure enough coverage to produce full Level-1 scenes which are 
approximately 180km in length.  There’s also a one second tolerance on the boresight alignment 
between the two instruments. 
 

The standard length of a full Level-0 OLI scene is given by: 

OLI Sample Rate 4.236 Milliseconds / frame 

OLI FOV SCA 
Staggering 

1.7 Degrees (along-track) The angle required 

for the leading and trailing imaging bands 

of the SCAs to cover a point on the ground 

relative to the center of the focal plane.  

See Appendix A 

OLI FOV Frames 756 Frames (along-track) 

WRS-2 Scene 
24 Seconds (center-to-center) 

5664 Frames (center-to-center) 

WRS-2 Scene Overlap 566 Frames (5% top & 5% bottom) 

 6230 Frames (180km coverage, 5664+566) 

 6986 Frames (adjusted for FOV, 6230+756) 

L0 Scene Length 7001 15 frame cushion added (6986 + 15) 

 29.67 Seconds for 7001 frames 

Minimum OLI Overlap 
(Starti-to-Stopi-1) 

1322 Frames (756 FOV + 566 overlap)  

 

Similarly, the standard length of a full Level-0 TIRS scene is given by: 

TIRS Sample Rate 14.286 Milliseconds / frame 

TIRS FOV SCA 
Staggering 

5.0 Degrees (along-track) The angle required 
for the leading and trailing imaging bands 
of the SCAs to cover a point on the ground 
relative to the center of the focal plane.  
See Appendix A 

TIRS FOV Frames 800 Frames (along-track, includes science 
rows) 

WRS-2 Scene 
24 Seconds (center-to-center) 

1680 Frames (center-to-center) 

WRS-2 Scene Overlap 168 Frames (5% top & 5% bottom) 

 1848 Frames (180km coverage, 1680+168) 

L0 Scene Length 

2648 Frames (adjusted for FOV, 1848+800) 

2760 Frames (adjusted alignment tol, 
2648+112) 

2801 41 frame cushion added (2760 + 41) 

40.01 Seconds for 2621 frames 
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Minimum TIRS Overlap 
(Starti-to-Stopi-1) 

1080 Frames (800 FOV + 168 overlap + 112 
align) 

 

7.1.3.5.2 Note that if the instrument start and stop times between OLI and 
TIRS are not properly synchronized there could be multiple partial 
scenes at the beginning and/or ending of the interval.  Based on 
the start time values above TIRS collects should start/end roughly 
5 seconds before/after OLI [(40.01 – 29.67)/2 =5.17] 

7.1.3.5.3 Partial Scenes 

A Full WRS-2 scene product with approximately ten percent overlap is defined as 180km in along-
track direction.  Additionally, the Field-of-View (FOV) offset for each instrument and the boresight 
misalignment is included in the minimum number of frames to ensure coverage.  For OLI, this is 7001 
frames and for TIRS, this is 2801 frames.  Partial WRS-2 scenes are defined as anything less than a 
Full WRS-2 scene.  For partial scenes, the scene center is computed from the image frame closest to 
the nominal WRS-2 scene center.  In other words; for partial scenes with more than half a scene in 
length, the computed scene center is the “actual” WRS-2 scene center.  For partial scenes with less 
than half a scene in length, the computed scene center is the point within the imagery which is closest 
to the WRS-2 scene center.   For short partials that are at the start of an interval this would be at the 
center point of the first line and for partials that are at the end of an interval this would be the center 
point of the last line. 
  
In addition, Landsat 8 has two instruments which are commanded on/off separately so there may be 
times when one sensor is collecting data over a WRS-2 coverage area where the other instrument is 
not.  One likely scenario is that the instrument start and stop times between OLI and TIRS are not 
properly synchronized.  e.g.) TIRS start time is more than 5 seconds before/after OLI.  This could 
lead to “incidental” partials.  Incidental partials are considered partials because the data from one of 
the instruments is a partial or does not exist; while data from the other instrument is full or partial over 
the same WRS-2 path/row.  The table below defines when “incidental” partials would occur: 
 

OLI TIRS Scene 

Full Full Full 

Full Partial Partial (incidental) 

Full None Partial (incidental) 

Partial Full Partial (incidental) 

Partial Partial Partial 

Partial None Partial (incidental) 

None Full Partial (incidental) 

None Partial Partial (incidental) 

 
Scenes are classified as partials (incidental) even though one of the instruments may have the full 
WRS-2 coverage, with overlap.  Currently, products are not made from incidental partials as a 
combined scene collect is considered a partial.  In the future, a combined scene collect with a full 
scene for one instrument and partial for the other may be separated such that a product can be made 
from the full scene. 
 
Partials from an OLI Only or TIRS Only collect are not considered incidental partials.   
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7.1.3.5.4 Minimum Scene Overlap 

WRS-2 scenes are defined to be at least 180km long which means approximately 10% overlap from 

scene to scene. Due to the pushbroom FOV nature of the Landsat 8 instruments, the start of a scene 

in Level-0 format needs to begin much earlier and end much later than past satellites to achieve 10% 

overlap in all bands on all Sensor Chip Assemblies (SCA).  As illustrated in the following diagram, the 

minimum overlap requires 5% from each scene and ½ the FOV SCA staggering from each scene 

(See Appendix A Figure 9).  In other words, the minimum number of frames for overlap is 10% of the 

center-to-center frame requirement + the total FOV SCA staggering requirement. In addition, to 

assure minimum overlap of scenes from different orbits, the alignment counts are factored into the 

minimum overlap for TIRS. 

For OLI, the center-to-center requirement is 5664 frames, making the 10% minimum overlap 

requirement 566 frames and the FOV SCA staggering is 756 frames. So the minimum start-to-stop 

overlap is 566+756 = 1322 frames.  

For TIRS, the center-to-center requirement is 1680 frames, making the 10% overlap requirement 168 

and the FOV SCA staggering is 800 (including the allowance for science row deselect). Plus, the OLI-

to-TIRS alignment adjustment is 112 frames. This makes the minimum start-to-stop overlap 

168+800+112 = 1080 frames. 

 

Figure 3 Minimum Overlap 

7.1.3.5.5 Boresight Center 

When the scene centers are determined from the LOS model, a boresight center is approximated 

from LOS projections of nearby detectors.   

10% Overlap  

FOV Height 

FOV Height 

Row boundary  

5% added 

to next 
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to previous 

½ FOV added to next 

½ FOV added to previous 
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For OLI, the panchromatic band is the innermost band in the FOV and SCA 7 & 8 are the closest 

SCAs to the center. So, the left-most detector on SCA 8 and the rightmost detector on SCA 7 are 

used to average the latitude and longitude values obtained from the LOS projection. In the following 

diagram, the red dot marks the estimated boresight center using the projection of the two black 

detectors. 

 

 

Figure 2 OLI Boresight Center 

 

For TIRS, since the focal plane is made up of an odd number of SCAs, the boresight is first estimated 

by averaging two LOS latitude/longitude values from the outside two SCAs, then averaging the result 

with the center detector from the center SCA. In the following diagram, the blue dot represents the 

average of the outside two detectors and the red dot shows the average with the center SCA’s 

detector, yielding the boresight center estimate. 

Note that the boresight estimate will vary with the actual rows selected for each SCA and will vary 

with latitude.  Near polar collects use an alternate method defined below. 

 

 
 
 
  

 
SCA 7 

SCA 8 

Pan Band 

Pan Band 
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Figure 3 TIRS Boresight Center 

 

7.1.3.6 Procedure 

The primary tasks performed by the scene framing algorithm are to: 

1. Load and preprocess the ancillary ephemeris and attitude data, and determine the image 
interval time span. 

a. The spacecraft ephemeris and attitude data from the interval ancillary data stream is 
quality checked and prepared for subsequent use by the ancillary data preprocessing 
algorithm. This algorithm is described in the Ancillary Data Preprocessing Algorithm 
Description Document (ADD). 

b. Load the interval image time codes for both instruments, if present, and determine the 
imaging interval start and stop times. 

c. Verify that the preprocessed ancillary data completely covers the imaging interval and 
this is at least 8 seconds of ancillary data before and after the image data.  Note:  8 
seconds is expected operationally but 4 seconds may be sufficient for processing. 

2. Compute/Identify Orbital WRS-2 path/row (also known as nadir path/row) coverage within the 
imaging interval. 

a. Determine the ancillary time closest to the beginning of imaging, but not after.  The 
ancillary time should be the latest of ACS, Ephemeris, and IMU times and the imaging 
time should be the earliest of OLI and TIRS image start times. 

b. Determine the ancillary time closest to the end of imaging, but not before.  The ancillary 
time should be the earliest of ACS, Ephemeris, and IMU times and the imaging time 
should be the latest of OLI and TIRS image end times. 

c. Use the heritage nadir scene framing algorithm Determine Nadir WRS-2 Path/Row Sub-
Algorithm below and the preprocessed ancillary data to compute the starting and ending 
fractional WRS-2 scene path/row values.  The rounded values define the Orbital WRS-2 
path/row span of the interval.  These orbital path/rows are used for scene and interval 

SCA C 

SCA B 

10.8um Band 

10.8um Band 

SCA A 

10.8um Band 
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ids even for off-nadir imaging and for determining how the scene center times are 
computed. 

d. Loop through the identified rows and use the heritage nadir scene framing algorithm 
Determine Nadir WRS-2 Path/Row Sub-Algorithm below and the preprocessed ancillary 
data to find the times where the fractional WRS-2 scene row values are whole numbers, 

i.e. where frow ≅ int(frow).  These times define the initial nadir scene center times for 
each row. 

e. Note:  Because the above calculations are only done based on ancillary and ancillary 
data is captured before and after the imagery, the first and last scene center times 
calculated might fall outside the imagery collected.  These center times are adjusted 
below. 

3. Adjust scene center times within the rows found. The initial nadir scene center times are 
adjusted in the following ways: 

a. For non-polar region rows (Orbital WRS-2 rows from 5 through 115 and from 129 
through 239)3; the scene center times are adjusted based on the OLI boresight4 
location.   

i. Define the OLI boresight line-of-sight vector as: [ 0 0 1 ]T 

ii. Use the preprocessed ancillary data to interpolate the ECEF attitude quaternion 
at the scene center time as described below in the Interpolate Attitude 
Quaternion Sub-Algorithm.  Note that the scene center ECEF ephemeris will 
already have been computed by the nadir scene framing algorithm. 

iii. Project the OLI boresight, to the WGS84 ellipsoid surface (i.e. using height = 0), 
using the algorithm described in the Forward Model, Get LOS Sub-Algorithm 
section of the “OLI Line-of-Sight Projection/Grid Generation Algorithm 
Description Document”.   

Note:  

 Using the nadir scene center time, found above, allows us to bypass step 
a).1. Find Time,  

 Defining the OLI boresight LOS in step i. above takes the place of a).2. 
Find LOS, 

 The quaternion interpolation of step ii. above replaces a).3. Find Attitude, 

 Steps a).4. through a).7. of the Get LOS sub-algorithm can then be used 
to compute the geodetic latitude and longitude of the boresight 
intersection point. 

iv. Compute the (fractional) WRS-2 path/row corresponding to the boresight 
latitude/longitude using the Convert Geodetic Latitude/Longitude to WRS-2 
Path/Row Sub-Algorithm described below. 

                                            
3
 Note that these rows were selected as the boundary of the polar region because a 15 degree roll at this latitude 

corresponds to approximately a one row offset from nadir. 
4
 Use the TIRS boresight if OLI isn’t present. 
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v. Round the row to the nearest integer. This is the adjusted row to determine a 
new scene center time from. 

vi. Use the Search for Scene Center Time Sub-Algorithm described below to adjust 
the scene center time until the boresight intersection point matches the scene 
center adjusted row. 

vii. Declare the scene center time to be the new scene center. 

b. For polar rows  (Orbital WRS-2 rows122 and 246); the zero-crossing time of the z-
component of the velocity vector from the ECEF ephemeris is the new scene center 
time.  Note that this method will probably be close, if not the same, to the initial nadir 
scene center time, but is preferred implementation for accuracy and historical purposes. 

c. For polar region rows (six rows adjacent to either side of the polar rows: Orbital WRS-2 
rows 1-4, 116-121, 123-128, 240-245 and 247-248); the initial nadir scene center times 
will not be adjusted due to the large amount of overlap of path/rows at the pole.  The 
new scene center time will be set to the nadir scene center time found above.5 

4. Compute the scene extents 

a. Determine the scene center frames for each instrument.  If the first scene’s center is 
before the start of imagery, a negative frame number is estimated.  If the last scene’s 
center is after the end of imagery, a frame number larger than the interval length is 
used.  These are temporary values used in the next step. 

b. Compute scene start and stop frames: 

i. start framei = max( 0, center_framei – (NOMINAL_SIZE/2)). 

ii. stop framei =  

min(total_frames, center_framei + (NOMINAL_SIZE/2)). 

c. Adjust the first and last scene center frames to be within the actual imagery, if needed 
(i.e. if first center < 0, make it 0 and if the last center > interval last frame, make it the 
last frame). 

d. Check for adequate overlap between scenes and adjust if needed: 

overlap = scene stop framei - scene start framei+1. 

if( overlap < minimum overlap ) 

delta = (minimum overlap – overlap) 

start diff = (delta) / 2; 

if( start diff >= scene start framei+1 ) 

   start diff = scene start framei+1; 

scene start framei+1 -= start diff; 

stop diff = (delta – start diff); 

scene stop framei += stop diff; 

if ( scene stop framei > total_frames ) 

  scene stop framei = total_frames; 

                                            
5
 Note that the number of adjacent rows may have to be adjusted if the polar region boundary scene sizes do not frame to 

the proper sizes.   
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e. Check to see if the first and last partials are completely within the overlap regions of 
adjacent scenes.  If so, remove them. 

f. Set the scene start, stop, and center times to the corresponding frame times. 

g. Determine which scenes are partial or full. 

i. length = stop framei – start framei; 

ii. if ( length < NOMINAL_SIZE ) 
  scene is PARTIAL 
else 
  scene is FULL 

iii. Note that for combined (OLI + TIRS) collects, both lengths must be greater than 
or equal to the corresponding nominal sizes for the scene to be FULL. 

5. Check the complete list of scene center times to ensure that no two adjacent scene centers 
are more than 48 seconds apart (two times the normal scene center-to-center interval). If any 
two consecutive scene centers exceed this limit error out (the polar region will need to be 
enlarged). This should never happen. 

6. Compute the corresponding target WRS-2 path/row coordinates and lat/long for each adjusted 
scene center time in the interval (new scene center times from step 3-4 above). 

a. Define the OLI boresight line-of-sight vector as: [ 0 0 1 ]T 

b. Use the preprocessed ancillary data to interpolate the ECEF attitude quaternion at the 
adjusted scene center time as described in the Interpolate Attitude Quaternion Sub-
Algorithm below. 

c. Project the OLI boresight, to the WGS84 ellipsoid surface (i.e. using height = 0), using 
the algorithm described in the Forward Model Get LOS Sub-Algorithm section of the 
“OLI Line-of-Sight Projection/Grid Generation Algorithm Description Document”.   

Note:  

i. using the adjusted scene center time, found above, allows us to bypass step 
a).1. Find Time,  

ii. defining the OLI boresight LOS in step i. above takes the place of a).2. Find LOS, 

iii. the quaternion interpolation of step ii. above replaces a).3. Find Attitude, 

iv. Steps a).4. through a).7. of the Get LOS sub-algorithm can then be used to 
compute the geodetic latitude and longitude of the boresight intersection point. 

d. Compute the (fractional) WRS-2 path/row corresponding to the boresight 
latitude/longitude using the Convert Geodetic Latitude/Longitude to WRS-2 Path/Row 
Sub-Algorithm described below. Round the values to the nearest integers. This is the 
target path/row. 

e. Determine if the scene center position is off the WRS-2 grid.  For collections near the 
poles, it is possible to look off-nadir toward the pole, into an area not defined by the 
WRS-2 grid.  If the geodetic latitude just calculated is above 82.61 degrees this is 
considered as being off the WRS-2 grid and a special naming convention is used.  To 
allow unique target row assignments, the North Pole area is assigned a row of 88n, and 
the South Pole area is assigned a row of 99n, where n is a sequential number.  Up to 
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seven scenes can be covered in these areas; therefore, the scenes are assigned target 
row numbers 880 to 886, or 990 to 996 in the interval. 

 

Corner Coordinate Framing 
The corner points represent the WRS-2 extent of a scene on the ground in north-up latitude and 
longitude coordinates.  Using the scenes starting and ending frames, found above, a Line-of-Sight is 
calculated at the first and last pixel in those frames (use the Forward Model Get LOS Sub-Algorithm 
section of the “OLI Line-of-Sight Projection/Grid Generation Algorithm Description Document” and 
“TIRS Line-of-Sight Projection/Grid Generation Algorithm Description Document).  Due to the layout 
of the bands and SCAs on the focal plane, there are along-track offsets between bands within each 
SCA, along-track offsets between even and odd SCAs, and a reversal of the band ordering in 
adjacent SCAs.  To create more uniform image coverage, the leading and trailing imagery associated 
with these offsets is “trimmed” based on an active area bounds. 
 
To account for band offsets the frames and pixels from the outer most bands should be used in the 
corner calculations.  For the OLI corner calculations, the Cirrus band is used and similarly the 10.8 
µm band is used for TIRS.  Using the outer most bands insures that every band is bounded by the 
corner coordinates.  To account for the SCA offsets a minbox representing a rectangular active image 
frame is defined that excludes the excess trailing imagery from even SCAs and the excess leading 
imagery from odd SCAs. 
 
OLI Active Image Area 
The active image area (minbox) for OLI is computed by constructing 8 critical SCA corner points from 
the Cirrus band, labeled C1 through C8 in the figure below. Points C1 and C2 define the top edge of 
the active area, C3 and C4 the right edge, C5 and C6 the bottom edge, and C7 and C8 the left edge. 
Note that points C1 and C8 are the same (the upper left corner of SCA01) as are points C4 and C5 
(the lower right corner of SCA14). Use the forward model to project these 8 line/sample locations to 
object space, computing the latitude/longitude coordinates for each point.  The average elevation 
over the WRS-2 path/row is used as a rough adjustment from the WGS84 ellipsoid in the elevation 
parameter of the forward model for the 8 line/sample to latitude/longitude calculations. Use the WRS-
2 Scene average elevation look-up file to determine the average elevation for the path/row being 
processed. 
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Figure 4 Active OLI Image Area 

 
The remainder of the calculations and determination of the minbox framing of the active OLI image 
area is described in the Calculating the Active Image Area section of the “OLI Line-of-Sight 
Projection/Grid Generation” ADD.  The results of these calculations should be the latitude and 
longitude of the four bounding corner points represented by the blue points in Figure 4. 
 
TIRS Active Image Area 
The active image area (minbox) for TIRS is computed by constructing 8 critical SCA corner points 
from the 10.8 µm band, labeled C1 through C8 in the figure below. This figure depicts the current 
understanding of the TIRS field of view orientation with respect to object space, but the algorithm 
described here will work so long as the SCAs are numbered sequentially across the field of view, in 
either direction. Points C1 and C2 define the top edge of the active area, C3 and C4 the right edge, 
C5 and C6 the bottom edge, and C7 and C8 the left edge.  Note that points C4 and C5 are the same 
(the lower right corner of SCA01) as are points C6 and C7 (the lower left corner of SCA03). Use the 
forward model to project these 8 line/sample locations to object space, computing the 
latitude/longitude coordinates for each point.  The average elevation over the WRS-2 path/row is 
used as a rough adjustment from the WGS84 ellipsoid in the elevation parameter of the forward 
model for the 8 line/sample to latitude/longitude calculations.  Use the WRS-2 Scene average 
elevation look-up file to determine the average elevation for the path/row being processed. 
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Figure 5 Active TIRS Image Area 

 
The corner point assignments are made by examining the SCA across-track and along-track 
Legendre coefficients to determine:  1) whether SCA01 is on the left (+Y) or right (-Y) side of the 
scene; 2) whether even or odd SCAs lead; and 3) whether the sample number increases in the –Y or 
+Y direction. If the across-track Legendre constant term (coef_y0) for SCA01 is positive then it is the 
left-most SCA and SCA03 is the right-most. If the along-track Legendre constant term (coef_x0) for 
SCA01 is greater than that for SCA02, then the odd SCAs lead. If the across-track Legendre linear 
term (coef_y1) for SCA01 is negative, then the sample number increases in the –Y direction. 
 
Having determined the orientation of the SCAs, assign the top edge to the left-most leading SCA 
upper left (UL) corner and the right-most leading SCA upper right (UR) corner, the right edge to the 
right-most SCA UR and lower right (LR) corners, the bottom edge to the right-most trailing SCA LR 
corner and left-most trailing SCA lower left (LL) corner, and the left edge to the left-most SCA LL and 
UL corners. As shown in the figure, for the TIRS:  C1 = SCA02 (left-most leading SCA) UL, C2 = 
SCA02 (right-most leading SCA) UR, C3 = SCA01 (right-most SCA) UR, C4 = SCA01 (right-most 
SCA) LR, C5 = SCA01 (right-most trailing SCA) LR, C6 = SCA03 (left-most trailing SCA) LL, C7 = 
SCA03 (left-most SCA) LL, and C8 = SCA03 (left-most SCA) UL. Note that these assignments are 
based on the current TIRS SCA ordering of SCA-B = SCA01, SCA-C = SCA02, and SCA-A = SCA03, 
and could change if the SCA numbering system is revised. If this were to happen, the change would 
be reflected in the Legendre coefficients, so the logic described here would automatically 
compensate. 
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The remainder of the calculations and determination of the minbox framing of the active TIRS Image 
area is described in the Calculating the Active Image Area section of the “TIRS Line-of-Sight 
Projection/Grid Generation” ADD.  The results of these calculations should be the latitude and 
longitude of the four bounding corner points represented by the blue points in Figure 5. 
 
As depicted in Figure 6, the lower corner coordinates correspond to the leading edge (last line) of a 
scene, and upper coordinates correspond to the trailing edge (first line) of a scene from the outer 
most bands on the SCAs.  Leading/Trailing edges are based on which SCA/Band/Detectors are 
first/last in relation to the direction of flight (ascending or descending) relative to the ground. 
 

 

Figure 6 Leading/Trailing Scene Edge 

 

 

Determine Nadir WRS-2 Path/Row Sub-Algorithm 
The ephemeris data are used to define the nadir WRS-2 path & row.  The following routine is 
called to determine the nadir pointing position of the satellite for Landsat Scene IDs and to 
determine scene center times for polar region rows.  This is also known as the “heritage nadir 
scene framing algorithm”. 
 

Inputs: 

 ecef_pos, ecef_vel (Ephemeris State Vector in Earth-Centered, Earth-Fixed coordinates). 

 CPF WRS-2 Constants: 
o Long_Path1_Row60 (longitude of Path 1 at Row 60 = -64.6 deg). 
o WRS_Cycle_Days (number of days per WRS cycle = 16 days) 
o WRS_Cycle_Orbits (number of orbits per WRS cycle = 233 orbits) 
o Scenes_Per_Orbit (number of scenes or rows in each orbit = 248 rows) 
o Descending_Node_Row (row number of equator when descending = 60) 
o Omega_E (WGS-84 Earth's inertial rotation rate, rad/sec) 

Outputs: 

 Fractional WRS-2 Orbital Path & Row. 
 
Procedure: 

1. Convert the CPF path 1 row 60 longitude to radians. 
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2. Compute Earth angular rate (solar to account for orbital precession). 

 

3. Compute the spacecraft angular rate. 

 

4. Normalize the incoming position and velocity vectors. 

 

Adjust the velocity vector by earth’s inertial rotation rate. NOTE: if the ephemeris data has 
already been preprocessed, the ADP output ECEF ephemeris can be used and this velocity 
adjustment isn’t needed. 
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and normalize. 

 

5. Compute the spacecraft angular momentum . 
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6. Compute the vector to the descending node 

 

and normalize. 

 

7. Compute the central travel angle from the descending node and the spacecraft position vector. 
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8. Compute the row number from the central angle. 

 

9. Compute the longitude of the instantaneous descending node. 
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10. Compute the path number from the longitude of row 60. 
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NOTE: the (0.5 – Descending_Node_Row) is the distance in WRS rows from the start of the 
path (row 0.5) to the descending node (row 60). 

11. Make sure the row number is in range. 

while ( frow < 0.5 ) 

fpath = fpath – 16; 

frow = frow + Scenes_Per_Orbit; 

while ( frow > Scenes_Per_Orbit + 0.5 ) 

fpath = fpath + 16; 

frow = frow – Scenes_Per_Orbit; 

 
12. Make sure the path number is in range. 

while ( fpath < 1 ) 

fpath = fpath + WRS_Cycle_Orbits; 

while ( fpath > WRS_Cycle_Orbits ) 

fpath = fpath – WRS_Cycle_Orbits; 

frow = frow – Scenes_Per_Orbit; 

 
 

 
Interpolate Attitude Quaternion Sub-Algorithm 
Given a sequence of time stamped quaternions, (qi, ti), and a time, t0, at which the interpolated 
quaternion is desired: 

1. Step through the quaternion time stamps to identify the latest quaternion time, ti, which is less 
than or equal to the interpolation time of interest, t0. 

2. Calculate the quaternion q that rotates qi to qi+1: 

q = qi+1 q'i 
where:  q'i is the conjugate of quaternion qi. See the quaternion conjugation and quaternion 
multiplication sub-algorithms below. 

3. If the sign of the fourth element of q, q4, is negative, change the sign of the entire 
quaternion. 

4. Decompose the q quaternion into its angle () and axis of rotation (x) form: 

sin(/2) = sqrt( q1*q1 + q2*q2 + q3*q3 ) 

cos(/2) = q4 

 = 2 * atan( sin(/2) / cos(/2) ) 
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x = [ q1/sin(/2)  q2/sin(/2)  q3/sin(/2) ]T 

noting that if sin(/2) = 0 then x = 0. 

5. Linearly interpolate the angle 0 at time t0: 

0 =  * (t0 - ti) / (ti+1 - ti) 

6. Construct the quaternion corresponding to the new rotation angle 0: 

q0 = [ sin(0/2) xT   cos(0/2) ] 
7. Apply the new delta quaternion to qi to compute q0, the quaternion at time t0: 

q0 = q0 qi 
 
Quaternion Conjugation Sub-Algorithm 
The conjugate q', of a quaternion q, is computed by inverting the sign on the first three elements 
of q: 

q' = [ -q1  -q2  -q3  q4 ] 
 
Quaternion Multiplication Sub-Algorithm 
The product c, of quaternions a and b is given by: 

c1 =  a4 b1 + a3 b2  - a2 b3 + a1 b4 
c2 = -a3 b1 + a4 b2 + a1 b3 + a2 b4 
c3 =  a2 b1  - a1 b2 + a4 b3 + a3 b4 
c4 = -a1 b1  - a2 b2  - a3 b3 + a4 b4 

Note that quaternion multiplication does not commute. Also note that other formulations of 
quaternion multiplication are possible. Any consistent formulation should work in the interpolation 
equations above. 

 

 
Convert Geodetic Latitude/Longitude to WRS-2 Path/Row Sub-Algorithm 

Given a boresight geodetic latitude , and longitude , and the corresponding spacecraft velocity Z 
component Vz (to determine whether the scene is ascending or descending): 

1. Compute the geocentric latitude , from the geodetic latitude , and the WRS84 ellipsoid semi-
major (a) and semi-minor (b) axes: 

 = atan( tan(  ) * b/a * b/a ) 

2. Use the geocentric latitude and the nominal Landsat orbital inclination (i = 98.2 degrees) to 
compute the longitude offset to the apparent descending node: 

off = asin( tan(  ) / tan ( - i) ) 

This calculation should include a test to ensure that the argument of the asin function is in 
the range -1 to +1, clipping the value to this range if necessary (e.g., for latitudes outside 
the standard WRS-2 range). 

3. Calculate the central travel angles for both the descending and ascending cases: 

CTAd = asin( -sin(  ) / sin ( - i) ) 

CTAa =  - CTAd 

As above, the range of the asin function argument should be clipped to the range -1 to +1. 

4. Compute the allowable range of central travel angles on a given WRS path as: 

min CTA = (0.5 - 60.0)/248 * 2 

max CTA = (248.5 - 60.0)/248 * 2 
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5. Add or subtract 2 to the descending and ascending central travel angles to bring them within 
the allowable range. 

If ( CTAd < min CTA ) CTA'd = CTAd + 2

Else if ( CTAd > max CTA ) CTA'd = CTAd - 2 
Else CTA'd = CTAd 

If ( CTAa < min CTA ) CTA'a = CTAa + 2

Else if ( CTAa > max CTA ) CTA'a = CTAa - 2 
Else CTA'a = CTAa 

6. Compute the Earth rotation angles from the adjusted central travel angles: 

d = CTA'd * Earth rotation rate / Spacecraft angular rate 

a = CTA'a * Earth rotation rate / Spacecraft angular rate 

7. Calculate the apparent descending node longitudes for the descending and ascending cases: 

DNd =  - off + d 

DNa =  + off +  + a 

8. Select the descending or ascending case: 

If ( Vz > 0.0 ) 
CTA' = CTA'a 

DN = DNa 
Else 

CTA' = CTA'd 

DN = DNd 

9. Compute the (fractional) WRS-2 row number from the central travel angle: 

row = row at equator (60) + CTA' / 2 * number of rows (248) 

10. Compute the (fractional) WRS-2 path number: 

0 = (longitude of path 1 at equator) - DN + 2 

If ( 0 > 2 ) 0 = 0 - 2 

path = 0 * number of paths (233) / 2 + 1 
 

 
Search for Scene Center Time Sub-Algorithm 
Given a scene center time (t0) and the corresponding WRS-2 row (row0) and a target (integer) row 
(rowT): 

1. Compute the nominal WRS-2 row rate: 

row rate = number of rows (248) / orbital period 

2. Compute the row error: 

row error = row0 - rowT 

3. If the absolute value of the row error is less than 0.005, use the current scene center and exit 
the search. 

4. Save the previous scene center time and row: 

rowL = row0 



LDCM-ADEF-001 
Version 3 

 

tL = t0 

5. Adjust the scene center time: 

t0 = t0 - (row error) / (row rate) 

6. Interpolate the spacecraft ephemeris and attitude at the new scene center time. 

7. Project the boresight to the WGS84 ellipsoid at the new scene center time. 

8. Compute the WRS-2 path/row at the boresight latitude/longitude as described above. This 
yields a new value of row0. 

9. Compute the WRS-2 row rate: 

row rate = (row0 - rowL) / (t0 - tL) 

10. Continue the iterations at step 2. above. 

Note: This sub-algorithm is only used for non-polar scenes so the row transition from 248 to 1 is not 
an issue. 

7.1.3.7 Maturity 

The Scene Framing Algorithm is an attempt to document how OLI and TIRS scene sizes were 
derived and how to determine scene centers, orbital WRS-2 path/rows and target WRS-2 path/rows.  
In addition it addresses where to calculate corner point information to form the coordinates of the 
WRS-2 frame for the metadata.  This algorithm relies on invoking all or part of the ancillary data 
preprocessing and LOS projection algorithms. 
 
Being that this document was written before launch, most of the OLI and TIRS instrument information 
is known for the supporting calculations.  However, there may be changes due to results from various 
instrument and spacecraft tests.  As more data is received and analyzed, appropriate changes will be 
made as necessary. 

7.1.3.8 Notes 

Significant algorithm assumptions and notes, including those embedded in the text above, are: 
1. Ancillary data for the full imaging interval with 8 seconds of extra before and after the interval is 

available to provide the required geometric support data.  A minimum of 4 seconds of extra 
ancillary data before and after may be sufficient for processing. 

2. In the polar transition regions (rows 5, 115, 129, and 239) there may be larger scenes framed 
in situations where the spacecraft is rolled "away" from the pole (see step 2.d. of the main 
algorithm procedure above). In this configuration the distance between scene centers can 
exceed 5664 OLI multispectral image frames. This occurs because the OLI is looking toward 
the equator where the rows are growing farther apart in latitude, while the spacecraft is flying 
at higher latitude where the rows are closer together in latitude. It thus takes more than a 
nominal row of flight time for the boresight to traverse one row of latitude. Other possible 
approaches would be to move the transition region toward the equator by 5 rows for intervals 
that are rolled toward the equator. The approach adopted here is to allow the off-nadir L0Rp 
scenes to be somewhat longer than nadir scenes.  
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7.1.3.8.1 Appendix A – Scene Sizing Background 

OLI: 

The bore sight of the OLI telescope is parallel to the spacecraft +Z axis which means it will be nadir 
pointing.  The 14 OLI SCAs are arranged in two rows of seven as shown in Figure 7.  The Field of 
View (FOV) of the telescope is 15 degrees in the cross track direction and 1.7 degrees in the along-
track direction.   

 

Figure 7 OLI SCA Layouts and FOV 

 
The telescope bore sight will traverse one scene (i.e.  Scene center to scene center) in about 24 
seconds given the nominal orbit rate.  
 
WRS_Cycle_Days = 16 days 
WRS_Cycle_Orbits = 233 
Scenes_Per_Orbit = 248 
Seconds_Day = 86400 
 
Calculate Spacecraft Angular Rotational rate: 
 

   
                    

                          
             

       

       
 

 
Calculate time between successive WRS rows: 
 

   
                          

                                 
                   

 
The size of an OLI scene, in lines, can be calculated with respect to the bore sight with the following 
calculations.  Rounding the above number to 24 seconds the number of OLI lines between 
successive WRS rows is: 
 
OLI_Frame_Rate = 236 lines / second 
 

          
  

              
            

 

1.7 deg 
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In addition, by definition of Landsat WRS products, WRS scenes are overlapped with the previous 
row by 5% and the next row by 5%.  The total number of OLI lines needed for the overlap is then 
10%. 

                        
  

              
            

 
However the LDCM OLI bands within each SCA are staggered with respect to the bore sight. 

 

Figure 8 OLI Band/SCA Band Parallax 

 
This staggering represents a time difference between when the leading set of detectors within a SCA, 
for a given band, image the start and end of the WRS scene and when the trailing set of detectors 
within a SCA, for a given band, image the start and end of the WRS scene. 
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Figure 9 OLI SCA/Band Staggering 

 
The extra time required for the leading and trailing imaging bands of the SCAs to cover a point on the 
ground relative to the center of the focal plane will vary with position in orbit and scene elevation.  
Extra lines of imaging will be required at the beginning and end of the interval, or about 1.5 seconds 
of extra data on each side. This means that imaging must start at least 1.5 seconds prior to the 
telescope bore sight reaching the leading edge of the first scene in the desired interval and must 
continue for at least 1.5 seconds after passing over the trailing edge of the last scene of an interval. 
This will assure that all bands in all SCAs have completely imaged the scene. 
 
Looking at the OLI Legendre LOS polynomials and determining the leading and trailing look vectors, 
the difference in radians/degrees is: 
 

Leading_LOS =  1.436414e-02 radians =   0.8230046 degrees 
Trailing_LOS = -1.444101e-02 radians =  -0.8265414 degrees 
 

The difference between these two numbers represents a field of view of 1.65 degrees.   Rounding this 
to 1.7 degrees (0.85 leading and 0.85 trailing) we can determine the amount of time needed to pad 
either the leading or trailing acquisition of the OLI WRS scene in terms of time.  If the maximum 
satellite altitude is present at the poles and the minimum satellite altitude is present at the equator the 
minimum and maximum number of lines needed in the L0rp can be calculated. 
 
α = 0.85 degrees 
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Orbital_Radius = 7083445,719 meters 
Semi_Major_Axis = 6378137.0 meters 
Semi_Minor_Axis =  6356752.3142 meters 
Major_Alt = Orbital_Radius – Semi_Major_Axis = 705308.72 meters 
Minor_Alt = Orbital_Radius – Semi_Major_Axis = 726693.40 meters 
 
The ground distance covered at these two altitudes represented on the earth are found as: 
 

                                           
                                           

 

These ground distances represent an angular orbit change of: 
 

      (
        

               
)                     

 

      (
        

               
)                     

 
Using the spacecraft angular rotational rate gives a delta time due to the staggering of the SCAs as: 

   
 

 
                     

 
Using the OLI frame rate the number of OLI lines needed for this (maximum) delta time is: 

                                                           
 
The total number of lines needed within a OLI WRS scene is then  
 

Total Lines = (nominal size + 5% overlap + SCA staggering) 

                                                       

For convenience and ease of use the final number of OLI lines will be rounded to 7001 lines. An odd 
number is used so that a center line is found and the same number of before and after lines (3500) 
are used to define the entire L0R scene. 
 
In terms of time, a single scene will take about 29.6 seconds:  
 

     1.6 sec (378 lines for leading edge SCA coverage) 
+   1.2 sec (5% overlap on leading edge) 
+ 24.0 sec (time for WRS scene) 
+   1.2 sec (5% overlap on trailing edge) 
+   1.6 sec (378 lines for trailing edge SCA coverage) 
= 29.6 sec (29.67 for 7001 lines) 
 

 
TIRS: 
The TIRS SCAs are larger and farther apart than the OLI SCAs which will require TIRS to begin 
imaging earlier, and continue for a longer duration than OLI in order to completely image a scene.  
The along-track of the TIRS instrument is 4.95 degrees (Figure 10) requiring an additional 9.43 
seconds (4.714 seconds for the leading and trailing edges) of imaging to assure  all bands in all three 
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SCAs have completely imaged the scene.  The same logic used for calculating the number of OLI 
lines can be used for TIRS. 
 

 

Figure 10 TIRS Layout and FOV 

 
The size of a TIRS scene, in lines, can be calculated with respect to the bore sight with the following 
calculations.  The number of TIRS lines between successive WRS rows: 
 
TIRS_Frame_Rate = 70 lines / second 
 

           
  

               
            

 
In addition, by definition of Landsat WRS products, WRS scenes are overlapped with the previous 
row by 5% and the next row by 5%.  The total number of TIRS lines needed for the overlap is then 
10%. 
 

                        
  

               
            

 
Looking at the TIRS Legendre LOS polynomials and determining the leading and trailing look vectors, 
the difference in radians/degrees is: 
 

Leading_LOS =  4.623841e-02 radians =   2.65 degrees 
Trailing_LOS = -3.989761e-02 radians =  -2.29 degrees 
 

The difference between these two numbers represents a field of view of 4.94 degrees.   Rounding this 
to 5 degrees (2.7 leading and 2.3 trailing) we can determine the amount of time needed to pad either 
the leading or trailing acquisition of the TIRS WRS scene in terms of time.  If the maximum satellite 
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altitude is present at the poles and the minimum satellite altitude is present at the equator the 
minimum and maximum number of lines needed in the L0rp can be calculated.  Using the spacecraft 
angular rotational rate gives a delta time due to the staggering of the SCAs as: 
 

dτ = 4.92 seconds (maximum) 

Using the TIRS frame rate the number of TIRS lines needed for this (maximum) delta time is: 
 

                                                          

 
This delta is further extended by 50 lines to include the possible use of the secondary, or science, 
rows. The total number of lines needed within a TIRS WRS scene is then  
 

Total Lines = (nominal size + 5% overlap + SCA staggering + 50 science) 

                                                               

In terms of time, a single scene will take about 37.8 seconds:  
 

     5.0 sec (350 lines for leading edge SCA coverage) 
+   0.7 sec (50 lines to include science rows) 
+   1.2 sec (5% overlap on leading edge) 
+ 24.0 sec (time for WRS scene) 
+   1.2 sec (5% overlap on trailing edge) 
+   0.7 sec (50 lines to include science rows) 
+   5.0 sec (350 lines for trailing edge SCA coverage) 
= 37.8 sec 

To ensure TIRS fully covers OLI additional lines should be added to account for any misalignment 
between the OLI and TIRS bore sights (which has a one second tolerance) and OLI to ACS 
alignment, any biases present in the pointing of the Scene Select Mirror, etc.  Also, the above 
calculations use nominal values, pre-launch information, and rounding liberties which should be taken 
into consideration. 

 
The TIRS number of lines can also be calculated based on the number of OLI lines to ensure full 
coverage of the TIRS data with OLI data.  The number of TIRS lines can be found by first scaling the 
OLI number of lines needed to cover the 180km scene (6230 lines) by the ratio of the nominal line 
sample rates of OLI-to-TIRS: 
 

                          
     

      
            

 
This number then needs to be adjusted for the TIRS leading and trailing SCA/band staggering.  From 
the above TIRS calculations this value is 700 lines.  Another 112 lines are needed for the alignment 
tolerances and 100 lines to include the science rows. The total number of lines needed within a TIRS 
WRS scene that will fully cover the OLI data is then: 

                                       

For convenience and ease of use the final number of TIRS lines will be rounded to 2801 lines. An odd 
number is used so that a center frame is found and the same number of before and after frames 
(1400) are used to define the entire L0R scene. 
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This is equivalent to 40.01 seconds of TIRS data to cover the 29.67 seconds of OLI data.  This 
means TIRS imaging will need to start/end approximately 5.2 seconds before/after OLI to ensure 
adequate coverage. 
 
From the calculations listed above the size of the OLI will be 7001 lines (multispectral) and the size of 
the TIRS will be 2801 lines (thermal). 

7.1.3.8.2 Appendix B – Comparison of Partial Scene Definitions 

 
The Level-0ra DFCB for Landsat 7 has the following discussion of partial scenes: 

For a partial scene with more than half a scene length data, the computed "actual" scene 
center is also expected to happen in the proximity of the nominal WRS scene center.  The 
"actual" scene center for a greater than half a scene length partial scene may also be 
computed from the available actual PCD and indexed to actual data in the band file.  For a 
partial scene with less than half a scene length data, the scene center may have to be 
computed from extrapolated* ephemeris (no actual PCD may be available from the 
subinterval).  The computed "imaginary" scene center for such a partial scene (less than half a 
scene) is still determined in the proximity of the nominal WRS scene center, but there will not 
be any actual band data in the subinterval band file for which to relate the scene center.  The 
computed "imaginary" scene center for a partial scene with less than half a scene length data 
is indexed to an "imaginary scan" (non-existent scan 0) in the band file. 

* For LDCM, extrapolation of ancillary data beyond the existing ancillary/ephemeris was not provided and/or is not 

possible.  The above method will not work for LDCM so it was decided that the scene center would actually 
represent the center of the partial (although the implementation currently takes the first or last line in the scene 
closest to the WRS-2 center.  A future release will address this difference). 

 
The current LMDD definition for LDCM partial scenes is: 

FULL = Full WRS scene - the standard 180 x 185km WRS size.   

PARTIAL = Partial WRS scene - less than full and includes the scene center, or greater than 
half and includes the scene center. 

The definition provided in CCR#598 reads: 

PROPOSED: "...less than a full scene that is not covered by overlap." 

RATIONALE FOR CHANGE 

-provide consistency with heritage Landsat 

-have all scene metadata available in the Inventory 

-enable future ability to handle adhoc requests for partial scenes in Subsetter 

The current DFCB definition for partial scenes is: 

Full – A full WRS scene product with approximately ten percent overlap is defined as 180km.  
For OLI, this is 7001 frames (~28.86-meter MS lines) and for TIRS, this is 2801 frames 
(~86.91-meter lines). 

Partial – Considered less than a full scene. 

Scene Center - The computed "actual" scene centers are from the image frame closet to the 
nominal WRS scene center 
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7.1.4 Ancillary Data Preprocessing Algorithm 

7.1.4.1 Background/Introduction 

The ancillary data preprocessing algorithm prepares the ancillary data provided by the spacecraft in 
the wideband data stream for use by subsequent geometric algorithms. This includes quality checking 
the incoming data to identify and remove outliers, applying scale factors from the CPF to convert the 
relevant ancillary data fields to engineering units, and processing the spacecraft attitude and 
ephemeris data to construct consistent attitude and ephemeris time histories for the data set. The 
baseline assumption is that the attitude and position/velocity estimates produced by the spacecraft 
will be sufficiently accurate to achieve LDCM geolocation accuracy requirements. If this is the case, 
only basic quality checking and smoothing operations will be required. Since the ancillary data stream 
will also include the raw observable data used by the spacecraft to construct its attitude and 
ephemeris estimates, more sophisticated processing using the raw star tracker and SIRU data to 
construct a “definitive” attitude data set, and/or using the raw GPS pseudo-range and carrier phase 
observables to compute a “definitive” ephemeris data set, would be possible. These enhanced 
capabilities are currently considered a risk reduction contingency that would not be implemented 
unless needed. 
 
The content and structure of the spacecraft ancillary data is defined in the Space to Ground Station 
Interface Control Document. This document clarifies several uncertainties regarding formats, 
coordinate systems, and sampling rates that required assumptions to be made in earlier versions of 
this algorithm description. For example, the rate at which the integrated spacecraft attitude estimates 
are provided was initially undecided. Had the integrated spacecraft attitude estimate quaternions 
been provided at a lower rate than the SIRU data, those estimates would have required densification 
using the raw SIRU data and its associated calibration parameters, status flags, and on-board bias, 
alignment, and scale estimates. Since the degree of smoothing that the SIRU measurements will be 
subjected to in the on-board attitude filter is, as yet, unknown, this algorithm still assumes that the raw 
SIRU measurements will be used to ensure that high frequency content is preserved. The Smooth 
Euler and SIRU sub-algorithm will be used to perform this data blending and to replace quaternions 
flagged as outliers. 
 
This algorithm was originally intended to support only imaging intervals that would be suitable for 
Level 1 processing – primarily Earth-view and lunar acquisitions. Subsequently, it was decided that 
ancillary data preprocessing would be valuable in other cases, particularly solar calibration intervals. 
Since these intervals tend to be quite short (only a few seconds) some special logic was added to 
allow processing to proceed under these conditions. These adjustments, mainly to the SIRU 
processing logic, are noted in the appropriate locations below. 

7.1.4.2 Dependencies 

The ancillary data preprocessing algorithm assumes that ancillary data for the full imaging interval 
with (nominally) 4 seconds of extra data before and after the interval, is available to provide the 
required geometric support data, that a CPF containing the scale factors needed to convert the 
ancillary data to engineering units is available, and that the quality thresholds needed to detect and 
remove or repair outliers are provided either in the CPF or as processing parameters. 
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7.1.4.3 Inputs 

The ancillary data preprocessing algorithm and its component sub-algorithms use the inputs listed in 
the following table. Note that some of these “inputs” are implementation conveniences (e.g., using an 
ODL parameter file to convey the values of and pointers to the input data; including data set IDs to 
provide unique identifiers for data trending). 
 
Algorithm Inputs 

ODL File (implementation) 

  CPF File Name 

  Relevant CPF contents: 

    Ancillary data engineering unit conversion factors 

    SIRU to ACS alignment matrix 

    SIRU engineering unit conversion factors 

    Leap Second Table 

    Ancillary data thresholds and limits 

      Orbital Radius Limits (nominal and max excursion) 

      Ephemeris Angular Momentum Limits (nominal and max excursion) 

      Quaternion normalization outlier threshold (max difference from 1) 

  Level 0R Data Directory and File Root Name 

  Relevant Level 0R spacecraft ancillary data contents: 

    S/C time-tagged inertial to body quaternion estimate 

    S/C time-tagged ephemeris estimate 

    SIRU sampling delay (latency) estimate (see note #10) 

    SIRU clock synchronization times – S/C clock 

    SIRU clock synchronization times – SIRU clock 

    SIRU time-tagged delta-angles 

    SIRU status flags 

  Output Preprocessed Ancillary Data File Name 

  Acquisition Type (Earth, Lunar, Stellar, Cal) (optional, defaults to 
Earth) 

  Trending on/off switch 

  WRS Path/Row (for trending) 

  Geometric Work Order Common Characterization ID (for trending) 

  Work Order ID (for trending) 

 

7.1.4.4 Outputs 

The ancillary data preprocessing algorithm outputs are shown in the following table. It is important to 
note that the algorithm outputs are independent of the details of SIRU/attitude data processing. Nor 
would the outputs change in the event that any contingency definitive attitude and/or ephemeris 
capabilities are required. The ability to provide a stable interface at the output of this algorithm is a 
large part of the motivation for separating out these ancillary data validation and conversion 
preprocessing operations from the model creation logic. 
 
Preprocessed Ancillary Data 

    Attitude Data 

        Attitude data UTC epoch: Year, Day of Year, Seconds of Day 

        Time from epoch (one per sample, nominally 50 Hz) in seconds 

        ECI2ACS quaternion (vector: q1, q2, q3, scalar: q4) (one per 
sample) 

        ECEF2ACS quaternion (one per sample) 

        Body rate estimate (roll, pitch, yaw rate) (one per sample) in 
radians/second 

        Roll, pitch, yaw estimate (one per sample) in radians 



LDCM-ADEF-001 
Version 3 

 

  Ephemeris Data  

        Ephemeris data UTC epoch:  Year, Day of Year, Seconds of Day 

        Time from epoch (one per sample, nominally 1 Hz) in seconds 

        ECI position estimate (X, Y, Z) (one set per sample) in meters 

        ECI velocity estimate (Vx, Vy, Vz) (one set per sample) in 
meters/second 

        ECEF position estimate (X, Y, Z) (one set per sample) in meters 

        ECEF velocity estimate (Vx, Vy, Vz) (one set per sample) in 
meters/second 

Trending Data 

  WRS Path/Row 

  Acquisition Date/Time 

  Geometric Common Characterization ID 

  Work Order ID  

  Ephemeris data start UTC time (year, day of year, seconds of day) 

  Number of ephemeris data points  

  Number of out of limit ephemeris points 

  Attitude data start UTC time (year, day of year, seconds of day) 

  Number of attitude data points 

  Number of out of limit attitude data points 

7.1.4.5 Options 

Trending On/Off Switch 

7.1.4.6 Prototype Code 

Input to the executable is an ODL file; output is a HDF5 formatted preprocessed ancillary data file. 
Status messages and sample trending outputs are written to standard output. An ancillary data ASCII 
log file is also created to capture messages regarding detected data problems. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse  –msse2 
 
The following text is a brief description of the main set of modules used within the prototype with each 
module listed along with a very short description. It should be noted that not all library modules are 
referenced in the explanations below. The modules within the main “ancillary” directory of the 
prototype are discussed and any library modules that were determined to be important to the 
explanation of either results, input parameters, or output parameters. 
 
ancillary – Main procedure that retrieves the input parameters (using getpar), invokes the 
oli_run_preprocessing library module to perform ancillary data processing, and performs the final 
trending data output. 
 
getpar – Retreives the user-provided ODL parameters. 
 
oli_run_preprocessing – Library routine that manages the output ancillary log file (anc.log), and 
invokes other library routines (see below) to load and process the spacecraft ancillary data from the 
Level 0R input. 
 

oli_ancillary_log_open – Opens the anc.log output file. 
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oli_get_header_from_l0r – Library routine that reads the L0R line headers to determine the 
scene start and stop times. 
 
oli_get_ephemeris_from_l0r – Library routine that loads the ephemeris data from the input 
Level 0R data, quality checks the ephemeris using radius magnitude and angular momentum 
tests, corrects timing jitter (if any) in the ephemeris sample times, filters the ephemeris using a 
gravitational potential model, and creates the output ephemeris in both ECEF and ECI 
coordinates. 
 

l8_correct_ephem_time – Library routine that corrects timing jitter by comparing time 
differences to the corresponding position differences divided by the velocity. 
 
l8_kalman_smooth_gps – Library routine that uses a Kalman filter to smooth the 
ephemeris ensuring consistency with an Earth geopotential model. 
 

geo_earth_second_partial_x – Compute gravitational acceleration for an 
ephemeris state vector, in the X direction. 
 
geo_earth_second_partial_y – Compute gravitational acceleration for an 
ephemeris state vector, in the Y direction. 
 
geo_earth_second_partial_z – Compute gravitational acceleration for an 
ephemeris state vector, in the Z direction. 

 
geo_ec2ic – Convert ECEF to ECI. 
 
geo_ic2ec – Convert ECI to ECEF. 
 

exx_calc_gha – Compute Greenwich apparent sidereal time (GAST), and the 
corresponding precession and nutation angles at the specified time. 
 
exx_precession – Apply the precession rotation to the input ECIJ2000 vector to 
convert it to ECI mean of date (ECIMOD). 
 
exx_nutation – Apply the nutation rotation to the input ECIMOD vector to convert 
it to ECI true of date (ECITOD). 
 
xxx_rotatez – Apply the GAST rotation (including UT1-UTC offset) to convert 
ECITOD to ECEF of date (true pole). 
 
exx_polar_motion – Apply the polar motion correction to convert ECEF of date to 
WGS84/mean ECEF (mean pole). 

 
oli_get_attitude_from_l0r – Library routine that loads the attitude quaternion and SIRU data 
from the Level 0R input, windows the data to ensure that it falls within the ephemeris data 
interval, and creates an integrated output attitude data stream in both roll-pitch-yaw and 
quaternion form. This unit has been modified to support processing without SIRU data if the 
SIRU time synchronization process (see process_siru_times below) fails. 
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get_siru2rpy – Construct matrix to convert 4 SIRU channel measurements to 3 
orthogonal (roll-pitch-yaw) attitude measurements. Used only if SIRU processing is 
included. 
 
process_siru_times – Process the SIRU clock and sync codes to create spacecraft 
epoch times for all SIRU samples. Used only if SIRU processing is included. 
 
l8_iru2acs – Library routine that applies the SIRU to spacecraft alignment correction 
(from the CPF) to convert SIRU data to the attitude control system coordinate system. 
Used only if SIRU processing is included. 
 
l8_sc_attitude – Library routine that converts ECI quaternions to roll-pitch-yaw using 
ephemeris data. 
 
l8_init_iru – Library routine that removes orbital motion, which is no longer simply a 
pitch thanks to off-nadir pointing and yaw steering, from the SIRU data for Earth 
acquisitions, using the ECI ephemeris. Used only if SIRU processing is included. 
 
l8_kalman_smooth_iru – Library routine that blends quaternion-derived absolute roll-
pitch-yaw with SIRU-derived roll-pitch-yaw rates using a Kalman filter, to construct an 
integrated attitude data stream. Used only if SIRU processing is included. 
 
l8_movesat – Library routine that Lagrange interpolates the ephemeris data at the 
desired time. 
 
geo_eci2orb – Library routine that constructs the ECI-to-orbital rotation matrix from an 
ephemeris state vector. 
 
euler2quat – Converts a rotation matrix to a quaternion. 

 
oli_ancillary_log_close – Closes the anc.log output file. 
 

trend_anc_to_database – Dummy routine to write the collected trending data to standard output. This 
would be replaced by a database call in the operational implementation. 

7.1.4.7 Procedure 

The primary tasks performed by the ancillary data preprocessing algorithm are to: 

7. Preprocess the ancillary ephemeris data: 

a. Load the spacecraft ephemeris data from the interval ancillary data stream. 

b. Validate the ephemeris points using orbital radius and angular momentum thresholds. 

c. Convert the ephemeris time codes from spacecraft time to a UTC time epoch at the first 
ephemeris data record time. 

d. Correct any time jitter in the ephemeris data samples. 

e. Repair any bad ephemeris points by interpolation/propagation. 
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f. Perform a coordinate conversion to provide the ephemeris in both Earth Centered Earth 
Fixed (ECEF) and Earth Centered Inertial (ECI) of epoch J2000.0 coordinates. 

i. Convert the incoming ECEF ephemeris state vectors to ECI J2000. 

ii. Convert the ECI J2000 state vectors back to ECEF, removing the effects of Earth 
rotation from the velocity vectors, as described below. 

8. Preprocess the ancillary attitude data: 

a. Load the spacecraft attitude data from the interval ancillary data stream. 

b. Validate the quaternion estimates by computing the magnitude of each and comparing it 
to 1. 

c. Window the attitude data to ensure that the attitude data are completely within the 
ephemeris data interval. 

d. Convert the attitude time codes from spacecraft time to a UTC time epoch at the first 
attitude data record time. 

e. Process the raw SIRU data time stamps to compute sample times relative to the 
spacecraft clock (if SIRU processing required). SIRU processing is suppressed if this 
process fails due to the lack of a valid SIRU time synchronization event in the ancillary 
data interval. 

f. Convert the raw SIRU integrated angle counts to angular rates (if SIRU processing 
required and not suppressed). 

g. Rotate the SIRU data to the ACS coordinate system (if SIRU processing required and 
not suppressed). 

h. Correct the SIRU data for the effects of orbital motion (Earth-view images only, lunar 
and stellar acquisitions are left in ECI). Only performed if SIRU processing is required 
and not suppressed. 

i. Convert the quaternions to roll, pitch and yaw using the ECI ephemeris data. 

j. Filter the SIRU and quaternion-derived roll, pitch, and yaw values to generate an 
integrated roll, pitch, yaw and roll-rate, pitch-rate, yaw-rate attitude sequence at the full 
SIRU data rate. NOTE: This step will only be used if SIRU data processing is required. 
If SIRU data processing is not required or is suppressed, attitude estimates flagged as 
outliers will be replaced by linear interpolation. 

k. Convert the roll, pitch, yaw values to ECI quaternions using the ECI ephemeris data. 

l. Convert the roll, pitch, yaw values to ECEF quaternions using the ECEF ephemeris 
data. 

9. Create the output ephemeris and attitude data set containing: 

a. Attitude Data 

i. Attitude interval UTC epoch as:  Year, Day of Year, Seconds of Day. 

ii. Attitude sample time offsets from the UTC epoch (in seconds) – one per sample. 
There will nominally be 50 samples per second. 

iii. Body/ACS to ECI quaternions (vector part q1, q2, q3 and scalar part q4) – one 
set per sample. 



LDCM-ADEF-001 
Version 3 

 

iv. Body/ACS to ECEF quaternions (vector part q1, q2, q3 and scalar part q4) – one 
set per sample. 

v. Body inertial rotation rates (roll rate, pitch rate, yaw rate) in radians/second – one 
set per sample. 

vi. Roll, pitch, and yaw in radians – one set per sample. 

b. Ephemeris Data 

i. Ephemeris interval UTC epoch as:  Year, Day of Year, Seconds of Day. 

ii. Ephemeris sample time offsets from the UTC epoch (in seconds) – one per 
sample. There will nominally be one sample per second. 

iii. ECI X, Y, Z position in meters – one set per sample. 

iv. ECI X, Y, Z velocity in meters/second – one set per sample. 

v. ECEF X, Y, Z position in meters – one set per sample. 

vi. ECEF X, Y, Z velocity in meters/second – one set per sample. Note that these 
are actually ECI velocities rotated into the ECEF coordinate system, not true 
ECEF velocities which would include  Earth rotation velocity. 

Steps 1.a., 2.a. and 3 above are input/output functions and are not described further here. The 
remaining steps are described in greater detail in the sub-algorithms below. 
 
Convert Spacecraft Time Code to UTC 
The convert spacecraft time code to UTC is a general purpose sub-algorithm that is used by the more 
specific ancillary data preprocessing sub-algorithms below. Spacecraft time codes are TAI (Temps 
Atomique International or International Atomic Time) offsets from the J2000 epoch. Since TAI and 
UTC differ only by leap seconds, the conversion to UTC amounts to a leap second correction. The 
spacecraft (J2000) epoch UTC date/time is hard coded (in a #define statement) to prevent it being 
changed inadvertently. See note #6 for more explanation. 
 

1. Load the leap second table from the CPF. The leap second table is represented as the date 
that each leap second since 01 January 1972 was declared. 

2. Scan the leap second table and compute the number of leap seconds prior to the J2000 
spacecraft epoch. 

3. Scan the leap second table and compute the number of leap seconds prior to the current 
spacecraft date/time. This is done by converting the spacecraft time code (TAI offset from 
J2000) to UTC (without any leap second correction) and then using the resulting UTC date to 
determine the number of leap seconds. 

4. Subtract the leap second total for the spacecraft J2000 epoch (result of step 2) from the leap 
second total for the time code (result of step 3) to compute the number of leap seconds from 
the spacecraft epoch to the current spacecraft time. The resulting number of leap seconds 
since J2000 is stored the first time it is computed and used in each subsequent time code 
to/from UTC conversion operation.   

5. Subtract the number of leap seconds since J2000 from the current spacecraft time code. 
6. Add the adjusted time code to the UTC date/time for the spacecraft J2000 epoch to yield the 

UTC date/time corresponding to the spacecraft time code. 
 
ECI to/from ECEF Coordinate Transformation 
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The transformation from ECI of epoch J2000 (mean equator and equinox of J2000.0) to ECEF 
(WGS84) coordinates is a time-varying rotation due primarily to the Earth’s rotation, but it also 
contains more slowly varying terms for precession, astronomic nutation, and polar wander.  The ECI-
to-ECEF rotation matrix can be expressed as a composite of these transformations: 
 

Tecef/eci = A B C D 
 

A = polar motion 

B = sidereal time 

C = astronomic nutation 

D = precession 

 
Polar Motion 
The polar wander correction performs the transformation from the Earth's true spin axis (in the 
Terrestrial Intermediate Reference System) to the mean pole (in the International Terrestrial 
Reference System, or ITRS, here taken to be identical to WGS84). The polar motion 
corrections are tabulated in the Calibration Parameter File. The corrections for the current day 
are looked up from the CPF table and applied as described in section 6.5.2 of:   
Kaplan, George H., United States Naval Observatory Circular No. 179, “The IAU Resolutions 
on Astronomical Reference Systems, Time Scales, and Earth Rotation Models - Explanation 
and Implementation”, U.S. Naval Observatory, Washington, D.C., October 20, 2005. This 
document will henceforth be referred to as Circular 179. This transformation is implemented 
using the wobble function in the NOVAS C3.1 library provided by the Naval Observatory.  
 
Sidereal Time 
The sidereal time correction performs the transformation from the inertial true-of-date system 
(true equator and equinox of date) to the Earth fixed true-of-date (true pole or terrestrial 
intermediate reference) system. It applies the polar rotation due to Greenwich Apparent 
Sidereal Time (GAST) as described in Circular 179. We use the “Equinox-Based” approach 
described in the Circular and implemented in the sidereal_time function of NOVAS C3.1. Note 
that the sidereal time computation includes the time correction from UTC to UT1 for the current 
day. The “current day” would be defined by the data set UTC epoch (rather than being 
evaluated for each ephemeris or attitude point) to avoid the possibility of introducing leap 
seconds in the middle of an imaging interval. This correction is tabulated in the CPF along with 
the polar wander corrections. 
 
Nutation 
The nutation correction performs the transformation from the inertial mean-of-date system 
(mean equator and equinox of date) to the inertial true-of-date system through nutation angles. 
The nutation model is based on the IAU 2000 theory of nutation as described in Circular 179 
and implemented in the nutation function of NOVAS C3.1. 
 
Precession 
The precession correction transforms the inertial of epoch J2000.0 system to the inertial mean-
of-date system. The precession model is based on the IAU 2000 definition as described in 
Circular 179 and implemented in the precession function of NOVAS C3.1. Note that we do not 
apply the (small) frame bias correction defined in Circular 179 because our target inertial 
coordinate system is the inertial system of epoch J2000 (ECIJ2000.0) rather than the 
Geocentric Celestial Reference System (GCRS) described in the Circular. 
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This transformation rotates a vector from the ECI J2000.0 system to the Earth fixed (WGS84) system. 
For example, an ECIJ2000 position vector is converted to ECEF as follows: 

Xecef = Tecef/eci Xeci = A B C D Xeci 
 
When working with ephemeris state vectors containing both position and velocity terms, there can be 
ambiguity in the treatment of the velocity terms when converting between Earth fixed and inertial 
coordinates. This ambiguity arises because the transformation is itself time varying. Taking the time 
derivative of the equation above yields: 

ecieciecefecieciecef XTXTX //ecef
   

 
The second term captures the time-varying effect of the transformation itself. The time varying effects 
of precession, nutation, and polar motion transformations are negligible when compared to the orbital 
motion of a spacecraft, but the sidereal time transformation contributes a significant effect. Keeping 
this in mind and expanding Tecef/eci above yields: 

ecieci XDCBAXDCBAX  ecef  

 Where the B matrix is defined as: 
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With: * = Earth rotation rate in precessing reference frame 
 GAST = Greenwich apparent sidereal time 

 
For useful figures and additional explanation of this transformation see:  DMA TR8350.2-A, 
“Supplement to the Department of Defense World Geodetic System of 1984 Technical Report – Part 
I:  Methods, Techniques, and Data Used in WGS 84 Development”, Defense Mapping Agency (now 
National Geospatial Intelligence Agency), 1 December 1987. 
 
This equation shows that the ECEF velocity is composed of the ECI velocity rotated into the ECEF 
coordinate system (the first term) plus the effect of Earth rotation (the second term). Note that Earth 

rotation is modeled by the rate of change of the sidereal time transformation ( B ) applied to the (ECI 
true-of-date) position vector. 
 
Whether or not the second term (Earth rotation) is included in the ECI to ECEF velocity 
transformation depends upon the intended purpose. The original ECEF ephemeris data received from 
the spacecraft contains velocity estimates that include the Earth rotation effects (i.e., “true” ECEF 
state vectors). The Earth rotation term must therefore be taken into account when converting these 
state vectors to ECI J2000. This is the coordinate system conversion that is used to accomplish step 
1.f.i above. For most applications within the geometric model, however, we are only interested in the 
velocity vector as a direction in inertial space (e.g., when using position and velocity to define the 
orbital coordinate system which is the attitude control system reference). In this case, we only want 
the first term – the inertial velocity rotated to ECEF coordinates. We therefore, rotate the ECI J2000 
ephemeris state vectors back to “pseudo” ECEF coordinates without including the Earth rotation term. 
 
To summarize, the ECI/ECEF coordinate system transformations applied to the incoming ephemeris 
data from the ancillary data file are: 
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ECEF to ECI: 

ecef

TTTT
XABCDX eci  

 eciecef

TTTT
XDCBAXABCDX  eci  

Noting that the A, B, C, and D matrices are orthogonal so that their inverses are equal 
to their transposes. 

 
ECI to (pseudo) ECEF: 

eciXDCBAX ecef  

eciXDCBAX  
ecef  

Noting that the position vector is the same as the original value, but the velocity vector 
is not, as indicated by the prime notation. 

 
Correct Ephemeris Sub-Algorithm 
The correct ephemeris sub-algorithm performs steps 1.b., 1.c., and 1.d. above. This sub-algorithm will 
quality check the ephemeris data and correct any timing jitter errors in the ephemeris solution.  The 
ephemeris values are used to calculate satellite position in the WGS84 Earth Centered Earth Fixed 
(ECEF) frame.  

a) Extract the ephemeris data records from the ancillary data  

b) Search the ancillary data ephemeris records and find the first and last valid ephemeris records 
in the interval. Extract the time tags for these records. 

c) Set the ephemeris epoch to the time associated with the start index found in step b) converted 
to UTC (see Convert Spacecraft Time Code to UTC sub-algorithm above). Retain the 
corresponding epoch spacecraft time as it will be subtracted from the other ephemeris 
samples. 

d) Loop on ephemeris starting at and ending at indexes found in b. 

1) Set ephemeris sample time to the time code from ancillary data minus the ephemeris start time 

code, i.e. convert times to offsets from the ephemeris epoch defined in c). 

2) Convert the ECEF ephemeris position and velocity vectors to ECI J2000 so that the angular 

momentum check, and subsequent ephemeris smoothing algorithms can operate in inertial space. 

3) Get angular momentum and orbital radius nominal values and allowable deviation thresholds 

from the CPF: angmo_nom, angmo_delta, orbrad_nom, orbrad_delta. 

4) Calculate orbital radius to compare against threshold: 

radius = | p | 

Where:  p = ephemeris position vector 

5) Calculate angular momentum of ephemeris to compare against threshold: 


 vpmomentumangular  

where:  

  p = satellite positional vector 

  v = satellite velocity vector 

6) Check orbital radius and angular momentum against nominal values and thresholds from CPF: 

      If  | radius – orbrad_nom | <= orbrad_delta  AND 
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     | angular momentum – angmo_nom | <= angmo_delta  

Then store the ephemeris point for processing. 

Otherwise, report the bad ephemeris point as an outlier.    

 
If fewer than 4 (the minimum required to support Lagrange interpolation) valid ephemeris points are 
found a fatal error is returned for Earth-view, lunar, and stellar acquisitions. For solar cal acquisitions, 
additional ephemeris points are propagated using the process model described in the Smooth 
Position and Velocity Sub-Algorithm below, until 4 points are available. 
 
The ECI ephemeris is reinterpolated, using the following method, to remove any small time jitters that 
are present.  
 
Let vx, vy, and vz be the measured velocity.   
Let px, py, and pz be the measured position.   
 

a) Loop through the ephemeris points (i = 0 to N-1) computing the distances between adjacent 
points: 

 
If first ephemeris point (i = 0) set d0 = 0. 

 
If ephemeris point is not first value, then 

 
1) Calculate difference in ephemeris from point i and i-1 

dxi = pxi - pxi-1 
dyi = pyi - pyi-1 
dzi = pzi – pzi-1 

 
2) Calculate magnitudes of the delta position and the velocity vectors 

 
si = sqrt( dxi * dxi + dyi * dyi + dzi * dzi) 
svi = sqrt( vxi * vxi + vyi * vyi + vzi * vzi ) 

 
3) Calculate difference between the “predicted time” from the magnitudes calculated in a2 

and the time measured difference between ephemeris points i+1 and i 
 

Set di = si / svi – ephemeris timei + ephemeris timei-1 
 

b) Calculate average difference of time differences from a. 
 

Let 
1

1

1








N

d

avg

N

i

i

 

 
Where N = number of ephemeris points 

 
c) Loop through the ephemeris points, adjusting times by the “predicted time difference” (a3) and 

the average of “predicted time difference” (b). 
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ephemeris timei = ephemeris timei + di – avg 
 
Using Lagrange interpolation, calculate satellite position and velocity at one second intervals, 
correcting any sampling timing irregularities and filling in any missing outlier points. The time-adjusted 
satellite position and velocity from the previous step are taken as input. 

a) Loop on ephemeris values 
1) Calculate ephemeris interpolation time for current interval (multiple of one second). 
2) Convert ephemeris time from seconds to year, day of year, and seconds of day. 
3) Bracket ephemeris data for interpolation (4 valid points are needed) 

a. Use 2 points before and 2 after the interpolation time. 
b. If that would require points beyond the beginning or end of the ephemeris 

interval, use the first four or the last four points in the interval. 
4) Interpolate ephemeris to current time (a1) using Lagrange interpolation and bracketed 

values (a3). 
Use the Smooth Position and Velocity sub-algorithm (see below) to smooth the ECI ephemeris. It is then 

converted to ECEF so that the ECI and ECEF ephemeris representations are consistent (step 1.f.ii. above). 

 

Smooth Position and Velocity Sub-Algorithm 
A Kalman smoothing filter is used to smooth the ECI position and velocity vectors to accomplish step 
1.e. above.  The Kalman filter assumes a random process that can be modeled as follows: 
 

         
kkkkk fqXX  1  

 
where: 

[X]K  =  (n x 1) state vector at time tK 

[]K  = (n x n) matrix relating XK to XK+1 
[q]K = (n x 1) process noise at time tK 
[f ]k = (n x 1) forcing function at time tK 

 
Measurements of the process are modeled as: 

 

       Z H X vK K K K   

 
where:  

[Z]K  = (m x 1) measurement vector at time tk 
[H]K  = (m x n) relates the state vector at time tk to the measurement 
[v]K  = (m x 1) measurement error at time tk 

 
As noted below, in this application the measurements are direct observations of the state vector so n 
= m. 
 
To smooth the ephemeris data the state vector X is defined as: 
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where:  

Xp, Yp, Zp = X, Y, Z position 
Xv, Yv, Zv = X, Y, Z velocity 

 
The measurement vector [Z] is a 6x1 vector containing the telemetry X, Y, Z positional values along 
with the telemetry X, Y, Z velocity values.  The measurement vector looks like the state vector but 
contains the measured ephemeris telemetry values for time tk whereas the state vector contains our 
estimate of the “true” ephemeris position and velocity values. 
 
The discrete state transition matrix is defined as: 
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where t is the time transition between measurement k and k+1. 
 
The matrix [H] is defined as a 6x6 identity matrix since the measurements directly correspond to the 
elements of the state vector. 
 
The forcing function, [ f ], is equal to the change in acceleration of the satellite due to the Earth’s 
gravitational potential.  The forcing function is described further in the Potential Functions sub-
algorithm below.  
 
The process noise vector [q]K represents a random forcing function that models the uncertainty in the 
dynamic model as a zero-mean random process with covariance [Q]. The process noise controls how 
strictly the filtered states will conform to the dynamic model. 
 
The process noise covariance matrix is defined as: 
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where: 

σx=standard deviation in X positional element/value 
σy=standard deviation in Y positional element/value 
σz=standard deviation in Z positional element/value 
σxv=standard deviation in X velocity element/value 
σyv=standard deviation in Y velocity element/value 
σzv=standard deviation in Z velocity element/value 

 
The measurement error matrix is 6x6 diagonal matrix: 
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where: 

mp = variance of error in positional measurement 
mv = variance of error in velocity measurement 

 
The Kalman filter is used to produce a set of filtered and predicted state vectors, along with estimated 
and predicted covariance state error matrices.  These values are then used to produce a smoothed 
state vector.  This smoothed state vector will represent the smoothed position and velocity ephemeris 
data. 
 
 
Prediction equations: 
 

     
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Filter equations: 
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where:  

[I] is the identity matrix 
[P] is the error covariance matrix 
[Q] = E[qtqt]  
[R] = E[vtvt] 
[X]PK = estimate of [X] given measurements through tK  
[P]PK = error covariance associated with estimate [X]K 
[X]K  = filtered estimate at tK 

[P]K = filtered estimate at tK  
 
Note that the filtering step is skipped for points flagged as outliers so that: 

[X]K  = [X]PK 

[P]K  = [P]PK 
 
Using the definitions above a new notation can be written: 
 

[X]K|K-1 = [X]PK 
[P]K|K-1 = [P]PK 
[X]K|K = [X]K 
[P]K|K  =  [P]K 

 
The smoothing equations are then: 
 

For n=number of points-1,…,0 
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The Kalman filter is initialized with a state vector: 
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where: 
Px(0) = first available X positional value 
Py(0) = first available Y positional value 
Pz(0) = first available Z positional value 
Vx(0) = first available X velocity value 
Vy(0) = first available Y velocity value 
Vz(0) = first available Z velocity value 

 
 
The initial error covariance matrix is defined as: 
 

 





























2

2

2

2

2

2

0

00000

00000

00000

00000

00000

00000

zv

yv

xv

z

y

x

P













 

 
where: 

σx = initial standard deviation in X position 
σy = initial standard deviation in Y position 
σz = initial standard deviation in Z position 
σxv = initial standard deviation in X velocity 
σyv = initial standard deviation in Y velocity 
σzv = initial standard deviation in Z velocity 
 

 Initialize the state vector, error covariance matrix, and measurement error matrix 

 Loop on ephemeris points 
 

o Calculate Δt (time difference between sample time i+1 and i) 
o Calculate process noise matrix 
o Calculate Kalman gain 
o Filter state vector and error covariance matrix 
o Predict error covariance error matrix 
o Calculate force (acceleration) of Earths mass 
o Predict state 

 

 Initialize Δt to nominal delta time (1 sec) 
 

 Loop on ephemeris (reverse order for smoothing) 
 

o Calculate smoothed gain 
o Calculate smoothed state 
o Calculate Δt (time difference between sample time i+1 and i) 

 
The resulting [X]K|N are the smoothed ephemeris state vectors. 



LDCM-ADEF-001 
Version 3 

 

7.1.4.7.1 Gravitational Potential Functions 

This sub-algorithm calculates the gravitational potential of the Earth represented as acceleration 
(x,y,z).  One way to model the Earth’s gravitational potential is by: 
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where: 

 
Jn = Spherical Harmonics determined by experimentation 

 = Earth’s gravitational parameter 
re = equatorial radius of Earth 
Pn = Legendre Polynomials 
L = geocentric latitude 
sin(L) = z/r 

 
Taking the partial derivatives of the potential function with respect to x, y, and z gives the forcing 
functions needed for each axis.     
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The heritage implementation uses the following six functions to invoke the potential calculations: 

p1x - first derivative of X (velocity) 
p1y - first derivative of Y (velocity) 
p1z - first derivative of Z (velocity) 
p2x - second derivative of X (acceleration) 
p2y - second derivative of Y (acceleration) 
p2z - second derivative of Z (acceleration) 

These functions are used to populate the six elements of the forcing function used to Kalman smooth 
the ephemeris data. 
 
Attitude Data Preprocessing 
This sub-algorithm validates the quaternion attitude estimates and converts their spacecraft time 
codes to accomplish steps 2.b., 2.c., and 2.d. above. 

a) Extract the attitude quaternion data records from the ancillary data  
b) Search the ancillary data attitude records and find the first and last valid attitude records in the 

interval. Extract the time tags for these records. 
c) Adjust the attitude data window as necessary to ensure that it fits entirely within the ephemeris 

data window. 
d) Set the start and stop indexes for the attitude to be stored in the model to the indexes found in 

c). 
e) Set the attitude epoch to the time associated with the start index found in step c) converted to 

UTC (see Convert Spacecraft Time Code to UTC sub-algorithm above). Retain the 
corresponding epoch spacecraft time as it will be subtracted from the other attitude samples. 

f) Loop on attitude records starting at and ending at indexes found in c). 

1) Set attitude sample time to the spacecraft time code minus the attitude start time, i.e. convert 

times to offsets from attitude epoch. 

2) Compute the magnitude of the attitude quaternion: 

Mag = sqrt( q1*q1 + q2*q2 + q3*q3 + q4*q4 ) 

3) Check the magnitude against the nominal value of 1: 

a. If the magnitude is between 1- and 1+ then store the value for processing. The 

quaternion normalization tolerance value, , is nominally 1e-06 (1 part per million) and 

stored in the CPF. 

b. If the magnitude is outside the allowable range then flag the value as an outlier. 

If SIRU processing is required: 

g) Extract the IMU (SIRU) data records from the ancillary data. 
h) Process the SIRU clock data to construct spacecraft time codes for each SIRU sample. This is 

step 2.e. above and is described in the “Process SIRU Time” sub-algorithm below. If this step 
fails all subsequent SIRU processing is suppressed by setting a “SIRU_Valid” flag to FALSE. 

i) Examine the SIRU status words, flagging any invalid points as outliers. 

j) Convert the SIRU counts to angular rates. This is step 2.f. above and is described in the 
“Process SIRU Counts” sub-algorithm below. 
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k) Repeat steps b) through e) above for the SIRU data. 

l) Use the SIRU epoch as the combined attitude data time epoch. In the event that the SIRU data are not 

used, the attitude quaternion times are used instead.  

 
Process SIRU Time Sub-Algorithm 
This sub-algorithm analyzes the SIRU clock readouts accompanying each SIRU data sample and 
uses these in conjunction with the SIRU clock sync offset values and SIRU sync spacecraft time 
codes included in the Level 0R IMU data records to construct spacecraft time codes for each SIRU 
data sample. 
 
SIRU sample timing is driven by a clock internal to the SIRU unit. This SIRU clock is a 16-bit counter 
that increments every 4 microseconds, and rolls over when the 16-bit counter reaches its 64K limit. 
The SIRU clock is periodically (every 10 seconds or so) synchronized with the spacecraft clock when 
flight software sends a reset command. Flight software records the spacecraft time code associated 
with this reset and the SIRU records the offset between the clock counter value at the time of the 
reset and the clock counter value at the time of the current data sample in its clock sync field. These 
offsets are scaled to units of 1/3 of a microsecond (1/12 of the SIRU clock resolution). The clock 
counter value is not changed by the reset operation, so successfully locating and processing a single 
reset event is sufficient to establish the timing relationship between the spacecraft and SIRU clocks. 
The spacecraft time code associated with the reset is captured in the ancillary data as is the SIRU 
sync field. Several additional considerations regarding the SIRU timing data include: 

1. The SIRU sync field is only populated during the 100 Hz cycle while it is being updated (i.e., 
while the SIRU is being resynchronized). Otherwise, this field will contain fill. A fill value of -
32768 is used for this purpose. 

2. One implication of the 100 Hz SIRU cycle is that some sync values will go unrecorded by the 
50 Hz LDCM IMU telemetry. The syncs will be timed such that alternate values will be sampled 
by and therefore present in the ancillary data. This raises the question of how these 
unrecorded sync values will be detected and recovered. The SIRU sync spacecraft time code 
value that accompanies each IMU record will change for the record containing the sync. That 
would make it possible to use the SIRU sample clock data to recover the missing sync values, 
though it is probably not important to do so. The sync events that are represented in the data 
should be sufficient to establish the SIRU/spacecraft timing relationship. 

3. Ancillary test data acquired during spacecraft comprehensive performance tests, demonstrated 
that the SIRU clock is not perfectly synchronized to the spacecraft clock. This was manifested 
as timing jitter in both the SIRU and attitude estimates (which apparently take their times from 
the corresponding SIRU samples) in which adjacent samples, nominally separated by 0.02 
seconds, are sometimes 0.01 and sometimes 0.03 seconds apart, indicating timing drift across 
the 100 Hz sampling sequence. This has several effects: 

a. The SIRU rates must be computed using the actual time differences rather than the 
nominal time difference. 

b. The assignment of times to samples prior to the first SIRU clock sync must use the 
actual SIRU clock values, not the nominal timing offset. 

c. The SIRU clock syncs are not always visible every 20 seconds (1000 samples apart). 
The separation is sometimes 500 samples and sometimes 1500 samples due to 100 Hz 
sampling cycle slippage. This (partly) motivated the inclusion of logic to validate SIRU 
clock sync events against the previously established timing, to ensure that timing gaps 
are not introduced into the SIRU data. It also means that intervals shorter than 30 
seconds may not contain any valid SIRU clock sync events, leading to the failure of this 
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algorithm and the suppression of further SIRU processing for the interval. This is 
unlikely in normal (Earth-view, lunar, and stellar) acquisitions but likely in solar 
calibration data. 

4. The scaling and use of the SIRU latency estimate telemetry in the spacecraft ancillary data 
stream is not entirely clear. Ancillary data sets from the spacecraft comprehensive 
performance test (CPT) indicate that the latency is the time offset, in seconds, between the 
SIRU (and 50 Hz quaternion) data and the flight software 1 Hz cycle times (i.e., the times at 
which ephemeris and attitude filter outputs are generated). Since this offset is reflected in the 
time codes that accompany these data elements, the latency estimates are somewhat 
redundant. The baseline algorithm does not apply a latency correction.  

 
Three items of SIRU timing telemetry will be used in the following algorithm: the SIRU clock value at 
the sample time (one per SIRU sample), the SIRU sync reference field (one per sample time, but only 
valid during resynchronization cycles), and the SIRU sync spacecraft time code (one per IMU record). 
These will be referred to as clock value (clock), clock sync (sync), and sync time code (time) 
respectively. 
 
For each IMU record: 

Compute the spacecraft time of last sync from the time code seconds and microseconds:  time = 
seconds + microseconds/1e6 
 
For each SIRU sample (i): 

If the clock sync field is not fill: 
a. Record the current sample clock and time (above) values as base_clock and 

base_time. Set base_sync equal to base_clock. 
b. Compute the SIRU sync offset from the SIRU sync word using the 1/3 microsecond per 

count scaling factor. The sync word scaling is represented as a ratio relative to the 
SIRU clock scaling (12 sync counts per clock count): 

sync_time = SIRU sync word * siru_time_scale / SIRU sync ratio 
c. Add the SIRU sync offset to the base_time. This the time (in seconds from spacecraft 

epoch) corresponding to the base_clock SIRU clock value. 
d. Initialize the current offset, 16-bit rollover counter and previous offset value: 

siru_offset = 0 
excess_offset = 0 
last_offset = siru_offset 

e. Compute the time of the current sample: 
gtime[i] = base_time + siru_offset * siru_time_scale (from CPF) 

f. If this is the first valid (non-fill) value calculate all previous times by working back 
through the previous SIRU clock samples, subtracting each from the previous time: 

for ( j = i to 1 ) 

 clock = MOD(siru_clock[j]–siru_clock[j-1]+64K, 64K) 

  gtime[j-1] = gtime[j] – clock*siru_time_scale 
g. Make sure the new clock sync is consistent with previous time codes:  

If abs(gtime[i]-gtime[i-1]-0.02) > 0.02 
 gtime[i] = gtime[i-1] + 0.02 
 base_time = gtime[i] – siru_offset*siru_time_scale 
This is a coarse test that ensures that the sync update does not introduce a 
timing adjustment of more than a full 0.02 second sample time. A warning 
message is generated if this adjustment is made. This test ensures that the SIRU 
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time codes are consistent and, at a minimum, are based on the first sync time in 
the interval. 

Otherwise: 
If no valid sync fields have been found go to the next point 
Otherwise: 
Note:  All arithmetic involving clock and sync variables is modulo 64K. 

Check for a sync that was not sampled: 
i. If time > base_time + 0.02 (a resync occurred) AND 

   time < gtime[i-1] + 0.02 (it occurred before this sample): 
1. Reconstruct the sync time: 

sync_time =  gtime[i-1] + 0.02 - time 
2. Update the base_time: 

base_time = time + sync_time 
3. Reset the other sync cycle variables: 

base_clock = clock 
base_sync = clock 
siru_offset = 0 
excess_offset = 0 

ii. Otherwise: 
1. Calculate the sample time offset based on the current sync variables: 

siru_offset = clock – base_sync (modulo 64K) 
2. Correct for previous 16-bit rollover: 

siru_offset += excess_offset 
3. See if 16-bit rollover occurred on this sample and increment rollover and 

offset variables if so: 
if (siru_offset < last_offset) 

excess_offset += 0x010000 
siru_offset += 0x010000 

iii. Compute the time of the current sample: 
gtime[i] = base_time + siru_offset * siru_time_scale 

iv. Set the last offset value to the current value (used to detect missed sync resets): 
last_offset = siru_offset 

 
If no valid sync values were detected return an error. 

 
This procedure performs step 2.e. above. 
 
Process SIRU Counts Sub-Algorithm 
This sub-algorithm converts the raw SIRU data counts to angular rates. 
 
For each SIRU sample: 
1) If the sample’s SIRU validity flags are not set 

a. Mark the point as an outlier. 
b. If this is the first point, set the angular rates to zero. 
c. Otherwise, set the angular rates to the previous sample values. 

2) For valid SIRU samples: 
a. If this is not the first point, compute the difference between the current integrated angle 

reading and the previous reading for each of the 4 SIRU axes. 
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b. If this is the first point, compute the difference between the next integrated angle reading 
and the current reading for each of the 4 SIRU axes. If the next point is invalid, mark the 
current point as an outlier and set the angular rates to zero. 

c. Check for SIRU reset/rollover on each axis: 
i. If the value of the angle difference is > 32K, subtract 64K 
ii. If the value of the angle difference is < -32K, add 64K 

d. Scale the counts to radians using the SIRU scale factor from the CPF. 
e. The SIRU delta angle measurements are converted to rates by dividing by the delta time 

computed from the SIRU sample time codes. This could also be done after the four SIRU 
axis measurements are converted to roll-pitch-yaw measurements using the method 
described in the next section. 

 
This procedure performs step 2.f. above. For lunar and stellar intervals, all SIRU samples are flagged 
as outliers so that they will be deweighted by the attitude Kalman filter. 
 
Rotate SIRU Sub-Algorithm 
This sub-algorithm rotates the SIRU data to the attitude control system (ACS) coordinate frame to 
accomplish step 2.g. above. Note that this sub-algorithm will only be used if SIRU data processing is 
required. 
 
Construct the roll, pitch, and yaw rotational matrices from SIRU measurements and rotate angles to 
the ACS coordinate system.  Note that rather than reporting roll, pitch, and yaw rotations directly, the 
SIRU reports rotations about four non-orthogonal axes oriented in an octahedral tetrad. These four 
correlated measurements must first be reduced to rotations about the three orthogonal X-Y-Z axes 
using the SIRU axis vectors from the CPF. These vectors define the orientations of the four SIRU 
axes, and are nominally: 
 
 SIRU A:  [ +0.57735027  +0.57735027  +0.57735027 ] 
 SIRU B:  [ +0.57735027  -0.57735027  +0.57735027 ] 
 SIRU C:  [ -0.57735027  -0.57735027  +0.57735027 ] 
 SIRU D:  [ -0.57735027  +0.57735027  +0.57735027 ] 
 
Any one of these SIRU axes can be lost and the rotations about the X-Y-Z axes can still be 
recovered. The vector for a failed SIRU axis should be set to zero. 
 
Convert SIRU angles to roll-pitch-yaw: 

 
Construct the [S] matrix where the columns of this 3 by 4 matrix contain the four SIRU axis 
vectors: 
 

 


















SIRUDzSIRUCzSIRUBzSIRUAz

SIRUDySIRUCySIRUBySIRUAy

SIRUDxSIRUCxSIRUBxSIRUAx

S  

 
Construct the 3 by 4 SIRU to roll-pitch-yaw conversion matrix: 

 

       SSSRPYSIRU
T 1

2


  
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Construct the 4 by 1 SIRU observation vector: 
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 where, θn = angle for SIRU axis n 

 
Convert the four SIRU observations to three roll-pitch-yaw angles in the SIRU coordinate system: 
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Construct the perturbation matrix using the SIRU roll-pitch-yaw angles: 
 

       IRU  toACSrollpitchyawonperturbati ACStoIRU  

 
Where [IRU to ACS] is the SIRU to attitude matrix found in the CPF and [ACS to IRU] is its 
inverse. 

 
The SIRU measured roll, pitch and yaw in ACS coordinates are then: 
 

)onperturbati/onperturbati(tanroll 2,21,2

1  

)onperturbati(sinpitch 0,2

1  

)onperturbati/onperturbati(tanyaw 0,00,1

1  

7.1.4.7.2 Correct for Orbital Motion in SIRU Data Sub-Algorithm 

The spacecraft SIRU senses rotations relative to inertial space so it will measure the orbital pitch 
used to maintain spacecraft pointing as well as any deviations from that nominal alignment with the 
orbital coordinate system. In using the SIRU data to densify or repair the spacecraft attitude estimates 
they are blended in the orbital coordinate system. Before this can be done it is necessary to correct 
the SIRU data for the time-varying orientation of the orbital frame relative to inertial space. This is 
step 2.h. above. 
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To account for off-nadir viewing and yaw steering effects a reference attitude vector representing the 
mean roll-pitch-yaw for the scene is also provided. This is necessary because the orbital pitch effect 
will show up in more than just the spacecraft pitch axis if the spacecraft body is not aligned with the 
orbital coordinate system. The reference attitude is calculated as the average of the roll-pitch-yaw 
values derived from the quaternion data for the attitude interval. 
 
Note that this sub-algorithm will only be used if SIRU data processing is required. 
 
If the acquisition type is Earth-viewing then: 
 
Loop on all SIRU values: 
 

1) Calculate the ECI position and velocity of satellite at time t0 using Lagrange interpolation. 
The l8_movesat unit does this. That sub-algorithm is included in the LOS Model Creation 
algorithm. 
 

2) Calculate the transformation matrix from the satellite orbit system to the spacecraft 
body/ACS coordinate system (ORB2ACS) using the input reference mean attitude. This is 
the transpose of the ACS2ORB matrix shown in the “Convert Roll, Pitch, Yaw to 
Quaternion” section below. 

 
3) Calculate the transformation matrix from ECI to satellite orbit system for time t0 and tn (the 
inverse of the ORB2ECI matrix presented in the next section). 
 
Using the satellite position and velocity at times t0 and tn, the following matrix transformations 
can be calculated: 

 

    00 eci2orbeci2orb tttime   

   tntntime eci2orbeci2orb   

 
Calculate the transformation from the Orbit system to ECI for time tn using the ephemeris state 
vector at time tn. 

 
4) Use the ORB2ACS matrix to compute the ECI2ACS matrices from the ECI2ORB matrices: 
 

[eci2acs]t0 = [orb2acs] [eci2orb]t0 
[eci2acs]tn = [orb2acs] [eci2orb]tn 

 
Since the eci2acs matrix is orthogonal, acs2eci can be calculated as: 
 

   Teci2acsacs2eci   

 
6) Calculate the amount of roll, pitch, and yaw due to the satellite’s orbit. 
 
The roll, pitch, and yaw due to the orbital motion of the satellite can be found by looking at the 
matrix transformation from spacecraft frame reference at time tn to spacecraft frame reference 
t0. 
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    2eciacseci2acs2acsacs n00n   

 
 

 

 

time

2acsacs

2acsacs
tan

roll
2,20n

1,20n1





















 

 

  
time

2acsacssin
pitch

0,20n

1






 

 

 

 

time

2acsacs

2acsacs
tan

yaw
0,00n

0,10n1





















 

 

time = tn – t0 

 
This formulation computes the orbital attitude rate correction and assumes that the SIRU data 
are, or have been converted to, rates. 

 
5) Remove orbital motion attitude delta from original values. 

 

yawyawyaw

pitchpitchpitch

rollrollroll







 

 
The sign is swapped to convert the SIRU angles/rates from body-to-orbit to orbit-to-body. 

7.1.4.7.3 Convert to Spacecraft Roll, Pitch, and Yaw Sub-Algorithm 

The attitude data is given as quaternions in the ECI reference frame (ECI2ACS).  The quaternions 
are converted to roll, pitch, and yaw values in the ACS reference frame per step 2.i. above.  
 
We first take the conjugate of the incoming ECI2ACS quaternion (q) to calculate the corresponding 
ACS2ECI quaternion (q’).  
 q’1 = -q1 
 q’2 = -q2 
 q’3 = -q3 
 q’4 = q4 
 
The direction cosines (transformation) matrix from the ACS reference axis to the ECI reference 
system (ACS2ECI) is constructed from the ACS2ECI quaternion, q’, as: 
 
ACS2ECI = 
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The ACS2ECI transformation matrix can also be defined as the product of the inverse of the 
spacecraft's attitude perturbation matrix P and the transformation matrix from the orbital reference 
system to the ECI reference system (ORB2ECI)  
 
The relationship between the orbital and ECI coordinate systems is based on the spacecraft's 
instantaneous ECI position and velocity vectors.  The rotation matrix to convert from orbital to ECI 
can be constructed by forming the orbital coordinate system axes in ECI coordinates: 
 

  








































nhcv

nhcv

vn

vn

h

p

p
n

ORB2ECI

 

 
where: 

p = spacecraft position vector in ECI 
v = spacecraft velocity vector in ECI 
n = nadir vector direction 
h = negative of angular momentum vector direction 
cv = circular velocity vector direction 
[ORB2ECI] = rotation matrix from orbital to ECI 

 
The transformation from orbital to ECI coordinates is the inverse of the ECI to orbital transformation 
matrix.  Since the ECI to orbital matrix is orthogonal the inverse is also equal to the transpose of the 
matrix. 
 

     TECI2ORBECI2ORBORB2ECI
1



 

 
          ACS2ECI  =  [ORB2ECI][P -1] 
 

The orbital reference system to ECI matrix must be defined at the same time as the 
spacecraft's attitude matrix.   
 
The roll, pitch, and yaw values are contained in the P-1 matrix, thus: 
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P-1  = [ORB2ECI] -1[ACS2ECI]  
 
The spacecraft attitude is then: 
 

 

































0,0
1

0,1
1

1

2,2
1-

1,2
1

1

0,2
11

P

P
tanyaw

P

P
tanroll

Psinpitch

 

 

For lunar and stellar intervals, the rotation to the orbital coordinate system is not performed, so the resulting 

roll, pitch, and yaw values are relative to the ECI system. An additional check is performed on these roll, pitch, 

yaw values to make sure that there are no crossings of the +/- radians boundary, with 2 being added or 

subtracted as necessary to keep the attitude sequence continuous. This check is performed on all intervals but is 

only necessary for lunar/stellar data. 

7.1.4.7.4 Smooth Euler and SIRU Sub-Algorithm 

A Kalman smoothing filter is used to combine the attitude and SIRU data into one data stream and/or 
replace attitude estimates flagged as outliers per step 2.j. above. Note that this sub-algorithm will only 
be used if SIRU data processing is required and if the SIRU data are not suppressed. 
 
Lagrange interpolation is used to synchronize the SIRU and quaternion information at the SIRU 
sampling interval relative to the attitude epoch time. This is necessary because the quaternion and 
SIRU data sample times are not necessarily uniformly spaced in the original spacecraft ancillary data. 
The formulation shown here assumes that the SIRU is reporting attitude rate data rather than 
integrated angles. Due to the increased potential for noise in rate measurements, an additional step is 
required to synchronize the SIRU data. Specifically, the SIRU rate measurements are integrated to 
form angles, the angles are Lagrange interpolated to synchronize the times, then the interpolated 
angles are converted back to rates. The rate to angle integration is performed as follows (the roll, 
pitch, and yaw axes are each processed separately using this method): 
 
 SIRU_angle[0] = SIRU_rate[0]*nominal_SIRU_time 
 For k = 1 to NSIRU-1 

SIRU_angle[k] = SIRU_angle[k-1] 
                         + SIRU_rate[k]*(SIRU_time[k] – SIRU_time[k-1]) 

 
Performing the time regularizing interpolation in angle space suppresses any rate noise present in the 
SIRU data. The interpolated angles are turned back into rates, suitable for use in the Kalman 
smoother, as follows: 
 
 For k = NSIRU-1 to 1 
  SIRU_rate[k] = (SIRU_angle[k] – SIRU_angle[k-1])/nominal_SIRU_time 
 SIRU_rate[0] = SIRU_angle[0] / nominal_SIRU_time 
 
The state vector is defined as: 
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 
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


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







drift

iru

attitude

X  

 
where: 

attitude = smoothed attitude state 
iru = attitude rate state associated with SIRU 

drift = slow linear drift error in IRU 
 
The measurement matrix [Z] is a 2x1 matrix containing the Euler and SIRU attitude data for time tk. 

  









k

k

iru

epa
Z  

 
where: 

epa = Euler attitude value at time tk 
iru = SIRU attitude value at time tk 

 
The state transition matrix is defined as: 
 

 


















100

010

0dt1

  

 
where: 

dt = sample timing of SIRU 
 

The matrix [H] is defined as: 
 

  











110

001
H  

 
The process noise covariance matrix is defined as: 
 

 
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
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*dt
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2

*dt

4
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Q





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where: 

σiru=standard deviation of SIRU process 
σdrift=standard deviation of drift process 
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The measurement noise covariance matrix is defined as a 2x2 diagonal matrix: 

  









iru

euler

m

m
R

0

0
 

 
where:  

meuler = observation standard deviation noise in Euler measurement 
miru = observation standard deviation noise in SIRU measurement 

  

Samples flagged as outliers are deweighted by multiplying the measurement standard deviation by 
100 for that point.  
 
Each axis is treated as an independent data stream.  The Kalman filter is used to produce a set of 
filtered and predicted state vectors along with estimated and predicted covariance state error 
matrices. These values are then used to produce a smoothed state vector.  The smoothed vector 
attitude will represent an overall satellite attitude, or a combination of the Euler and SIRU 
measurements. 
 
The Kalman filter has an initial state vector of: 
 

 
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
















0

)0(iru

)0(epa

0X  

 
where: 

epa(0) = first measured quaternion 
iru(0) = first measured SIRU 

 
The initial covariance error matrix is defined as: 
 

 
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


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where: 

σepa = initial standard deviation in Euler 
σiru = initial standard deviation in SIRU 
σdrift = initial standard deviation in drift 

 
Initialize the state vector, error covariance matrix, measurement error matrix, and dt. 
 
Loop on attitude points 
 

 Calculate process noise matrix 

 Calculate Kalman gain 

 Filter state vector and error covariance matrix 
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 Predict error covariance error matrix 

 Predict state 
 
Loop on attitude points (reverse order for smoothing) 
 

 Calculate smoothed gain 

 Calculate smoothed state 
 
The Kalman filtering machinery used here is the same as described in Smooth Position and Velocity 
Sub-Algorithm above. 
  
If SIRU data processing is not performed, this sub-algorithm is replaced by a simple attitude outlier 
replacement algorithm that replaces estimates flagged as outliers above, by linearly interpolating new 
roll, pitch, and yaw values from the neighboring samples. 
 
Convert Roll, Pitch, Yaw to Quaternion 
The roll pitch and yaw sequences computed above are converted to ECI quaternions and to ECEF 
quaternions per steps 2.k. and 2.l. above. The conversion algorithm is the same in both cases, the 
only difference being whether the algorithm is provided with ECI ephemeris data or ECEF ephemeris 
data. Also see note 7. 
 
For each attitude sample: 

a) Compute the net roll-pitch-yaw by adding the bias value. 
b) Use Lagrange interpolation to compute the ephemeris position and velocity at the time of the 

roll, pitch, yaw attitude sample. 
c) Compute the rotation matrix corresponding to the roll-pitch-yaw values: 
[ACS2ORB] = 
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d) Construct the rotation matrix to convert from orbital to ECI/ECEF by forming the orbital 

coordinate system axes in ECI/ECEF coordinates: 
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where: 
p = spacecraft position vector in ECI/ECEF 
v = spacecraft velocity vector in ECI/ECEF 
n = nadir vector direction 
h = negative of angular momentum vector direction 
cv = circular velocity vector direction 
[ORB2EC] = rotation matrix from orbital to ECI/ECEF 

 
e) Compute the ACS2EC rotation matrix: 

 
          [ACS2EC] = [ORB2EC][ACS2ORB] 
 

f) Construct the corresponding EC2ACS quaternion: 
 
First, noting that the ACS2EC matrix computed above can be expressed in terms of the 
corresponding quaternion components as: 
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We can derive the following set of equations to compute the quaternion components from the 
elements of ACS2EC: 

1. Compute the four quantities: 
d1 = 1 + ACS2EC11 – ACS2EC22 – ACS2EC33 
d2 = 1 – ACS2EC11 + ACS2EC22 – ACS2EC33 
d3 = 1 – ACS2EC11 – ACS2EC22 + ACS2EC33 
d4 = 1 + ACS2EC11 + ACS2EC22 + ACS2EC33 
 

2. Find the largest of these four quantities and use the corresponding equations to 
compute the quaternion: 
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This method avoids the numerical danger of dividing by a small number. 

 
We then take the conjugate of the resulting ACS2EC quaternion, q, to yield the output EC2ACS 
quaternion, q’: 
 q’1 = -q1 
 q’2 = -q2 
 q’3 = -q3 
 q’4 = q4 
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7.1.4.8 Maturity 

The ancillary data preprocessing algorithm includes new features (e.g., SIRU processing) but reuses 
many heritage components (e.g., coordinate system transformations). Some notable modifications to 
the heritage logic include: 

1. The inertial to Earth fixed coordinate transformation logic was upgraded to include leap 
seconds (table in CPF to convert from TAI) and light travel time effects (for LOS projection). 

2. The Landsat and EO-1 heritage algorithm for converting between Earth-fixed and inertial 
coordinates performs simple rotation from the ECI to the ECEF system (or vice versa) for any 
input vector. This has the effect of rotating the inertial velocity vector to the ECEF frame 
without incorporating the Earth rotation effect in the velocity. The GPS-derived LDCM ECEF 
ephemeris includes Earth rotation effects. As noted in the ADD above, a new velocity 
conversion unit was required to implement the velocity equations shown in figure A.1 of DMA 
TR8350.2-A: 

Position:  XECEF = [ ABCD ] XECI 
Velocity:  VECEF = [ AB’CD ] XECI + [ ABCD ] VECI 
Where: B’ is the time derivative of the B matrix. 

3. The heritage ephemeris time jitter correction and Kalman smoother logic has been included in 
the baseline algorithm but may not be necessary as the spacecraft ephemeris should be 
cleaner than what we got from EO-1. 

4. The heritage IAU 1980 precession and nutation models were replaced with the NOVAS C3.1 
implementation of the IAU 2000 models. 

7.1.4.9 Notes 

Algorithm assumptions and notes, including those embedded in the text above, are: 
3. The attitude and position/velocity estimates produced by the spacecraft will be sufficiently 

accurate to achieve LDCM geolocation accuracy requirements without definitive processing of 
the raw attitude sensor and/or GPS data. 

4. Ancillary data for the full imaging interval with 4 seconds of extra data before and after the 
interval, is available to provide the required geometric support data, a CPF containing the 
scale factors needed to convert the ancillary data to engineering units is available, and the 
quality thresholds needed to detect and remove or repair outliers are provided in the CPF. 

5. The spacecraft ancillary data will provide attitude estimates (in the form of ECI-to-body 
quaternions) at the same rate that it provides SIRU data. It remains to be seen whether the 
spacecraft attitude estimates embody the full SIRU bandwidth. If they are overly smoothed, 
then the SIRU data will be used to restore the high frequency information to the sequence of 
attitude estimates. 

6. Spacecraft time codes will be TAI offsets from the J2000 epoch. Since TAI and UTC differ only 
by leap seconds, the conversion to UTC amounts to a leap second correction. The spacecraft 
(J2000) epoch is hard coded (in a #define statement) to prevent it from being inadvertently 
changed. 

7. Spacecraft ephemeris data will be provided in ECEF rather than ECI coordinates. 
8. Ancillary data will include ephemeris and attitude records that contain time tags/time codes 

(e.g., seconds and fractions of seconds) that are TAI offsets from the J2000 epoch. Note that 
J2000 occurred at January 1, 2000, 11:59:27.816 TAI which corresponds to January 1, 2000, 
11:58:55.816 UTC (ref. Space to Ground ICD 70-P58230P Rev B). These times reflect the 
32.184 second offset between TAI and TDT (the J2000 epoch reference frame) and the 32 
second offset between TAI and UTC as of J2000. The TAI-UTC offset at J2000 includes the 
fixed 10 second TAI-UTC offset as of January 1, 1972 and the 22 accumulated leap seconds 
between then and J2000. 
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9. The baseline algorithm retains the heritage roll-pitch-yaw attitude model. At some point in the 
future this may be replaced by a reformulated model that uses the quaternion representation 
directly. The sub-algorithm that converts the roll-pitch-yaw attitude representation to a 
quaternion may not ultimately be used in such a quaternion-based reformulation of the attitude 
model, since a part of that reformulation would probably involve directly filtering/smoothing the 
quaternion sequence rather than working in roll-pitch-yaw coordinates. That said, having the 
capability, provided by this sub-algorithm, to generate a quaternion attitude data representation 
that is identical to the roll-pitch-yaw representation would simplify the testing of any future 
reformulation. Note that by including both roll-pitch-yaw and quaternion representations of the 
attitude data, the algorithm outputs support either approach. 

10. Common mathematical algorithms (e.g., matrix and vector operations, Lagrange interpolation) 
that can be found in standard references (e.g., Numerical Recipes in C) are cited without being 
described here. 

11. The spacecraft estimate of SIRU latency was a late addition to the spacecraft ancillary data 
stream. Based on our current understanding of its meaning, it is not needed for SIRU data 
processing and is not included in the SIRU processing algorithm as of this writing. Should the 
need for this parameter be established, it should be a straightforward adjustment to the 
computed SIRU sample times. 

12. The terms “IMU”, “IRU”, and “SIRU” are used interchangeably in this document. Inertial 
measurement unit (IMU) is another name for an inertial reference unit (IRU). The space inertial 
reference unit (SIRU) manufactured by Northrup Grumman is the particular type of IRU used 
by LDCM. 
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7.1.5 Ground Control Point Correlation Algorithm 

7.1.5.1 Background/Introduction 

The ground control point (GCP) correlation algorithm applies standard image matching techniques to 
measure the locations of a set of GCPs, each consisting of positional information and an image chip, 
within a Level 1Gt OLI/TIRS image. For each measured GCP the correlation status (success or 
failure) and the location within the image where the GCP was expected and where it was actually 
measured, are reported. 
 
The GCP correlation algorithm will be used in two different contexts in the LDCM Image Processing 
Element. It will function as part of the primary Level 1T (L1T) product generation flow where it 
provides control point measurements for use by the OLI LOS Model Correction algorithm in 
registering the L1T products to the GLS2000 control base. The GLS control base as used here 
includes control from the Landsat Image Mosaic of Antarctica (LIMA) to provide global coverage. The 
GCP correlation algorithm will also be used for geometric assessment as a tool for measuring the 
locations of validation GCPs in processed L1T imagery. These measurements will be analyzed by the 
Geometric Accuracy Assessment algorithm for data product characterization purposes.  Digital 
Orthophoto Quadrangle (DOQ) will be used on geometric supersites for instrument and platform 
characterization and calibration. 
 
The LDCM GCP correlation algorithm is derived from the corresponding ALI algorithm used in ALIAS. 
Its implementation should be very similar to the gcpcorrelate application. This is a utility algorithm that 
is not dependent on sensor architecture.  

7.1.5.2 Dependencies 

The GCP correlation algorithm assumes that ground control points are available for the ground site 
and that the Model Creation, LOS Projection and Gridding, and Image Resampling algorithms have 
been executed to create an SCA-separated terrain corrected L1G image for GCP mensuration (for 
the LOS model correction application). It may also operate directly on an SCA-combined L1T product 
image for geometric accuracy assessment purposes. In either case, the image must match the GCP 
image chips with respect to ground sample distance, map projection, and image orientation. As such, 
the band selection and resolution of the input image will depend upon the flow being executed/control 
source being used. For standard L1T product generation processing the GLS control points (SWIR1 
band, 30m resolution) will be used whereas for characterization and calibration flows the DOQ control 
points (panchromatic band, 15m resolution) will be used. For L1T product geometric assessment, 
GLS GCPs flagged as validation points will be extracted and used.  A limited set of thermal (ETM+ 
band 6, 60m resolution) GCPs will also be available to support contingency TIRS-only accuracy 
characterization operations. These thermal GCPs will use a source identifier of "TM6". 
 
GCP Retrieval 
The GCP mensuration process relies upon a control point storage, management, and retrieval 
infrastructure (see maturity note #1 below). Though not formally part of the GCP correlation algorithm, 
the availability of logic to retrieve the GCPs corresponding to a particular L1G image is a dependency 
of the algorithm. The Landsat 7 production system is the model for this capability and will be the 
source of the GLS-derived operational GCPs. The GCP retrieval logic would query the GCP 
repository and request GCP records based upon: 

1. Geography - GCPs that fall within the latitude/longitude bounds of the L1G image being 
correlated. Note that GCPs meeting this criterion could come from more than one WRS 
path/row, particularly at high latitudes. 
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2. GCP Source - As noted above, operational L1T product generation would use GLS control 
while the characterization and calibration operations would use DOQ control. Though not 
shown as an input to this algorithm in the table below, which takes the pre-assembled control 
package created by the GCP retrieval process as an input, this GLS, DOQ or TM6 control 
source selection would be a work order input. Note that there is no requirement to combine 
GLS, DOQ and/or TM6 GCPs in a single control set. 

3. GCP Type - GCPs will be flagged as "control" or "validation" points so that a subset of the 
available GCPs can be withheld from the image correction process to provide an independent 
basis for accuracy assessment (see note #4). Valid query options are: CONTROL, 
VALIDATION, and BOTH. The CONTROL GCP type will be requested for all cases except the 
geometric accuracy assessment operation which will use VALIDATION points. In the event of 
a correlation failure, a high priority scene may be reprocessed using the BOTH option. This 
could help in cases where cloud cover has limited the set of usable GCPs in a particular 
scene.  Under this scenario if a scene was deemed as necessary for processing (high priority), 
for characterization, calibration, or other reasons, this scene would be processed through the 
IAS using the BOTH option. 

 
The GCP retrieval process would extract the GCPs meeting the specified criteria from the GCP 
repository and construct a GCP data package/library for input to this algorithm. This data package 
would include the information presented in the Inputs section and in Table 1 below. The 
implementation details of how the GCP data fields and image chips are stored, managed, and 
packaged for delivery are not addressed in this ADD. 
 
It is probably worth mentioning that the GCP retrieval query may return no valid GCPs. This will 
happen if, for example, DOQ or TM6 control is requested for an area where it does not exist, or GLS 
control is requested for a sea ice area or island/reef where control is not available. In this case the 
processing system will have to be able to gracefully handle the lack of control (e.g., treat it as a 
correlation failure and proceed with systematic processing). This is also outside the scope of this 
ADD. 
 
For the prototype code the database retrieval is mimicked in a two step process.  The first is with a 
perl script that searches for all GCPs available on line that fit within the images geographic extent.  
This script will produce an ASCII file listing each valid chip (chips within image geographic extent) and 
relevant projection information such as UTM zone.  The second step is a C executable file that will 
read the ASCII file created from the perl script and place all valid chips within a local directory.  These 
chips are then resampled if they are not projected to the same UTM zone as the image file (see 
maturity note #3). 

7.1.5.3 Inputs 

The GCP correlation algorithm uses the inputs listed in the following table. Note that some of these 
“inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the values of 
and pointers to the input data; including data set IDs to provide unique identifiers for data trending). 
 
Algorithm Inputs 

ODL File (implementation) 

  Input GCP library/package name/link 

  Level 1G Image file name 

  Band to process 

  Output GCP measurement file name 

  Calibration Parameter File name (CPF contains default values for processing 
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parameters) 

  Options and Parameters 

    Correlation result fit method (see note 2) 

    Search window size (line, sample) in pixels 

    Maximum allowable GCP displacement in pixels 

    Minimum correlation strength (dimensionless) 

    Image fill value to ignore in correlation  

    Predicted GCP location offset (line, sample) in pixels (optional) (see note #5) 

GCP library/package contents: (see Table 1 for details) 

  Number of GCPs 

  For each GCP: 

    GCP ID 

    GCP type (GLS, DOQ or TM6) (new) 

    GCP ground position (lat/lon/proj X/proj Y/height) for each GCP 

    Location of control point within image chip 

    Chip parameters (e.g., size, ground sample distance (GSD)) 

    Image chip (see note 1)   

Level 1G image contents 

   Image data 

   Image metadata (DDR) including: 

      Image dimensions (number of lines and samples) 

      Map projection 

      GSD/pixel size 

      Scene corner coordinates 

7.1.5.3.1 CPF Parameters 

Parameter Type Description 

GCP Correlation Window Size Int Correlation window size 

GCP Minimum Correlation 
Peak 

double Minimum allowable correlation peak 
strength 

GCP Maximum Displacement double Maximum allowable measured offsets 

GCP Correlation Fit Method Int Correlation subpixel peak fit methodology 

GCP Correlation Threshold double Threshold of allowable fill values in 
correlation window 

GCP Correlation Fill Value double Fill value to check for in correlation 
window 

7.1.5.4 Outputs 

GCP Measurements (see Table 2 for details) 

  GCP ID 

  Nominal GCP chip line/sample 

  GCP ground position (lat/lon/height) 

  Predicted GCP image line/sample 

  Measured offset from predicted line/sample 

  Correlation success flag 

  Correlation coefficient (new) 

 

7.1.5.5 Options 

Correlation Fit Method (only one choice in baseline algorithm). 
Note that the control source (GLS, DOQ, or TM6) will be selected by the infrastructure software that 
queries the control database and constructs the GCP library data package input to this algorithm. As 
such, it is not strictly an option within this algorithm, but it is an option that this processing step will 
select. 
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7.1.5.6 Procedure 

This function correlates GCPs located in reference image chips to a terrain corrected Level 1G 
image. The GCPs are located within reference image chips.  Windows are extracted from the L1G 
image to do the image correlation.  The correlated points are written to the GCP data file for 
subsequent use in precision correction or product evaluation. 
 
The heritage ALIAS and Landsat 7 implementations used L1G mensuration images that were not 
terrain corrected. The use of terrain corrected images reduces the size of the L1G image region that 
must be searched for a control point match (see maturity note #4). It also requires that the measured 
GCP locations be associated with elevations interpolated from the digital elevation model (DEM) used 
to perform the terrain correction. This is described in the LOS Model Correction ADD. 
 
Ground Control Point Correlation Algorithm Details 
GCPcorrelate performs correlations on ground control points (GCP) with a Level 1G image.   
 
Ground Control Points 
Ground control points (GCPs) and reference imagery are generated from USGS Digital Orthophoto 
Quadrangles (DOQs). DOQs are designed to meet national map accuracy standards at 1:24,000 
scale, which corresponds to a root mean squared error (RMSE) of approximately 6 meters. A mosaic 
of DOQs is created by subsampling the 1 meter DOQ imagery to match the PAN band at a 15 meter 
resolution. Multiple DOQs are combined so that the mosaic covers a Landsat World-wide Reference 
System (WRS) scene extent. The ground control chip library is generated by extracting 64x64 
windows from the DOQ mosaic. Since the DOQ data are only available for the United States, these 
GCPs cover only U.S. test sites. 
 
Ground control chips are chosen by stepping through the DOQ imagery at evenly spaced line and 
sample locations. Elevation for the chips are found from DEM and stored in the GCP library. If the 
DOQs that comprise the mosaic have large radiometric differences, histogram equalization 
operations may be performed. These histogram operations include histogram matching to a reference 
data set or histogram balancing within the mosaic. 
 
Ground control points have also been extracted from the Global Land Survey 2000 (GLS2000) data 
set. These GCPs serve as the geospatial reference for standard Landsat product generation and will 
be used for LDCM standard product generation. The GLS2000 GCPs provide a globally distributed, 
internally consistent control set. Though the GLS2000 did not include Antarctica, the Landsat Image 
Mosaic of Antarctica (LIMA) did, so LIMA-derived control will be used in the Antarctic regions. These 
GCP chips will be in the polar stereographic (PS) projection used by LIMA. Since a single projection 
was used for the entire continent, there are no zone issues associated with Antarctic data. The terrain 
corrected L1G mensuration images created for Antarctica will thus use the single LIMA polar 
stereographic projection. The lack of image features and prevalence of cloud cover are likely to be a 
more serious problem in Antarctica than elsewhere, leading to frequent GCP correlation failures in 
this area. 
 
The global set of GLS chips were extracted from band 5 (SWIR1) at 30m resolution. A limited set of 
thermal GCPs will also be extracted from the GLS2000 ETM+ band 6 images using a selected subset 
of GLS scenes. These thermal GCPs will be used in the event that TIRS geometric characterization 
must be performed without reference to OLI data. 
 
GCP Mensuration 
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Throughout the LDCM data processing and characterization algorithms, normalized cross correlation 
is used to measure spatial differences between two image sources. These image sources could be 
OLI and DOQ, OLI and Landsat, TIRS and Landsat, or OLI and OLI. Image windows are extracted 
and correlation is performed over the windowed area. The correlation process will only measure 
linear distortions over the windowed areas. By choosing windows that are well distributed throughout 
the imagery, nonlinear differences between the image sources can be found. Normalized cross 
correlation will produce a discrete correlation surface (i.e., one correlation value per integer pixel 
offset location). A sub pixel location associated with the offset is found by fitting a polynomial around 
a 3x3 area centered on the correlation peak. The polynomial coefficients can be used to solve for the 
peak or sub pixel location. The normalized cross correlation process helps to reduce any correlation 
artifacts that may arise from radiometric differences between the two image sources. 
 
If the two image windows of size NxM are defined by f and g, the mensuration 
steps are: 
 

1) Perform normalized grey scale correlation 
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R(x,y) is the grey scale discrete correlation surface. 
 

2) Find the peak of the discrete correlation surface by searching for the integer offset with the 
largest correlation coefficient. 
 
3) Fit a 2

nd
 order polynomial to a 3x3 area centered on the correlation peak.  The polynomial has the 

form: 
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A least squares fit is performed on the points to solve for the polynomial coefficients.   

 
3a) Set up matrices 
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X = correlation locations centered around peak 
Y = correlation values corresponding to X locations 
a = polynomial coefficients 

 
Note that these matrices take the form: 
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 3b) Solve for polynomial coefficients: 
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4) Find partial derivatives of polynomial equation in terms of x and y: 
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5) Set partial equations equal to zero and solve for x and y: 
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where: 

x offset = sub-pixel offset in x direction 
y offset = sub-pixel offset in y direction 

 
6) Combine the sub pixel offset calculated in step 5 to the peak location from step 2 to get the 
total offset. 

 
The GCP positional information and the measured sub pixel offset is recorded for each GCP along 
with a flag indicating whether the final correlation value passed simple correlation strength and 
maximum offset thresholds. No statistics-based (e.g., t-distribution) outlier detection is performed by 
this algorithm. 
 
Processing Steps 
The basic GCP Correlation processing flow consists of the following steps: 

1. Read the GCPs and L1G image. 
2. For each GCP: 
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2.1. Compute the predicted location of the GCP in the L1G image using the GCP map 
projection coordinates and any specified predicted offset. 

2.2. Extract an image window from the L1G image at the predicted location. 
2.2.1. Make sure the image window contains sufficient non-fill image data. 
2.2.2. Make sure the L1G image and GCP image chip are in the same map projection 

(UTM zone). Reproject (see below) the GCP chip if necessary. 
2.3. Correlate the GCP image chip with the L1G window to find the optimum match point. 
2.4. Test the measured correlation and offset against predefined thresholds. 
2.5. Write out the GCP mensuration results. 

 
The reprojection of the GCPs in the prototype code is done as a separate step through the process 
called gcpretrieve.  This process is a precursor to the actual correlation process.  It is also worth 
noting that the resampling methodology is slightly different between the Landsat heritage code and 
the prototype.  The Landsat methodology used a table of weights that were applied to each chip in 
order to perform the reprojection.  
 
The GCP correlation procedure was implemented in the heritage ALIAS prototype. Though the 
correlation process is conceptually simple, it is computationally intensive so the ALIAS 
implementation was designed to be efficient. This included taking advantage of parallel processing. 
These processing efficiency measures make the heritage implementation somewhat more 
complicated than it might otherwise be. The remainder of this processing discussion follows the 
LDCM prototype, which was based on the heritage ALIAS implementation, to illustrate how the 
conceptually simple flow outlined above was mapped to a computationally efficient implementation. 

7.1.5.7 Prototype Code 

Input to the executable is an ODL file, output is an ASCII file containing measured offsets between 
the input image file and GCP library.  Under the prototype output/input file directory there is a 
directory called chips which contains the heritage type GCP data structures and files.  Under the 
prototype output/input directory called add that contains the ODL files needed, the HDF5 input image 
file, a perl script needed, and the CPF.   
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall -march=nocona -m32 
 
Get GCP Correlate Parameters (get_gcpcorrelate_parameters) 
This function gets parameters from the ODL parameter file.  
 

Get GCP Information (get_gcp_information) 
This function reads the GCPs from the input GCP library. 
  

Process GCP (process_gcp) 
This function processes all the GCPs by extracting the GCP image chip, extracting the image 
window, performing the correlation for each point, and then writing the results to the GCP data file. 
  

NOTES: 
1: The correlation routines want things in sample, line order, so the fit_offset pairs returned are 
horizontal (sample) and then vertical (line) offsets.  In contrast, the GCP data file contains fit_offset in 
line, sample order. 
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2: To calculate the correlated location, know 2 things: 
a. The correlate routines return the offset from the reference window (chip) to the search window 
(L1G), which is also the offset from the nominal reference point to the actual point in the search 
window. 
   
b. The integer location of the predicted location roughly corresponds to the integer location of the 
reference location. We need to report the predicted search line, sample of the reference point and 
the offset from the predicted point to the correlated point. So to get the correlated location, we start 
with the integer location of the predicted point because this corresponds to the integer part of the ref 
point (this is why gcp[num_used_gcp].fit_offset subtracts the fractional part of the predicted 
location).  Then we add the fractional part of the reference coordinate because this is really the 
point we are going after.  Then we add the correlation fit_offset because this tells how the reference 
point relates to the location in the search window. 

 
3: The calculation for fit_offset only works correctly because we are assuming the reference and 
search points are at the center of the window (plus some fractional distance) and the difference in 
window size is accounted for by nom_off; if the reference point was not at the middle of the chip, this 
would have to be adjusted. 
  

Initialize Parallel Correlator (xxx_init_parallel_correlator) 
This function initializes an instance of the parallel correlator.  All the multiprocessing resources are 
created and the memory for the chip buffers and queue structures is allocated. 
 

Get Correlation Chip Buffers (xxx_get_corr_chip_buffers) 
This function returns buffers for the search and reference chips that will be submitted to the 
parallel correlator.  Getting buffers from this routine and not submitting them to the parallel 
correlator will quickly exhaust all the buffers available. The buffers will be freed when the parallel 
correlator is closed. When compiled in single threaded mode, the same set of buffers are used for 
every pair of chips. 
 
Close Parallel Correlator (xxx_close_parallel_correlator) 
This function is the routine that needs to be called after all the chips have been submitted to the 
correlator.  This routine will wait until all the threads have completed, then destroy this instance of 
the parallel correlator. The results of the correlation are not valid until this routine returns. 
 

Get Search Line/Sample (get_search_line_samp) 
This function finds the line and sample that corresponds to the given projection y and x. Since the 
L1G image is positioned (map projection) north up, finding the line (sample) is done by subtracting 
the upper left projection y(x) value from the GCP projection y(x) value and dividing the result by 
the line(sample) pixel size. 
  
NOTES: 
The line and sample numbers are 0-relative. 
This will not work for a path-oriented image. 

 

Extract Window (ias_misc_extract_window) 
This function extracts an image window around a specific GCP.  From the input image, a window 
of the specified size will be extracted around the GCP line and sample.  If the window is of odd 
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size, the extra line and/or sample will be at the beginning of the imagery.  The data in the window 
representing portions outside the imagery will be filled with zeros. 
  
There are 2 steps to the extraction: 
 (1) data type conversion of whatever the L1G image is to float 
 (2) setting the calculated window correctly into the buffer (even if the calculated window falls 
partially outside the image) 
 

Check Fill (oli_check_fill) 
This function checks the input window for fill data over the specified percentage. This routine is 
useful to determine if there is too much fill data in a window.  If too much fill data exists, then the 
window might not be good for correlating.  Fill data nominally has a value of 0.0. 
   
Extract Chip ( xxx_extract_chip) 
This function reads the specified image chip. The image chip is always assumed to be a flat binary 
file containing chip_size[0] x chip_size[1] BYTE pixels (see note #1).  
 
Resample chip if necessary (build_gcp_lib) 
New logic, derived from the Landsat Product Generation System (LPGS) heritage, will be required 
here to check the image chip map projection and, if necessary, resample the chip to match the 
L1G image. This is necessary when working with a global GCP repository containing GCPs 
extracted from multiple source scenes in multiple UTM zones. The GCPs falling inside a particular 
L1G image will frequently, particularly at high northern latitudes, be drawn from source images in 
neighboring UTM zones. Note that this is not a problem in Antarctica where a single polar 
stereographic projection is used.  It is also worth noting that the resampling techniques between 
the LPGS heritage code and the LDCM prototype is not the same. 
 
Image chip reprojection proceeds as follows: 

1. Compute the image chip upper left (UL) corner coordinates from the GCP UTM 
coordinates, the GCP image line/sample coordinates, and the image chip pixel size: 

a. UL Corner X = GCP X - GCP sample coordinate * chip pixel size 
b. UL Corner Y = GCP Y + GCP line coordinate * chip pixel size 

Note that the GCP line/sample coordinates are relative to a zero-origin at the center of the 
upper left chip pixel. 

2. Project the GCP latitude and longitude to the L1G map projection (UTM zone) using the 
projection transformation package (see OLI/TIRS LOS Projection ADD) to compute GCP X' 
and GCP Y' projected coordinates. 

3. Compute the desired "new" chip UL corner in the L1G projection using the new GCP X' and 
GCP Y' coordinates, rounding off to a whole multiple of the pixel size: 

a. UL Corner X' = GCP X' - GCP sample coordinate * chip pixel size 
b. UL Corner Y' = GCP Y' + GCP line coordinate * chip pixel size 
c. UL Corner X' = round(UL Corner X'/chip pixel size)*chip pixel size 
d. UL Corner Y' = round(UL Corner Y'/chip pixel size)*chip pixel size 

4. Compute the "new" GCP line/sample coordinates in the reprojected chip: 
a. GCP sample coordinate' = (GCP X' - UL Corner X')/chip pixel size 
b. GCP line coordinate' = (UL Corner Y' - GCP Y')/chip pixel size 

5. For each point in the new chip: 
For line = 0 to nlines-1 

Compute:  Y' = UL Corner Y' - line*chip pixel size 
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For samp = 0 to nsamps-1 
1. Compute:  X' = UL Corner X' + samp*chip pixel size 
2. Convert (X',Y') to old chip projection (X,Y) using the projection transformation 

package. 
3. Compute:  oline = (UL Corner Y - Y)/chip pixel size 
4. Compute:  osamp = (X - UL Corner X)/chip pixel size 
5. If the point (oline, osamp) falls inside the old chip boundary Then interpolate a 

DN value at that location using bilinear interpolation: 
a. lindex = (int)floor(oline) 
b. sindex = (int)floor(osamp) 
c. fline = oline - lindex 
d. fsamp = osamp - sindex 
e. DN(oline,osamp) =  

DN(lindex,sindex)*(1-fline)*(1-fsamp) + 
DN(lindex+1,sindex)*fline*(1-fsamp) + 
DN(lindex,sindex+1)*(1-fline)*fsamp + 
DN(lindex+1,sindex+1)*fline*fsamp 

Else DN(oline,osamp) = 0 
5. Use the reprojected image chip and GCP line/sample coordinates in the GCP correlation 
procedure. 
 

The build_gcp_lib, or gcpretreive process, is separated from the GCPcorrelate process so as to 
emulate the GCP retrieval process from the database containing the GCP image chips and their 
corresponding metadata.  This retrieval process also contains the following C modules: 
 GCPretrieve -Main driver for GCP retrieval process. 
 get_gcp_lib - Reads GCPs according to set of criteria 
 get_gcp_information - Wrapper for reading GCPLib information 
 get_gcp_proj_parms - Reads projection information from image file metadata 
 get_gcpretrieve_parameters - Read input ODL parameters 
This code was based on the Landsat ETM+/TM heritage code for GCP retrieval and chip 
reprojection.  
 

Put GCP (io_put_gcp) 
This function writes all GCP records to the specified output file. This function writes out a set of 
GCP data records. If the file already exists it will be overwritten. 
  

Write GCP (io_write_gcp) 
This function writes one record to the GCP data file. The file pointer is left at the end of the 
current record so sequential calls of xxx_write_gcp will sequentially write all the records in the 
file. The GCP data file is assumed to be an ASCII file containing one line of text per GCP data 
record. Each record contains: point_id, reference_line, reference_sample, latitude, longitude, 
elevation, predicted_search_line, predicted_search_sample, delta_y (line), delta_x (sample), 
accept/reject_flag, correlation coefficient, reference band number, search band number, 
search SCA number (0 for SCA-combined images), chip source (DOQ, GLS). 
  

Submit Chip to Correlator (xxx_submit_chip_to_corr) 
The xxx_parallel_corr module implements a parallel correlation object.  Using the Posix threading 
interface, up to MAX_CORR_THREADS (or the number of processors available - whichever is 
less) are created to perform correlation. The main thread that creates the parallel correlator is then 
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responsible for "feeding" the parallel correlator chips to correlate.  The xxx_submit_chip_to_corr 
places the chips into a queue.  The correlation threads remove the chips from the queue and 
perform the correlation.  The results of the correlation are not immediately available to the 
application since xxx_submit_chip_to_corr returns before the correlation is complete. 
 
Before any of the correlation results are used, the application must call 
xxx_close_parallel_correlator to make sure all the chips have been correlated and to destroy the 
correlation threads. 
  

Grey Correlator ( xxx_grey_corr) 
This function correlates a reference subimage with a search subimage using the pixel grey 
levels and evaluates the results. 
  

 

Grey Cross Product Same-size (xxx_grey_cross_ss) 
This function computes the unnormalized (raw) sum of pixel-by-pixel cross products 
between the reference and search images for every combination of horizontal and vertical 
offsets of the reference relative to the search image for windows of the same size (in one 
dimension at least). 
  

 

Grey Normalization Same-size (xxx_grey_norm_ss) 
This function converts raw cross-product sums to normalized cross-correlation coefficients, 
using tabulated statistics from previous step (grey_cross_ss). This function is much simpler 
than the one for unequal-sized windows, since all normalizing is done by the space domain 
same size correlator. All that has to be done here is statistics gathering to set up the peak 
finder. 
  

 

Grey Cross Product (xxx_grey_cross) 
This function computes the unnormalized (raw) sum of pixel-by-pixel cross products 
between the reference and search images for every combination of horizontal and vertical 
offsets of the reference relative to the search image. This function works for windows of 
unequal size. 
 

Grey Normalization (xxx_grey_norm) 
This function converts raw cross-product sums to normalized cross-correlation coefficients, 
while tabulating statistics needed for subsequent evaluation. This function works for 
unequal window sizes. 
  

Grey Evaluation (xxx_grey_eval) 
This function evaluates various measures of correlation validity and extracts a subarea of 
the cross correlation array centered on the peak. 
 

Fit Registration (xxx_fitreg) 
This function fits a quadratic surface to the neighborhood of the correlation peak and from it 
determine the best-fit registration offsets and their estimated errors.  

 
Input and Output File Details 
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The details of the fields contained in the input GCP library file (Table 1) and the output measured 
GCP file (Table 2) are presented below. 
 

Field Description 

Header Text Zero or more lines of ASCII text, each line beginning 
with the "#" symbol to designate it as a header 
comment, describing GCP library contents. 

Data Start Marker "BEGIN" - static text to indicate beginning of data area 

Number of GCPs Integer number (N) of GCPs to follow (new) 

GCP Record Fields: One set per GCP 

   GCP Number Sequence number of GCP in this package (1 to N) 

   GCP ID Unique ID for GCP of the form:  ppprrrnnnn 
    where:    ppprrr = WRS path/row GCP was taken from 
                   nnnn = chip sequence number 

   GCP Image Chip 
Line Coordinate 

GCP location within image chip - line coordinate 
(fractional pixel). 

   GCP Image Chip 
Sample Coordinate 

GCP location within image chip - sample coordinate 
(fractional pixel). 

   GCP Latitude GCP latitude in degrees. 

   GCP Longitude GCP longitude in degrees. 

   GCP X GCP projected X coordinate in meters. 

   GCP Y GCP projected Y coordinate in meters. 

   GCP Height GCP WGS84 ellipsoid height in meters. 

   Image Chip GSD Chip pixel size in meters. 

   Image Chip Lines Number of lines in image chip. 

   Image Chip 
Samples 

Number of samples in image chip. 

   GCP Source Source of GCP, either "DOQ" or "GLS" or "TM6" 

   GCP Type Control/validation point flag, either "CONTROL" or 
"VALIDATION" 

   Image Chip 
Projection 

UTM or PS 

   Image Chip Zone UTM zone number (1-60). Use 0 for PS. 

   Image Chip Date yyyymmdd = year/month/day of GCP source 

   Image Chip Link to chip image data (could be in file named with 
GCP ID) 

Table 1:  Input GCP Library Contents 
 

Field Description 

GCP Record Fields: One set per GCP 

Point ID GCP ID (see Table 1) 

GCP chip line location Line location of GCP within chip 

GCP chip sample location Sample location of GCP within chip 

GCP latitude GCP WGS84 latitude in degrees 

GCP longitude GCP WGS84 longitude in degrees 

GCP height GCP WGS84 ellipsoid height in meters 

Predicted GCP image line Predicted line location of GCP in L1G image 

Predicted GCP image Predicted sample location of GCP in L1G image 
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sample 

GCP image line offset Measured line offset from predicted location 

GCP image sample offset Measured sample offset from predicted location 

Correlation success flag Flag 0 = correlation failure, 1 = success 

Correlation coefficient Measured correlation coefficient (new) 

Search band number L1G band number used 

Search SCA number L1G SCA where GCP was found 

Chip source GCP source (DOQ or GLS or TM6) 

Table 2:  Output GCP Mensuration File Contents 

7.1.5.8 Maturity 

Though much of the ALI model correction algorithm will be reusable there are several areas where 
changes are expected: 

5. The heritage process takes WRS path/row as input and accesses a static GCP Library file set 
indexed by path/row. For the LDCM implementation it is assumed that GCP storage and 
retrieval is managed externally and that this process will be provided with a set of GCPs 
applicable to the image area.  The prototype uses a pre-processing step involving a perl script 
and a C executable called gcpretrieve to mimic the database retrieval and chip reprojection 
steps.  These steps are discussed in the prototype and verification sections. 

6. The computed correlation coefficient is added as an output to make it available for subsequent 
outlier filtering, if necessary. 

7. At high latitudes scenes will frequently straddle multiple UTM zones. The control point chips 
falling in a given scene may thus be in more than one projection leading to difficulties in 
correlating the chips (due to the rotation between the chip projection and the mensuration 
image projection. This problem has been solved in the Landsat processing system (LPGS) by 
including logic in gcpcorrelate that resamples the GCP chips, if necessary, to match the 
mensuration image projection. This logic is not part of the ALIAS heritage code but will be 
needed to support global LDCM product generation using the GLS ground control.  The 
reprojection of the chips has been addressed and prototyped.  This is no longer and issue with 
the prototype code. 

8. The baseline plan for LDCM GCP correlation is to use a terrain corrected, rather than the 
heritage systematically corrected, image for GCP mensuration. This is a departure from the 
ALIAS (and Landsat) heritage, motivated by the implications of processing off-nadir images.  

a. The predicted GCP locations used to establish the search area in the mensuration 
image are computed without reference to terrain displacement effects. For nadir images 
the terrain-induced cross-track offsets introduced between these “flat Earth” predictions 
and the actual GCP locations are small enough to fit inside the normal GCP search 
window:  a maximum elevation of 8000m corresponds to ~1200m of parallax at the 
edge of the swath which is a displacement of ~40 pixels (at the 30m GLS control 
resolution). A 64x64 GCP chip and a 128x128 search area can accommodate offsets up 
to +/-31 pixels whereas a 256x256 search area can accommodate offsets up to +/-95 
pixels. 

b. For off-nadir images the terrain sensitivity is roughly tripled so offsets up to 120 pixels 
would have to be accounted for. Since increasing the search area substantially 
increases processing time and increases the likelihood of a false GCP match, and given 
the fact that LDCM pointing should be sufficiently accurate to generate predicted GCP 
locations that are within a pixel or two most of the time, it would be better to account for 
terrain offsets when predicting GCP locations to minimize the search area. One way to 
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do this would be to calculate the magnitude of this effect and include it in the 
computation of the predicted GCP locations. The problem with this is that the LOS 
model correction algorithm uses the measured offset between predicted and measured 
GCP locations to derive model corrections, so any adjustment to the predicted location 
based on a computed terrain offset, will have to be accounted for in the precision 
correction algorithm. Thus, complicated offset prediction and offset removal logic would 
need to be added to both the GCP correlation and LOS model correction algorithms. 

c. A better way to accomplish the same objective is to perform the mensuration on a 
terrain corrected image, where the terrain offsets have been accounted for explicitly in 
the image generation process. This approach is preferable to attempting to correct for 
terrain point-by-point in the mensuration of a systematically corrected image, but it does 
have some drawbacks: 

i. Using a terrain corrected mensuration image will require using the DEM as 
another input to the LOS model correction algorithm in order to compensate for 
any difference between the GCP elevation and the corresponding DEM elevation 
at the point where the GCP match was found in the mensuration image. This 
adds complexity to an already complex algorithm. 

ii. Misregistration between the systematic image and the DEM can cause the terrain 
correction process to inject high frequency image distortion. This would probably 
not be a huge problem given the expected accuracy of LDCM pointing and 
ephemeris knowledge. In areas of significant relief, even a slightly misregistered 
DEM may provide a mensuration image that is more similar to the GCP chips, 
which are themselves terrain corrected, than a systematic image would be. 

7.1.5.9 Notes 

Some additional background assumptions and notes include: 
1. The heritage GLS, TM6, DOQ image chips are stored as 8-bit (BYTE) arrays whereas the 

LDCM imagery will be 16-bit (or float). The correlation is performed on floating point data so 
both the image and the chips are converted to float on input. Thus the image and chip data 
types need not match. 

2. The correlation result fit method defines the algorithm used to estimate the correlation peak 
location to sub-pixel accuracy. Only the quadratic surface fitting method described in this ADD 
is supported in the baseline algorithm. 

3. Though the normal baseline for measuring control points is to use an SCA-separated terrain 
corrected image, this algorithm should also function with a  combined-SCA image so that it can 
be used to measure test point GCPs in L1T product images to support the geometric accuracy 
characterization algorithm. 

4. The GCPs in the GCP repository (part of the Infrastructure Element) should be flagged as 
either “control” points, to be used for LOS model correction, or “validation” points, to be used 
for geometric accuracy characterization. The utility that extracts control points from this 
repository should be able to extract either control set. The “control” set would contain the 
majority of the points. The “validation” flag would only be used in areas where more than some 
minimum threshold number of GCPs are available. These flags would be set by the Cal/Val 
team at the time the GCP repository was loaded and could be adjusted, if necessary, 
thereafter. Criteria for selecting validation points would be based upon considerations such as: 

a. The total number of available GCPs in the scene must exceed some minimum (e.g., 
100). 

b. Points that fall on the boundary (or, more precisely, the convex hull) of the GCP set 
would not be validation point candidates. 
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c. Points that are within some maximum distance (e.g., 25 km) of another GCP would be 
validation point candidates. 

The goal would be to develop an automated validation point identification algorithm that would 
operate somewhat like an outlier rejection algorithm: identify the best validation point candidate 
based upon a set of criteria, remove it from the control point list, and iterate until no additional 
validation points are identified.  

5. Scenes with poor geolocation accuracy can lead to the actual GCP L1G image locations being 
sufficiently far from their predicted locations so as to make it impractical to expand the GCP 
search window to the extent necessary to find the GCPs. An optional parameter to specify an a 
priori predicted offset provides a more reliable way to find and correctly correlate the GCPs in 
this situation. This can occur early in the mission, before the first on-orbit sensor alignment 
calibration, or during an anomaly investigation. 

 

7.2 OLI Geometry Algorithms 

7.2.1 OLI Line-of-Sight Model Creation Algorithm 

7.2.1.1 Background/Introduction 

The line-of-sight (LOS) model creation algorithm gathers the ancillary data and calibration parameters 
required to support geometric processing of the input image data set, validates the image time codes, 
extracts the corresponding ephemeris and attitude data from the ancillary data stream, performs the 
necessary coordinate transformations, and stores the results in a geometric model structure for 
subsequent use by other geometric algorithms. The OLI LOS model creation algorithm is derived 
from the ALI model creation algorithm used in ALIAS. Its implementation is very similar to the alinit 
application and the geometric sensor (axx) and spacecraft (exx) model libraries used in ALIAS, 
though much of the ephemeris and attitude preprocessing logic present in alinit has been moved to 
the, now separate, ancillary data preprocessing algorithm to better isolate the bulk of the geometric 
processing logic from the details of the incoming ancillary data stream. New attitude data processing 
logic has also been added to separate the high- and low-frequency attitude effects to allow the image 
resampling process to better correct for jitter at frequencies above the original 10 Hz algorithm design 
limit without requiring an unreasonably dense resampling grid. 

7.2.1.2 Dependencies 

The LOS Model Creation algorithm assumes that the Ancillary Data Preprocessing algorithm has 
been executed to accomplish the following: 

Validated ephemeris data for the full imaging interval have been generated 
Validated attitude data for the full imaging interval have been generated 
The ancillary data have been scaled to engineering units 

Whether or not “definitive” processing has been performed, the Ancillary Data Preprocessing 
algorithm will generate preprocessed smoothed and cleaned ephemeris and attitude data streams. 
The format will be the same for either validated spacecraft estimates or definitive processing.  

7.2.1.3  Inputs 

The LOS Model Creation algorithm uses the inputs listed in the following table. Note that some of 
these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the 
values of and pointers to the input data; including data set IDs to provide unique identifiers for data 
trending). 
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Algorithm Inputs 

ODL File (implementation) 

   Acquisition Type (Earth, Lunar, Stellar) (optional, defaults to Earth) 

   CPF File Name 

   Ancillary Data Input File Name 

   L0R/L1R Directory and File Names 

  WRS Path/Row (stored in model and used for trending) 

  Trending On/Off Switch (not implemented in prototype) 

  L0Rp ID (for trending) 

  Work Order ID (for trending) 

  Optional Precision Model Input Parameters (see note 9) 

    Input Precision Model Reference Time (optional) 

    Input Precision Ephemeris Correction Order (optional) 

    Input Precision X Correction Parameters (optional) 

    Input Precision Y Correction Parameters (optional) 

    Input Precision Z Correction Parameters (optional) 

    Input Precision Attitude Correction Order (optional) 

    Input Precision Roll Correction Parameters (optional) 

    Input Precision Pitch Correction Parameters (optional) 

    Input Precision Yaw Correction Parameters (optional) 

  CPF Contents 

    WGS84 Earth ellipsoid parameters 

    Earth orientation parameters (UT1UTC, pole wander, leap seconds) (see 
note 1) 

    Earth rotation velocity 

    Speed of light 

    ACS to OLI rotation matrix 

    Spacecraft center of mass (CM) to OLI offset in ACS reference frame 
(meters) 

    High frequency attitude data cutoff frequency (Hz) 

    Focal plane model parameters (Legendre coefficients) 

    Detector delay table (now including whole pixel even/odd and deselect 
offsets) 

    Nominal L0R fill (per band) 

    Nominal OLI frame time nominal_frame_time (4.236 msec) 

    Nominal OLI MS and pan integration times (msec) 

    OLI MS and pan detector settling times (msec) 

  Preprocessed Ancillary Data Contents 

    Attitude Data 

        Attitude data UTC epoch: Year, Day of Year, Seconds of Day 

        Time from epoch (one per sample, nominally 50 Hz) 

        ECI quaternion (vector: q1, q2, q3, scalar: q4) (one per sample) 

        ECEF quaternion (one per sample) 

        Body rate estimate (roll, pitch, yaw rate) (one per sample) 

        Roll, pitch, yaw estimate (one per sample)  

    Ephemeris Data  

        Ephemeris data UTC epoch:  Year, Day of Year, Seconds of Day 

        Time from epoch (one per sample, nominally 1 Hz) 

        ECI position estimate (X, Y, Z) (one set per sample) 

        ECI velocity estimate (Vx, Vy, Vz) (one set per sample) 

        ECEF position estimate (X, Y, Z) (one set per sample) 

        ECEF velocity estimate (Vx, Vy, Vz) (one set per sample) 

  L0R/L1R Data Contents 

    Image Time Codes (one per line) 

    Integration Time (one value for MS bands and one value for pan band) 

    Detector Alignment Fill Table (see note 2) 
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7.2.1.4 Outputs 

OLI LOS Model (additional detail is provided in Table 1 below) 

  WGS84 Earth ellipsoid parameters 

  Earth Orientation Parameters (for current day) from CPF 

  Earth rotation velocity 

  Speed of light 

  OLI to ACS reference alignment matrix/quaternion 

  Spacecraft center of mass to OLI offset in ACS reference frame 

  Focal plane model parameters (Legendre coefs) 

  Detector delay table (now including whole pixel even/odd and deselect 
offsets) 

  Nominal detector alignment fill table (from CPF) 

  L0R detector alignment fill table (from L0R) 

  ECI J2000 spacecraft ephemeris model (original and corrected) 

  ECEF spacecraft ephemeris model (original and corrected) 

  Spacecraft attitude model (time, roll, pitch, yaw) (orig and corr) (see note 
4) 

  High frequency attitude perturbations (roll, pitch, yaw) per image line (jitter 
table) 

  Image time codes (see note 5) (in seconds) 

  Integration Time (MS and pan) (in seconds) 

  Sample Time (MS and pan) (in seconds) 

  Settling Time (MS and pan) (in seconds) 

  WRS Path/Row 

Model Trending Data 

  WRS Path/Row 

  L0Rp ID 

  Work Order ID  

  Image start UTC time (year, day of year, seconds of day) 

  Computed image frame time (in seconds) 

  Number of image lines 

  Number of out of limit image time codes 

7.2.1.5 Options 

Trending On/Off Switch 
Optional precision model input parameters can be used to force model corrections. 

7.2.1.6 Prototype Code 

Input to the executable is an ODL file; output is a HDF4 formatted OLI model file. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse  –msse2 
 
The following text is a brief description of the main set of modules used within the prototype with each 
module listed along with a very short description.  It should be noted that not all library modules are 
referenced in the explanations below.   The modules within the main create directory of the prototype 
are discussed and any library modules that were determined to be important to the explanation of 
either results, input parameters, or output parameters. 
 
model_create – Main procedure that retrieves the input parameters and invokes the model generation 
and model output logic. 
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getpar – Retreives the user-provided ODL parameters. 
 
oli_zero_model – Library routine that initializes the model structure.  
 
get_path_row_l0ra  - Designed to retrieve the WRS path and row numbers from the L0R data. In the 
baseline algorithm these are ODL input parameters but they should ultimately be extracted from the 
Level 0R data directly. This unit is a placeholder for the time being. 
 
oli_run_model – Library routine that loads the CPF, L0R, and preprocessed ancillary data into the 
model structure. 

 
oli_get_cpf – Library routine that reads the CPF. 
 
oli_get_model_sensor_params – Library routine that loads the sensor section of the model 
structure using data from the CPF and the L0R frame header. 
 
oli_get_model_image_params – Library routine that loads the image section of the model 
structure using data from the CPF, the L0R line headers, and the L0R detector offset fields. 
This unit also validates the image line time codes. 
 
oli_get_model_earth_params – Library routine that loads the Earth model parameters from the 
CPF. 
 
oli_get_ancillary_pre – Library routine that loads the attitude and ephemeris model sections 
using data from the preprocessed ancillary data file. 
 
oli_build_jitter_table – Library routine that splits the attitude data from the ancillary data into 
low- and high-frequency streams, interpolates the high frequency data to match the OLI 
panchromatic band line times, stores this per image line high frequency attitude data in the 
jitter table structure, and replaces the original combined attitude data stream with the low-
frequency stream. 
 

remez – Library routine that uses the Remez exchange algorithm to synthesize the 
weights (taps) of a low pass finite impulse response digital filter based on input filter size 
and cutoff frequency parameters. GNU Public License code written by Jake Janovetz, 
formerly of UIUC, which is available online at his site: http://www.janovetz.com/jake/ 
and more specifically: 
http://www.janovetz.com/jake/remez/remez-19980711.zip 

 
l8_correct_attitude – Library routine that applies the user-input precision model attitude corrections (if 
any). 
 
l8_convert_ephem – Library routine that applies the user-input precision model ephemeris corrections 
(if any). 
 
oli_put_model – Library routine that writes the OLI model structure to the output HDF model file. 
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7.2.1.7 Procedure 

The LOS model is stored as a structure and is created from information contained in the Level 0R or 
Level 1R image data, the CPF, and the Ancillary data. The model is subsequently used along with the 
CPF to create a resampling grid.  Data present in the model structure includes satellite position, 
velocity, and attitude, line-of-sight (LOS) angles, timing references, precision correction information (if 
any), and the software version. The LOS model is also used in several characterization and 
calibration routines for mapping input line/sample locations to geographic latitude/longitude. 
 
The LOS model may be thought of in two parts, an instrument model that provides a line-of-sight 
vector for each OLI detector (and, hence, each image line/sample), and a spacecraft model that 
provides spacecraft ephemeris (position and velocity) and attitude as a function of time. These 
models are linked by the image time stamps that allow each Level 0R or Level 1R image sample to 
be associated with a time of observation. 

7.2.1.7.1 Instrument Model 

The model treats every band of every SCA independently. This is done by defining a set of 2nd
 order 

Legendre polynomials for each band of each SCA. Since the odd and even detectors are staggered 
for each band (Figure 1) as well as there being multiple pixel selects, the set of Legendre polynomials 
represent a theoretical “nominal” set of detectors that are best-fit to the even detectors for the first 
pixel select. This approach treats the odd detectors and second and third pixel select detectors as 
though they were aligned with the even detectors for the first pixel select for purposes of sensor LOS 
generation. This approach also explicitly models the slight offsets caused by the actual odd detector 
offset, any offsets caused by detector deselect, and the sub-pixel deviations of each detector from its 
nominal location, for correction during image resampling. This leads to four detector types: nominal, 
actual, maximum, and exact. A nominal detector is calculated from the Legendre polynomials. An 
actual detector corrects the nominal detector location for the whole pixel odd/even and pixel select 
offsets. For the ALI, these offsets were band dependent. For the OLI, since individual detectors may 
be deselected, they are detector dependent. The maximum detector option uses the largest possible 
even/odd and pixel select offset for a given band. This is used to compute detector terrain parallax 
sensitivity coefficients when generating the line-of-sight grid. See the LOS Projection/Grid Generation 
Algorithm Description Document for additional details. An exact detector has the actual correction 
applied but also includes the specific individual (sub-pixel) detector offsets. The Legendre 
polynomials and a table of detector offset values are stored in the CPF. 
 
There is a slight angular difference between the line of sight vectors or angles associated with the 
odd/even and multiple pixel select detectors.  If the nominal LOS, generated using the 2nd order 

Legendre model, is nominal, the look angles for the actual and exact detectors are: 
 

x_actual = x_nominal +  round(detector_shift_x) * IFOV 

y_actual = y_nominal +  round(detector_shift_y) * IFOV 
 

x_exact = x_nominal +  detector_shift_x * IFOV 

y_exact = y_nominal +  detector_shift_y * IFOV 
 
The maximum detector case uses the largest possible along-track offset and the nominal across-track 
offset, which is zero:  

x_maximum = x_nominal +  maximum_shift_x * IFOV 

y_maximum = y_nominal 
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Figure 1:  Detector Layout 

 
The detector_shift_x and detector_shift_y values are the detector-specific offsets stored in the CPF 
detector delay tables. These offsets include both the whole-pixel even/odd and deselect offsets and 
the fractional-pixel detector placement effects, and must be rounded to extract the integer portion. 
Note that the integer portion of the detector_shift_y value is always zero since the even/odd and 
deselect effects are applicable only in the X direction. 
 
The nominal LOS is used in most line-of-sight projection applications. The actual LOS is used in 
conjunction with the actual image time (see below) to model the errors introduced by trading time 
(sample delay) for space (detector offset) for purposes of correcting the nominal LOS model. The 
exact LOS is generally used only for data simulation and other analytical purposes rather than in the 
geometric correction model, as the sub-pixel portion of the detector delay is applied directly in the 
image resampler rather than being included in the LOS model. 
 

7.2.1.7.2  Sample Timing 

The OLI provides a time stamp with each image frame collected. These time stamps make it possible 
to relate the image samples (pixels) to the corresponding spacecraft ephemeris and attitude data. 
The OLI sample timing relationships are shown in Figure 2. Several items in this figure are worthy of 
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particular note. First, the time stamp associated with a data frame is recorded at the end of the 
detector integration time. Second, there is a small settling and sampling delay (MS SS and Pan SS in 
the figure) between the end of detector integration and time stamp generation. Third, the time stamps 
are delayed by one data frame so that date frame N contains the time stamp for data frame N-1. 
Fourth, the data frame associated with time stamp N contains the multispectral (MS) samples 
collected just prior to time stamp N as well as the panchromatic samples collected just prior to and 
just after time stamp N, rather than the two samples collected prior to time stamp N. This is important 
for relating the panchromatic sample timing to the multispectral sample timing. 

 
Figure 2:  OLI Focal Plane Electronics Detector Sample Timing Diagram 

 
One further complication to the problem of assigning times to image samples is the fact that the Level 
0R/1R input imagery will include fill pixels inserted to achieve nominal even/odd detector alignment. 
This fill insertion allows the geometrically unprocessed 0R/1R imagery to be viewed as a spatially 
contiguous image without even/odd detector misalignments. The amount of detector alignment fill 
present will be indicated in the L0R/L1R image data (this is the purpose of the detector alignment fill 
table input noted above) so that the association of image samples with their corresponding time 
stamps can be adjusted accordingly. In the heritage ALIAS system fill pixels were also inserted to 
achieve nominal band alignment. The assumption here is that this will not be done for OLI data. 
 
Due to the staggered odd/even and multiple pixel select detectors, a nominal and an actual time can 
be found in a scene. The actual time reflects the time that the current detector was actually sampled 
whereas the nominal time reflects the time at which the idealized detector represented by the OLI 
LOS model would have been sampled. There is also a “maximum” detector time option used in the 
computation of detector terrain parallax sensitivity coefficients during grid generation. 
 
If the current position within the image is given as a line and sample location, the two different “types” 
of times for multispectral pixels are calculated by: 
 

if detector_type is set to MAXIMUM 
l0r_fill_pixels = nominal_fill_pixels + round(maximum_detector_delay) 

else 
l0r_fill_pixels = Fill value for current detector from L0Rp 
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time_index = round( MS_line ) - l0r_fill_pixels + 1 
if ( time_index < 0 ) time_index = 0 
if (time_index > (num_time_stamps - 1)) time_index = num_time_stamps - 1 
 
MS_actual_time = line_time_stamp[time_index] - MS_settle_time 
                            - MS_integration_time/2 
                            + (MS_line - l0r_fill_pixels – (time_index-1)) * MS_sample_time 
 
MS_nominal_time = MS_actual_time 
                               + (l0r_fill_pixels – nominal_fill_pixels) * MS_sample_time 

 
where: 

 MS_line is the zero-referenced multispectral line number (N). 

 nominal_fill_pixels is the amount of even/odd detector alignment fill to be inserted at the 
beginning of pixel columns that correspond to nominal detectors; that is, those detectors 
with a delay value of zero that are the basis for the Legendre polynomial LOS model. This 
value comes from the CPF. 

 l0r_fill_pixels is the total amount of even/odd detector alignment fill inserted at the 
beginning of the pixel column associated with the current detector in the Level 0R image 
data. It includes both the nominal_fill_pixels and the detector-specific delay fill required to 
align even/odd detectors. 

 num_time_stamps is the total number of time codes (data frames) in the image. It is tested 
to ensure that time_index, the line_time_stamp index, does not go out of bounds. 

 maximum_detector_delay is a constant offset that represents the largest amount of 
even/odd detector offset for any detector from the LOS model detector delay table. It is 
rounded to the nearest integer pixel because time offsets can only occur in whole line 
increments. The value of this parameter is not critical as the line-of-sight offsets computed 
for “maximum” detectors are divided by the maximum delay to compute offset-per-unit-
delay coefficients. This parameter is set in a #define statement. 

 MS_settle_time is a small sample and hold time delay constant. 
 
The MS_settle_time correction is expected to be a small (tens of microseconds) constant offset that 
will be captured in the CPF. The L0R/L1R data can be accessed by SCA making the association of 
sample number with detector index more straightforward. Note that the Level 0R data inverts the 
detector read-out order for the even numbered SCAs so that the samples are numbered left-to-right 
for all SCAs (see note 6). This convention is also followed in the CPF detector offset tables. Also note 
that the non-imaging detector data (video reference pixels) are stored separately from the image data 
in the L0R and are also not modeled in the CPF (see note 7). There are thus 494 samples per SCA in 
the multispectral bands and 988 samples per SCA in the panchromatic band. 
 
For the panchromatic band the corresponding equations for a pan detector in the two pan lines (2N 
and 2N+1) associated with MS line N (reference Figure 2) are computed as: 
 

if detector_type is set to MAXIMUM 
l0r_fill_pixels = nominal_fill_pixels + round(maximum_detector_delay) 

else 
l0r_fill_pixels = Fill value for current detector from L0Rp 
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time_index = floor( (round( pan_line ) - l0r_fill_pixels)/2 ) + 1 
if ( time_index < 0 ) time_index = 0 
if (time_index > (num_time_stamps - 1)) time_index = num_time_stamps - 1 
 
Pan_actual_time = line_time_stamp[time_index] - Pan_settle_time 
                           - Pan_integration_time/2 
                           + (pan_line - l0r_fill_pixels - 2*(time_index-1))*Pan_sample_time 
 
Pan_nominal_time = Pan_actual_time 
                                + (l0r_fill_pixels – nominal_fill_pixels) * Pan_sample_time 
 

where: 

 pan_line is the zero-referenced panchromatic line number (2N or 2N+1). 

 nominal_fill_pixels is the amount of even/odd detector alignment fill to be inserted at the 
beginning of pixel columns that correspond to nominal detectors; that is, those detectors 
with a delay value of zero that are the basis for the Legendre polynomial LOS model. This 
value comes from the CPF. 

 l0r_fill_pixels is the total amount of even/odd detector alignment fill to be inserted at the 
beginning of the pixel column associated with the current detector. It includes both the 
nominal_fill_pixels and the detector-specific delay fill required to align even/odd detectors. 
Note that these values will always be even for the panchromatic band. 

 num_time_stamps is the total number of time codes (data frames) in the image. It is tested 
to ensure that time_index, the line_time_stamp index, does not go out of bounds. 

 maximum_detector_delay is a constant offset that represents the largest amount of 
even/odd detector offset for any detector from the LOS model detector delay table. It is 
rounded to the nearest integer pixel because time offsets can only occur in whole line 
increments. The value of this parameter is not critical as the line-of-sight offsets computed 
for “maximum” detectors are divided by the maximum delay to compute offset-per-unit-
delay coefficients. This parameter is set in a #define statement. 

 Pan_settle_time is a small sample and hold time delay constant. 
 
For the panchromatic band, the l0r_fill_pixels, nominal_fill_pixels, and maximum_detector_delay 
parameters are in units of panchromatic pixels. 
 
Note that when fill is used to align even and odd detectors the spatial difference between the nominal 
and actual look vectors is approximately compensated by the time difference between tnominal and 
tactual. 
 
Spacecraft Model 
The spacecraft ephemeris and attitude models are constructed from the input preprocessed ancillary 
data by extracting the ancillary data that span the current image. Both ECI and ECEF versions of the 
ephemeris data are retained in the model structure to avoid the need to repeatedly invoke the 
ECI/ECEF coordinate system conversion. The ALIAS heritage roll-pitch-yaw representation of the 
attitude model is retained in the model structure though a quaternion representation may be used in a 
future algorithm revision (see note 4). 
 
Prepare LOS Model Sub-Algorithm 
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This function gathers the information from the preprocessed ancillary data and the Level 0R/1R 
image data needed to process model data and run the LOS model. Though it has the same overall 
purpose and function as the heritage axx_run_alimodel unit, differences in the details of how image 
timing and spacecraft telemetry information are provided for LDCM, as compared to EO-1, lead to 
extensive changes. 
 
The main steps are: 

1. Load the image time codes and convert to seconds since spacecraft epoch. 
2. Determine the image time window. 
3. Validate/smooth the image time codes. 
4. Extract the multispectral and panchromatic integration times from the Level 0R/1R image 

frame header data. 
5. Extract the associated ephemeris and attitude data from the preprocessed ancillary data 

stream. 
6. Preprocess the input attitude data into a low-frequency stream, used for basic geometric 

modeling, and a high-frequency stream, used as a fine correction in the image resampler. This 
preprocessing was added to improve the ability of the geometric correction system to 
compensate for jitter disturbance frequencies above 10 Hz. 

 
The input preprocessed ancillary data are stored in an HDF file. The attitude and ephemeris ancillary 
data streams each have an epoch time identifying the UTC date/time reference. Within these data 
streams, each attitude or ephemeris observation in the HDF file has a corresponding time offset 
relative to the epoch. This incoming ancillary data stream spans the entire imaging interval containing 
the image data represented in the Level 0R/1R input data. In creating the model we identify and 
extract the ancillary data sequence required to process the current image data. 
 
The input Level 0R/1R image data are also packaged in HDF files that include the image samples for 
each band and SCA and the time codes assigned to each image line by the OLI instrument. These 
spacecraft time codes are provided by the OLI in CCSDS T-Field format which includes days since 
epoch (16-bit integer), milliseconds of day (32-bit integer) and microseconds of millisecond (16-bit 
integer) fields: 

 
Figure 3: OLI Time Code Format 

 
Level 0 processing will combine these raw time code fields to compute time since the spacecraft 
epoch in the form:  days since spacecraft epoch and seconds of day. Since they are derived from the 
spacecraft clock, the image time codes will be based on the same epoch used by the ancillary data 
(e.g., TAI seconds from J2000). Even though the initial time code conversion will occur in Level 0 
processing, for completeness the processing described below begins with the raw time code fields 
shown in figure 3. 
 
Process Image Time Codes 
The image time codes are loaded from the input HDF Level 0R/1R data set. Even/odd detector 
alignment fill may be inserted into the Level 0R/1R imagery as described above, so the image lines 
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each contain samples collected at times that may be offset from the time specified by the 
corresponding time code. The relationship between these time codes, the OLI integration times, and 
the multispectral and panchromatic pixel center times has already been described above. The L0Rp 
data will contain one time code per multispectral image line, excluding fill, or a nominal 6701 time 
codes per scene. The image files themselves may be up to 10 lines longer to accommodate the 
even/odd detector alignment fill. 
 
A defect in the OLI timing logic can lead to erroneous time codes being generated when the 
microseconds or milliseconds fields fail to roll over properly. In the first case, the microseconds field 
can reach 1000 and increment the millisecond field without rolling over to zero. In the second case, 
the milliseconds field can reach 86400000 and increment the day field without rolling over to zero. 
Though these errors should be detected and corrected during Level 0 processing the following time 
code validation logic will detect and correct this effect as well as other suspicious time codes. 
 

1. Convert the time codes to seconds from spacecraft epoch: 
Line_time = TC_Day*86400 + TC_MSec/1000 + TC_Micro/1e6 
Note that an IEEE 754 double precision (64-bit) number with a 52-bit fraction should provide 
sufficient precision to represent time differences from 01JAN2000 to 01JAN2050 with 
microsecond accuracy (1.6e15 microseconds < 2^51). 

2. Validate the image time codes as follows: 
a. Loop through the time codes from 1 to N-1, where N is the number of image data 

frames/time codes, and test the difference between the current and previous time codes 
against the nominal frame time from the CPF using the #define tolerance DTIME_TOL. 
The first of two consecutive time codes that are within the tolerance is the first valid time 
code. 

b. Initialize the OLI clock model by setting the least squares variables to zero:  A00 = A01 = 
A11 = L0 = L1 = 0 

i. Since the normal equation matrix, A, is symmetric, A10 = A01 so it is not computed 
separately. 

ii. Add the first valid time code observation by adding 1 to A00. This is all that is 
required since, by definition, the index difference and time difference (see below) 
are zero at the first valid point. 

c. For each subsequent time code: 
i. Compare the time difference from the previous time code to the nominal value 

using the DTIME_TOL threshold. 
ii. If a time code fails this check, see if the special conditions of the known OLI time 

code defect apply: 
1. If the time code difference deviates from the nominal value by more than 

0.5 milliseconds: 
a. If the time code microseconds field = 1000, subtract 1000 
b. If the time code milliseconds field = 86400000 and the 

microseconds field = 0, set the milliseconds field to zero. 
c. Recalculate the time code difference 

iii. Compare the time code difference to a larger outlier tolerance (OUTLIER_TOL) 
chosen to bound the possible drift in the OLI clock relative to the spacecraft clock 
(currently set to 50 microsec). 

iv. If the time code difference is within the outlier range, add the current time to a 
least squares linear OLI clock model: 

1. num = current index – first valid index 



LDCM-ADEF-001 
Version 3 

 

2. time = current time – first valid time 
3. Accumulate: 

a. Valid point count: A00 += 1 

b. Index difference: A01 += num 

c. Squared index diff: A11 += num*num 

d. Time difference: L0 += time 

e. Time diff*index diff: L1 += num*time 
d. Once all time codes have been analyzed, solve for the linear OLI clock model 

parameters: 
i. determinant = A00*A11 – A01*A01 
ii. If abs(determinant) <= 0.0 return an error 
iii. Offset = first valid time + (A11*L0 – A01*L1) / determinant 
iv. Rate = (A00*L1 – A01*L0) / determinant 

e. Use the correction model to replace bad time codes: 
i. For each time code: 

1. Calculate the corresponding model time as: 
Mtime = Offset + (current index – first valid index) * Rate 

2. Calculate the actual time – model time difference. 
Diff = abs( time code – Mtime ) 

3. Test the difference against DTIME_TOL 
4. If the difference exceeds DTIME_TOL, replace the current time code with 

the model value, Mtime 
f. If no valid time codes were found, return an error. 
g. Calculate the average observed frame time, delta_time, by subtracting the first 

valid/corrected time code from the last valid/corrected time code and dividing by the 
number of time code minus one. 

h. Store delta_time (MS frame time) and delta_time/2 (pan frame time) in the model. 
3. Set the image start time:  image_start = line_time[0] 
4. Subtract the image start time from the line time codes so that the times are seconds from 

image start. 
5. Store the image start UTC epoch (image_year, image_day, image_seconds) and the image 

line offset times in the model structure. 
6. Report/trend the results of the time code processing including: 

a. WRS Path/Row (input parameters) 
b. Image UTC epoch (year, day, seconds of day) 
c. L0R ID (input parameter) 
d. Work order ID (input parameter) 
e. Computed frame time (delta_time) 
f. Number of replaced time codes (bad_image_time_count) 

7. Check the pan and MS detector integration times in the L0Rp frame header and if they are 
valid (> 0), convert them to units of seconds and load them in the model. Otherwise use the 
nominal values from the CPF converted to units of seconds. 

8. Load the detector settling times from the CPF into the model after converting them to units of 
seconds. 

 
Extract Ancillary Ephemeris and Attitude Data 
The subset of ancillary ephemeris and attitude data needed to span the image data are extracted 
from the Level 0R data by the ancillary data preprocessing algorithm. The logic to do the required 
subsetting is reiterated below for reference, since that phase 3 algorithm has not yet been released. 
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These data are read from the input preprocessed ancillary data stream and stored in the model 
structure during model creation. 
 
The ephemeris data extraction/subsetting procedure is as follows: 

1. Compute the time offset from the ephemeris epoch time to the desired ephemeris start time for 
this image. 

ephem_start = image_seconds – ancillary_overlap – ephem_seconds 
Noting that image_seconds and ephem_seconds are the seconds of day fields from the image 
and ephemeris epoch times, respectively, and ancillary_overlap is the desired extra ancillary 
data before and after the image window (set in a #define statement). 

2. Loop through the ephemeris sample times to find the last entry that does not exceed 
ephem_start. This is the ephemeris start index (eph_start_index). 

3. Compute the time offset from the ephemeris epoch time to the desired ephemeris stop time for 
this image. 

ephem_stop = image_seconds + line_time[N-1] + ancillary_overlap – ephem_seconds 
4. Loop through the ephemeris sample times to find the first entry that exceeds ephem_stop. This 

is the ephemeris stop index (eph_stop_index). 
5. Compute a new ephemeris UTC epoch for this image: 

imgeph_year = ephem_year 
imgeph_day = ephem_day 
imgeph_seconds = ephem_seconds + ephem_samp_time[eph_start_index] 

6. Load the ECI and ECEF ephemeris samples from eph_start_index to eph_stop_index 
(inclusive) into the preprocessed ancillary data output, adjusting the sample times so that they 
are offset from the UTC epoch computed in step 5. 

 
The attitude data extraction/subsetting procedure is as follows: 

1. Compute the time offset from the attitude epoch time to the desired attitude start time for this 
image. 

att_start = image_seconds – ancillary_overlap – att_seconds 
Noting that image_seconds and att_seconds are the seconds of day fields from the image and 
attitude epoch times, respectively. 

2. Loop through the attitude sample times to find the last entry that does not exceed att_start. 
This is the attitude start index (att_start_index). 

3. Compute the time offset from the attitude epoch time to the desired attitude stop time for this 
image. 

att_stop = image_seconds + line_time[N-1] + ancillary_overlap – att_seconds 
4. Loop through the attitude sample times to find the first entry that exceeds att_stop. This is the 

attitude stop index (att_stop_index). 
5. Compute a new attitude UTC epoch for this image: 

imgatt_year = att_year 
imgatt_day = att_day 
imgatt_seconds = att_seconds + att_samp_time[att_start_index] 

6. For Earth-view acquisitions, load the roll-pitch-yaw samples from att_start_index to 
att_stop_index (inclusive) into the preprocessed ancillary data output, adjusting the sample 
times so that they are offset from the UTC epoch computed in step 5. 

7. For lunar/stellar acquisitions, convert the ECI quaternion samples from att_start_index to 
att_stop_index (inclusive) to ECI roll-pitch-yaw values, as described below, and store the 
computed roll-pitch-yaw values in the output, adjusting the sample times so that they are offset 
from the UTC epoch computed in step 5. 
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Converting ECI Quaternions to Roll-Pitch-Yaw 
For lunar and stellar acquisitions, the ECI attitude representation is stored in the model structure. In 
the baseline model, this is done by converting the ECI quaternions to roll-pitch-yaw values relative to 
the ECI axes. This is one of the motivations for considering a transition to using a quaternion attitude 
representation in the model in the future. 
 
The ECI quaternions are converted to roll-pitch-yaw values as follows: 

1. Compute the rotation matrix corresponding to the  ECI quaternion values: 
MACS2ECI = 
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2. Compute the corresponding ACS to ECI roll-pitch-yaw values: 
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Note that in implementing these calculations it is important to use the ATAN2 rather than 
the ATAN arctangent implementation in order to retain the correct quadrants for the Euler 
angles. This is not a concern in Earth-view imagery where the angles are always small, but 
becomes an issue for these lunar/stellar ACS to ECI angles. 

3. Store the ECI roll-pitch-yaw values in the model attitude data table. 
 
At the completion of this sub-algorithm the model structure contains the image frame time stamps, the 
multispectral and panchromatic sample, integration, and settling times, the ancillary ephemeris data, 
in both ECI and ECEF representations, covering the image, and the ancillary attitude data covering 
the image. 
 
 
 
Jitter Correction Data Preprocessing 
Jitter correction preprocessing operates on the roll-pitch-yaw attitude data stream extracted from the 
spacecraft ancillary data to separate the low frequency spacecraft pointing effects from the higher 
frequency jitter disturbances. The low frequency pointing model is used for line-of-sight projection and 
other geolocation processing while the high frequency jitter effects are applied as per-line corrections 
during image resampling. To implement this frequency separation in the line-of-sight model the 
original attitude sequence is passed through a low pass filter with a cutoff frequency defined as a 
parameter in the CPF. This cutoff frequency will nominally be in the 1 Hz to 10 Hz range. The value 
ultimately selected for this cutoff frequency will depend upon the actual disturbance profile observed 
in the spacecraft attitude data. The high frequency data stream should be limited in magnitude to sub-
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pixel (ideally sub-half-pixel) effects, but the lower the cutoff frequency can be, the sparser (and 
smaller) the OLI resampling grid can be made in the line (time) dimension.  
 
The low pass filtered version of the attitude sequence is differenced with the original data to construct 
the complementary high pass data sequence. The high pass sequence is then interpolated at the 
image line times for the OLI panchromatic band to provide a table containing high frequency roll-
pitch-yaw corrections for each image line. This jitter table is stored in the OLI line-of-sight model. The 
original attitude sequence in the line-of-sight model is replaced with the low pass filtered sequence to 
avoid double counting the high frequency effects. This process is depicted in figure 4. 

 
Figure 4:  Jitter Correction Table Generation Data Flow 

 
The jitter table construction processing sequence is as follows: 

1. Extract a copy of the original attitude data sequence from the OLI line-of-sight model.  
2. Retrieve the low pass filter cutoff frequency from the CPF. 
3. Design a low pass filter with the desired cutoff frequency and apply it to the attitude data. 

a. Use the cutoff frequency and attitude data sampling time to compute the size of the 
desired filter as follows: 

i. Compute the normalized cutoff frequency (the ratio of the cutoff frequency to the 
attitude data sampling frequency): 

n_cutoff = cutoff_frequency / attitude_sample_frequency 
   Note that this is the same as: 

n_cutoff = cutoff_frequency * attitude_sample_time 
ii. Compute the number of samples per cycle at the cutoff frequency: 

 Nsamp = 1 / n_cutoff 
iii. Multiply the number of samples per cycle by 3 and add 1 to yield the desired filter 

size: 
FSize  = 3*Nsamp + 1 

iv. If this results in an even filter size, add one: 
If ( FSize modulo 2 == 0 ) FSize = FSize + 1 

b. Use the Remez exchange algorithm to design the filter and generate the filter weights. 
The standard Parks-McClellan finite impulse response (FIR) digital filter design method 
uses the Remez exchange algorithm (ref. Theory and Application of Digital Signal 
Processing, Rabiner and Gold, Prentice-Hall, 1975). A C implementation of this 
algorithm called remez.c, authored by Jake Janovetz at the University of Illinois, is 
available as shareware. This implementation specifies the desired (low pass, in this 
case) filter response using the following parameters: 

i. Filter size (number of taps) – FSize computed in item a. above. 
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ii. Number of frequency bands to use – 2, one pass band (low frequency) and one 
stop band (high frequency). 

iii. Band frequency bounds – 0 to the normalized cutoff frequency (n_cutoff) for the 
pass band and 1.5*n_cutoff to 0.5 (normalized Nyquist frequency) for the stop 
band. 

iv. Desired band gains – 1 for pass band (low) and 0 for stop band (high). 
v. Band weights (how tightly to constrain the actual filter response to the design 

filter response in each band) – 1 for pass band and 10 for stop band. 
vi. Filter type – BANDPASS (the low pass filter is a special case of the more general 

BANDPASS filter type supported by the remez algorithm. 
c. Make sure the synthesized filter is normalized (weights sum to 1) by adding the filter tap 

values and dividing each tap by the total. 
sum = Σ h[i]   where h[i] are the FSize filter taps. 
h’[i] = h[i] / sum for i = 1 to FSize. 

d. Convolve the filter with the roll-pitch-yaw attitude data one axis at a time: 
 half_size = FSize / 2 

for index = 0 to num_rpy – 1 
 low_roll[index] = low_pitch[index] = low_yaw[index] = 0 
   for ii = -half_size to half_size 
  if ( index + ii < 0 ) j = -index – ii 
  else if ( index + ii < num_rpy ) j = index + ii 
  else j = 2*num_rpy – index - ii – 1 
 low_roll[index] += roll[j]*h[ii+half_size] 
 low_pitch[index] += pitch[j]*h[ii+half_size] 
    low_yaw[index] += yaw[j]*h[ii+half_size] 

4. Subtract the low pass filtered sequences from the original sequences to extract the high 
frequency portion of the data, and transfer any residual bias (non-zero mean value) from the 
imaging portion of the high frequency sequence to the low frequency sequence: 

roll_bias = pitch_bias = yaw_bias = 0 
att_pts = 0 
for index = 0 to nrpy–1 
 high_roll[index] = roll[index] – low_roll[index] 
 high_pitch[index] = pitch[index] – low_pitch[index] 
 high_yaw[index] = yaw[index] – low_yaw[index] 
 if ( image_start_time < attitude_time[index] < image_stop_time ) 
  roll_bias += high_roll[index] 
  pitch_bias += high_pitch[index] 
  yaw_bias += high_yaw[index] 
  att_pts += 1 
roll_bias = roll_bias / att_pts 
pitch_bias = pitch_bias / att_pts 
yaw_bias = yaw_bias / att_pts 
for index = 0 to nrpy-1 
 high_roll[index] -= roll_bias 
 low_roll[index] += roll_bias 
 high_pitch[index] -= pitch_bias 
 low_pitch[index] += pitch_bias 
 high_yaw[index] -= yaw_bias 
 low_yaw[index] += yaw_bias 
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5. Interpolate the high frequency sequence values at the panchromatic band line sampling times 
to create the model jitter table: 

For each panchromatic image line = 0 to number of pan lines: 
 Compute the line sampling time as: 
  index = line / 2 

    pan_time = line_time_stamp[index] - pan_settle_time 
    - pan_integration_time/2 

                + (line - 2*time_index)*pan_sample_time 
   Convert to time from attitude epoch: 
    pan_time += image_epoch – attitude _epoch 

Interpolate high frequency roll-pitch-yaw values at this time using four point 
Lagrange interpolation: 

Compute starting index for interpolation:  
 index = floor(pan_time / attitude_sample_time) – 1 
 Compute the fractional sample offset to the pan line time: 
 w = pan_time / attitude_sample_time – index – 1 
 Compute the Lagrange weights: 
 w1 = -w * (w – 1) * (w – 2) / 6 
 w2 = (w + 1) * (w – 1) * (w – 2) / 2 
 w3 = -w * (w + 1) * (w – 2) / 2 
 w4 = (w + 1) * w * (w – 1) / 6 

Interpolate: 
roll = high_roll[index]*w1 + high_roll[index+1]*w2 
       + high_roll[index+2]*w3 + high_roll[index+3]*w4 
pitch = high_pitch[index]*w1 + high_pitch[index+1]*w2 
       + high_pitch[index+2]*w3 + high_pitch[index+3]*w4 
yaw = high_yaw[index]*w1 + high_yaw[index+1]*w2 
       + high_yaw[index+2]*w3 + high_yaw[index+3]*w4 

6. Replace the original model attitude data sequence with the low pass filtered attitude data 
sequence. 

 
Process LOS Model Sub-Algorithm 
This function loads the LOS Legendre polynomial coefficients and other model components from the 
CPF, and performs additional processing on the attitude and ephemeris information in the LOS model 
structure. It invokes the following sub-algorithms. 
 
Read CPF Model Parameters Sub-Algorithm 
This function loads model components from the CPF. In the heritage ALIAS implementation some of 
these model components either did not exist (e.g., instrument offset from spacecraft center of mass) 
or were used for image resampling but not LOS model computations (e.g., detector offset table) and 
so, were not included in the model. These are included in the OLI model to make it self-contained for 
purposes of line-of-sight computations. 
 
Key CPF parameters loaded into the geometric model include: 

1. Earth orientation parameters – the UT1UTC and pole wander (x,y) parameters for the current 
day are stored in the model to avoid the necessity of repeatedly looking them up in the CPF. 
WGS84 ellipsoid parameters (semi-major and semi-minor axes and eccentricity) are also 
extracted from the CPF as are physical constants such as the Earth rotation velocity and the 
speed of light. 
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2. OLI offset from spacecraft center of mass – a 3-vector that captures the small offset, in 
spacecraft body coordinates, between the OLI instrument, where images are captured, and the 
spacecraft center of mass, the position of which is reported in the ancillary ephemeris data, 
making it possible to translate the ephemeris data to the OLI. Technically, this would be the 
vector from the spacecraft center of mass to the center of the OLI entrance pupil. Note that this 
formulation assumes that the spacecraft on-board GPS data processing includes the GPS to 
spacecraft center of mass (CM) offset and that the spacecraft is, in fact, reporting CM positions 
not GPS antenna positions. If the ephemeris represents the GPS antenna location then we 
would need to know the spacecraft CM to GPS antenna offset as well. 

3. OLI to attitude control system (ACS) alignment matrix – a 3-by-3 matrix that captures the 
relative orientation of the OLI coordinate system to the ACS coordinate system, making it 
possible to rotate the OLI instrument-space line-of-sight vectors into the ACS reference 
system. In the heritage ALIAS system this was actually represented in the CPF by an ACS to 
instrument rotation matrix which was inverted for each LOS model invocation. Whichever 
convention is used in the CPF, the LOS model should store the OLI-to-ACS rotation matrix. 

4. OLI sensor parameters including the nominal detector sampling rate, integration times (pan 
and MS), settling times (pan and MS), and instantaneous fields of view (IFOVs), as well as the 
number of bands, SCAs per band, detectors per SCA, and nominal detector fill values. 

5. OLI line-of-sight Legendre polynomials – a set of 6 coefficients (3 along-track and 3 across-
track) for each band on each SCA. Each set of 3 forms a 2nd order Legendre polynomial that is 
used to evaluate a nominal LOS angle (along- or across-track) for the detectors in that band on 
that SCA. This is the heritage ALIAS implementation (see the Read LOS Vectors Sub-
Algorithm description below). 

6. OLI detector delay table – a table consisting of two values (along- and across-track) per 
detector reflecting the offset of each actual detector from its nominal location (as modeled by 
the 2nd order Legendre polynomials – see below). In the heritage ALIAS implementation these 
were small sub-pixel offsets that were applied in the image resampling procedure. With the 
OLI, this table will also contain the even/odd detector offsets as well as any offsets due to 
detector deselect (i.e., the operational use of a detector from one of the redundant rows). The 
even/odd offset had been modeled separately as a single value for each band, but the 
possibility of per-detector deselect offsets led to their inclusion in the per-detector offset table. 
This table is therefore needed in those LOS projection algorithms that utilize either actual 
(whole pixel offsets) or exact (full sub-pixel offsets) detector locations. 

 
 
Read LOS Vectors Sub-Algorithm 
This function retrieves the line of sight vectors from the CPF. The line of sight vectors are stored as 
sets of 2nd order Legendre polynomial coefficients. There is a unique set of 6 coefficients for each 
band of each SCA, 3 for the along-track polynomial and 3 for the across-track polynomial. These 
values are read from the CPF and stored in the LOS model. The polynomials are used to compute 
along- and across-track viewing angles for each nominal detector. 
 
 
Initialize the Precision Model Sub-Algorithm 
This function initializes the precision LOS correction model parameters. If the optional precision 
model input parameters are provided, those values are used. In the normal case, those parameters 
are absent and the correction model is initialized as follows: 

Set the precision correction reference time to the beginning of the scene: 
 t_ref = 0.0 
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Set the ephemeris correction model order to zero: eph_order = 0 
Set both ephemeris X correction parameters to zero: 
 x_corr[0] = 0.0, x_corr[1] = 0.0 
Set both ephemeris Y correction parameters to zero: 
 y_corr[0] = 0.0, y_corr[1] = 0.0 
Set both ephemeris Z correction parameters to zero: 
 z_corr[0] = 0.0, z_corr[1] = 0.0 
Set the attitude correction model order to zero: att_order = 0 
Set all three attitude roll correction parameters to zero: 
 roll_corr[0] = 0.0, roll_corr[1] = 0.0, roll_corr[2] = 0.0 
Set all three attitude pitch correction parameters to zero: 
 pitch_corr[0] = 0.0, pitch_corr[1] = 0.0, pitch_corr[2] = 0.0 
Set all three attitude yaw correction parameters to zero: 
 yaw_corr[0] = 0.0, yaw_corr[1] = 0.0, yaw_corr[2] = 0.0 

 
Note that these parameters are used to compute the corrected ephemeris and attitude data 
sequences which are also stored in the model. The parameters themselves are included in the model 
primarily to document the magnitude of the corrections applied and to facilitate more advanced uses 
of the model creation logic. For example, it is sometimes useful to be able to force a particular model 
bias (e.g., a roll angle) into a model that is to be used for data simulation (see note 9). So, though not 
strictly necessary for operational data processing, these parameters aid in anomaly resolution, data 
simulation, and algorithm development. In normal operations, these initial correction parameters are 
all zero and the "corrected" attitude and ephemeris data sequences are identical to the "original" 
attitude and ephemeris data prior to the execution of the LOS model correction algorithm. 
Subsequent algorithms (e.g., LOS projection) operate on the corrected data. 
 
Correct Attitude Sub-Algorithm 
This function applies the ACS/body space attitude corrections computed by the LOS/precision 
correction procedure to the attitude data sequence. It outputs a parallel table of roll-pitch-yaw values 
with the precision corrections applied. In the model creation context the precision corrections are zero 
so the two sets of attitude data are identical. Though applying the precision corrections to construct 
the corrected attitude sequence could be said to be overkill for model creation (since the corrections 
are nominally zero at this point) this capability is required for LOS model correction and is used here 
to support the use of the model creation algorithm for data simulation and anomaly resolution as it 
makes it possible to force initial biases into the model. This sub-algorithm will also be used by the 
LOS/precision correction algorithm to create the precision model. Note that the formulation is 
somewhat different for Earth-view scenes (Acquisition Type = Earth) than it is for lunar and stellar 
observations. 
 
Earth Scenes 
For Earth-view scenes the sequence of transformations required to convert a line-of-sight in the OLI 
instrument coordinate system, generated using the Legendre polynomials, is: 
 

xECEF = MORB2ECEF MACS2ORB MPrecision MOLI2ACS xOLI 
 

where:  xOLI  is the Legendre-derived instrument LOS vector 
MOLI2ACS is the OLI to ACS alignment matrix from the CPF 
MPrecision is the correction to the attitude data computed by the LOS/precision 
correction procedure 
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MACS2ORB is the spacecraft attitude (roll-pitch-yaw) 
MORB2ECEF is the orbital to ECEF transformation computed using the ECEF 
ephemeris 
xECEF is the LOS vector in ECEF coordinates 
 

Note that in the heritage ALIAS implementation the sequence was: 
 
xECEF = MORB2ECEF MPrecision MACS2ORB MOLI2ACS xOLI 
 

For nadir-viewing imagery the MACS2ORB matrix is nearly identity, so there is little difference. Since OLI 
will occasionally be viewing off-nadir and it is more natural to model attitude errors in the ACS/body 
coordinate system, the order has been reversed for LDCM. The impact is minimal in the model and 
LOS projection but becomes more important for the LOS/precision correction algorithm. 
 
This new sub-algorithm pre-computes the MACS2ORB MPrecision combination and stores the 
corresponding corrected roll-pitch-yaw attitude sequence in the model structure. This approach has 
several advantages: 

1. It streamlines the application of the model for LOS projection by removing the step of explicitly 
applying the precision correction. 

2. It allows for the use of a more complex correction model in the future since the application of 
the model is limited to this unit. Note that the Earth-view attitude correction model consists of 
the following model parameters: 

Precision reference time: t_ref in seconds from the image epoch (at the center of the 
image time window) 
Attitude model order:  att_order = 2 
Roll bias and rate corrections: roll_corr[] = roll_bias, roll_rate 
Pitch bias and rate corrections: pitch_corr[] = pitch_bias, pitch_rate 
Yaw bias and rate corrections: yaw_corr[] = yaw_bias, yaw_rate 

This model is dealt with in more detail in the line-of-sight correction algorithm description. 
3. Retaining both the original and corrected attitude sequences in the model make the model self-

contained and will make it unnecessary for the LOS/precision correction algorithm to access 
the preprocessed ancillary data. 

The disadvantage is that it doubles the size of the attitude data in the model structure. 
 
The construction of the corrected attitude sequence proceeds as follows: 
 For each point in the attitude sequence j = 0 to K-1: 

1. Compute the rotation matrix corresponding to the jth roll-pitch-yaw values: 
MACS2ORB = 
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2. Compute the precision correction at the time (t_att = att_seconds + att_time[j]) 
corresponding to the attitude sample: 
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c. 
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Note that only the seconds of day fields are needed for the attitude and image epochs as they 
are constrained to be based on the same year and day. 
3. Compute the rotation matrix corresponding to roll_correction (r), pitch_correction (p), and 

yaw_correction (y) (MPrecision) using the same equations presented in step 1 above. 
4. Compute the composite rotation matrix:  M = MACS2ORB MPrecision 
5. Compute the composite roll-pitch-yaw values: 
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6. Store the composite roll’-pitch’-yaw’ values in the jth row of the corrected attitude data table. 
 
Lunar and Stellar Scenes 
For celestial (lunar or stellar) observations the sequence of transformations required to convert a line-
of-sight in the OLI instrument coordinate system, generated using the Legendre polynomials, is: 
 

xECI = MACS2ECI MPrecision MOLI2ACS xOLI 
 

where:  xOLI  is the Legendre-derived instrument LOS vector 
MOLI2ACS is the OLI to ACS alignment matrix from the CPF 
MPrecision is the correction to the attitude data computed by the LOS/precision 
correction procedure 
MACS2ECI is the spacecraft attitude in the ECI frame derived from the ECI 
quaternions in the preprocessed ancillary data 
xECI is the LOS vector in ECI coordinates 
 

The advantage of modeling the precision attitude corrections in ACS rather than orbital coordinates 
becomes apparent here, since the orbital frame is not used in the lunar case. 
This sub-algorithm pre-computes the MACS2ECI MPrecision combination and stores the corresponding 
corrected attitude sequence (as roll-pitch-yaw values relative to ECI) in the model structure. Another 
difference between the Earth-view and lunar/stellar models is in the formulation of the precision 
model. The lunar attitude correction model adds an acceleration term to the Earth-view correction 
model parameters: 

Precision reference time: t_ref in seconds from the image epoch (nominally near the center of 
the image time window) 
Attitude correction model order:  att_order = 3 
Roll bias, rate, and acceleration corrections: roll_corr[] = roll_bias, roll_rate, roll_acceleration 
Pitch bias, rate, and acceleration corrections: pitch_corr[] = pitch_bias, pitch_rate, 
pitch_acceleration 
Yaw bias, rate, and acceleration corrections: yaw_corr[] = yaw_bias, yaw_rate, 
yaw_acceleration 
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Due to the different orders of the Earth-view and lunar correction models, this model is stored as an 
array in the model structure along with a field defining the model order. The precision model is dealt 
with in more detail in the line-of-sight correction algorithm description. 
 
The processing steps to construct the corrected attitude sequence is the same for lunar/stellar 
acquisitions, although the interpretation of the roll-pitch-yaw values is slightly different, and proceeds 
as follows: 
 For each point in the attitude sequence j = 0 to K-1: 

1. Compute the rotation matrix corresponding to the jth  ECI roll-pitch-yaw values: 
MACS2ECI = 
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7. Compute the precision correction at the time (t_att = att_seconds + att_time[j]) 
corresponding to the attitude sample: 
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Note that only the seconds of day fields are needed for the attitude and image epochs as they 
are constrained to be based on the same year and day. 
2. Compute the rotation matrix corresponding to roll_correction (r), pitch_correction (p), and 

yaw_correction (y):  
MPrecision = 
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3. Compute the composite rotation matrix:  M = MACS2ECI MPrecision 
4. Compute the composite ACS to ECI roll-pitch-yaw values: 
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Note that in implementing these calculations it is important to use the ATAN2 rather than 
the ATAN arctangent implementation in order to retain the correct quadrants for the Euler 
angles. This is not a concern in Earth-view imagery where the angles are always small, but 
becomes an issue for these lunar/stellar ACS to ECI angles. 

5. Store the composite roll’-pitch’-yaw’ values in the jth row of the corrected attitude data table. 
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Correct Ephemeris Sub-Algorithm 
The heritage ALIAS function converts the ephemeris information (position and velocity) from the Earth 
Centered Inertial (ECI J2000) system to the Earth Centered Earth Fixed (ECEF) system and applies 
the ephemeris corrections computed in the LOS/precision correction procedure to both ephemeris 
sets. Since both ECI and ECEF representations of the ephemeris are now provided by the ancillary 
data preprocessing algorithm, the first portion of the heritage algorithm is no longer necessary (or 
could be reused in the ancillary data preprocessing algorithm). Though applying the precision 
corrections to construct the corrected ephemeris sequence could be said to be overkill for model 
creation (since the corrections are nominally zero at this point) this capability is required for LOS 
model correction and is used here to support the use of the model creation algorithm for data 
simulation and anomaly resolution as it makes it possible to force initial biases into the model. This 
sub-algorithm will also be used by the LOS/precision correction algorithm to create the precision 
model. 
 
The precision correction parameters are stored in the LOS model in the spacecraft orbital coordinate 
system as three position (x_bias, y_bias, z_bias) corrections and three velocity (x_rate, y_rate, 
z_rate) corrections that, like the attitude corrections, are relative to t_ref.  These values must be 
converted to the ECEF and ECI coordinate systems.  Once the precision correction is determined in 
the ECEF/ECI coordinate system, the ECEF/ECI ephemeris values can be updated with the precision 
parameters. 
 
Loop on LOS model ephemeris points j = 0 to N-1 
 
        Compute the precision correction: 

 
Calculate delta time for precision correction: 

dtime = ephem_seconds + ephem_time[j] – t_ref – image_seconds 
 

Calculate the change in X, Y, Z due to precision correction.  Corrections are in terms of 
spacecraft orbital coordinates. 
 

dx orb = model precision x_corr[0] + model precision x_corr[1] * dtime 
dy orb = model precision y_corr[0] + model precision y_corr[1] * dtime 
dz orb = model precision z_corr[0] + model precision z_corr[1] * dtime 

  
where: 

 model precision x_corr[0] = precision (orbital) update to X position 
 model precision y_corr[0] = precision (orbital) update to Y position 
 model precision z_corr[0] = precision (orbital) update to Z position 
 model precision x_corr[1] = precision (orbital) update to X velocity 
 model precision y_corr[1] = precision (orbital) update to Y velocity 
 model precision z_corr[1] = precision (orbital) update to Z velocity 

 
Construct precision position and velocity “delta” vectors. 
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z_corr[1] precision   model

y_corr[1] precision   model

 x_corr[1]precision   model
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Calculate the orbit to ECF transformation [ORB2ECEF] using ECEF ephemeris (See the 
ancillary data preprocessing ADD for this procedure). 
 
Transform precision “delta” vectors to ECEF. 
 

    

    dvorbORB2ECEFdvef

dorbORB2ECEFdef


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Adjust ECEF ephemeris by the appropriate “delta” precision vector and store the new 
ephemeris in the model.  These ephemeris points will be used when transforming an input 
line/sample to an output projection line/sample. 
 

dvecf velocityecef ephemeris velocityef model

decfpostion ecef ephemerispostion ef model




 

where:  
All parameters are 3x1 vectors 
ephemeris ecef values are the interpolated one-second ephemeris values in 
ECEF coordinates 

 
Calculate the orbit to ECI transformation [ORB2ECI] using ECI ephemeris. 

 
Transform precision “delta” vectors to ECI. 
 

    

    dvorbORB2ECIdveci

dorbORB2ECIdeci


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Adjust ECI ephemeris by the appropriate “delta” precision vector and store the new ephemeris 
in the model.  These ephemeris points will be used with lunar/stellar observations. 
 

dveci velocityeci ephemeris velocityeci model

decipostion eci ephemerispostion eci model




 

where:  
All parameters are 3x1 vectors 
ephemeris eci values are the interpolated one-second ECI ephemeris  

 
Move Satellite Sub-Algorithm 
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This function computes the satellite position and velocity at a delta time from the ephemeris reference 
time using Lagrange interpolation. This is a utility sub-algorithm that accesses the model ephemeris 
data to provide the OLI position and velocity at any specified time. Since the model ephemeris arrays 
are inputs to this sub-algorithm it will work with either the ECI or ECEF ephemeris data. 
 
Table 1 below summarizes the contents of the LOS model structure. The estimated size of this 
structure is approximately 1.5 megabytes. 
 

LOS Model Structure Contents 

Satellite Number (8) 

Format Version Number (for documentation and backward compatibility) 

WRS Path 

WRS Row (may be fractional) 

Acquisition Type (Earth, Lunar, Stellar) 

Earth Parameters 

  UT1UTC Correction (in seconds) 

  Pole Wander X Correction (in arc seconds) 

  Pole Wander Y Correction (in arc seconds) 

  WGS84 Ellipsoid Semi-Major Axis (in meters) 

  WGS84 Ellipsoid Semi-Minor Axis (in meters) 

  WGS84 Ellipsoid Eccentricity (dimensionless) 

   Earth Angular Velocity (radians/second) 

   Speed of Light (meters/second) 

Image Model 

  Number of image lines 

  Image UTC epoch:  image_year, image_day, image_seconds 

  For each line:  frame time offset (in seconds) from image epoch 

  For each line:  roll, pitch, yaw high frequency jitter correction (in radians) 

  Nominal alignment fill table (from CPF) one value per band per SCA (in 
pixels) 

  Detector alignment fill table (from L0R/L1R) one value per detector (in pixels) 

Sensor Model 

  OLI to ACS reference alignment matrix [3x3] 

  Spacecraft center of mass to OLI offset in ACS reference frame [3x1] in 
meters 

  Integration Times (MS and pan) in seconds 

  Computed Sample Times (MS and pan) in seconds 

  Detector Settling Times (MS and pan) in seconds 

  Number of SCAs (14) 

  Number of Bands (9) 

  Along-Track IFOVs (MS and pan) in radians 

  Across-Track IFOVs (MS and pan) in radians 

  Number of Detectors per SCA Per Band (9x1 array) 

  Focal plane model parameters (Legendre coefs) [NSCAxNBANDx2x3] (in 
radians) 

  Detector delay table [NSCAxNBANDx2xNDET] (in pixels) 

Ephemeris Model 

  Scene ephemeris data UTC epoch:  imgeph_year, imgeph_day, 
imgeph_seconds 

  Number of ephemeris samples 

  Time from epoch (one per sample, nominally 1 Hz) (in seconds) 

  Original ECI position estimate (X, Y, Z) (one set per sample) (in meters) 

  Original ECI velocity estimate (Vx, Vy, Vz) (one set per sample) (in 
meters/sec) 

  Original ECEF position estimate (X, Y, Z) (one set per sample) (in meters) 
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  Original ECEF velocity estimate (Vx, Vy, Vz) (one set per sample) (in 
meters/sec) 

  Corrected ECI position estimate (X, Y, Z) (one set per sample) (in meters) 

  Corrected ECI velocity estimate (Vx, Vy, Vz) (one set per sample) (in 
meters/sec) 

  Corrected ECEF position estimate (X, Y, Z) (one set per sample) (in meters) 

  Corrected ECEF velocity estimate (Vx, Vy, Vz) (one set per sample) (in 
meters/sec) 

Attitude Model 

  Scene attitude data UTC epoch: imgatt_year, imgatt_day, imgatt_seconds 

  Number of attitude samples 

  Time from epoch (one per sample, nominally 50 Hz) (in seconds) 

  Original Roll, pitch, yaw estimate (one per sample) (in radians) 

  Corrected Roll, pitch, yaw estimate (one per sample) (in radians) 

Precision Correction Model 

  Precision reference time (t_ref) seconds from image epoch 

  Ephemeris correction order: eph_order (0 none, 2 for Earth-view and 
lunar/stellar) 

  X correction model: x_bias, x_rate  (meters, meters/sec) 

  Y correction model: y_bias, y_rate  (meters, meters/sec) 

  Z correction model: z_bias, z_rate  (meters, meters/sec) 

  Attitude correction order: att_order (0 none, 2 for Earth, 3 for lunar/stellar) 

  Roll correction model:  roll_bias, roll_rate, roll_acc (rad, rad/sec, rad/sec
2
) 

  Pitch correction model: pitch_bias, pitch_rate, pitch_acc (rad, rad/sec, 
rad/sec

2
) 

  Yaw correction model: yaw_bias, yaw_rate, yaw_acc (rad, rad/sec, rad/sec
2
) 

Table 1:  LOS Model Structure Contents 
 
Note that in the precision correction model only the first att_order correction model array elements are 
valid. For example, for Earth-view scenes att_order = 2 and roll_corr[0] = roll_bias, roll_corr[1] = 
roll_rate and roll_corr[2] is not used. 
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7.2.2 OLI Line-of-Sight Projection/Grid Generation Algorithm 

7.2.2.1 Background/Introduction 

The line-of-sight (LOS) projection and grid generation algorithm uses the OLI LOS model, created by 
the LOS model creation algorithm, to calculate the intersection of the projected lines-of-sight from 
selected OLI detector samples (pixels) with an Earth model (WGS84). The spacecraft position and 
pointing, OLI instrument alignment and offset information, and image timing data contained in the 
LOS model are used to construct the LOS for an individual OLI detector at a particular sample time. 
We then calculate the location where that line of sight intersects the Earth’s surface, as defined by the 
WGS84 Earth ellipsoid or a specified elevation above or below that ellipsoid. LOS intersections for an 
array of detector samples that span each OLI SCA/FPM and spectral band are computed at the 
WGS84 ellipsoid surface as well as at a range of elevation levels selected to span the actual terrain 
elevations found in the image area. The resulting array of projected lines-of-sight forms a three-
dimensional grid of input (Level 1R) image pixel line/sample to output space (Level 1G) mappings 
that can be used to interpolate input/output pixel mappings for intermediate points. The resulting 
ability to rapidly compute input/output mappings greatly facilitates image resampling. 
 
The LOS projection and grid generation algorithm can also work in an “inertial direction” mode in 
which the output space is in angular units with respect to a set of reference inertial directions. This 
mode is used to process lunar data wherein the inertial coordinates (declination and right ascension) 
of the moon, computed from a planetary ephemeris, are used as the reference to define the output 
image frame. In this case the lines-of-sight are computed in inertial coordinates but are not projected 
to the Earth’s surface. 
 
Concerns about the temporal (line direction) grid density that would be required to adequately capture 
attitude deviations (jitter) at frequencies above 10 Hz motivated the addition of new grid functionality 
to support high frequency image correction at image resampling time. Specifically, jitter sensitivity 
coefficients were added to each grid cell to allow the high frequency attitude data in the OLI line-of-
sight model jitter table to be converted to corresponding input image space line/sample offsets. These 
coefficients are used by the resampler to compute high frequency line/sample corrections that refine 
the output-to-input space image coordinate mappings provided by the grid. This allows the grid to 
model only lower frequency effects making a sparser grid sampling in the time (line) direction 
possible. 
 
Due to layout of the OLI focal plane, there are along-track offsets between spectral bands within each 
SCA, along-track offsets between even and odd SCAs, and a reversal of the band ordering in 
adjacent SCAs. This leads to an along-track offset in the imagery coverage area for a given band 
between odd and even SCAs as well as an offset between bands within each SCA. To create more 
uniform image coverage within a geometrically corrected output product, the leading and trailing 
imagery associated with these offsets is trimmed (at image resampling time) based on image active 
area bounds stored in the grid. 
 

7.2.2.2 Dependencies 

The OLI LOS projection and grid generation algorithm assumes that the OLI LOS model creation 
algorithm has been executed to construct and store the OLI LOS model. 
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7.2.2.3 Inputs 

The LOS projection and grid generation algorithm and its component sub-algorithms use the inputs 
listed in the following table. Note that some of these “inputs” are implementation conveniences (e.g., 
using an ODL parameter file to convey the values of and pointers to the input data). 
 
Algorithm Inputs 

ODL File (implementation) 

   CPF File Name 

   LOS Model File Name 

   DEM File Name 

   NOVAS Planetary Ephemeris File Name (for lunar processing) 

   Output Image Framing Parameters: 

      WRS Path for path-oriented scene framing (not necessarily the LOS model 
path) 

      WRS Row for path-oriented scene framing (not necessarily the LOS model 
row) 

      Map Projection (UTM, SOM, PS) 

      UTM Zone (use 0 to have code compute the zone) 

      Map Projection Parameters 

      Output Pixel Size(s) 

      Output Image Orientation 

      Frame Type (e.g., MINBOX) 

      Frame Bounds (e.g., corner coordinates, image size) 

   Grid Options: 

      Bands to Grid 

CPF file contents 

    Thresholds and Limits (replaces System Table) 

       Grid Density (line/sample/height)  

       Default (WGS84) Spheroid parameter and Datum Codes 

       Scene framing band priority list 

OLI LOS Model file contents (see LOS Model Creation ADD for additional 
detail) 

    WGS84 Earth Ellipsoid parameters 

    Earth Angular Velocity (rotation rate) in radians/second 

    PAN and MS settling times 

    Speed of light (in meters/second) 

    Acquisition Type (Earth, Lunar, Stellar) 

    OLI to ACS reference alignment matrix 

    Spacecraft CM to OLI offset in ACS reference frame (new) 

    Focal plane model parameters (Legendre coefs) 

    Detector delay table 

    Smoothed ephemeris at 1 second intervals (original and corrected) 

    Low pass filtered attitude history (original and corrected) 

    High frequency attitude perturbations (roll, pitch, yaw) per image line (jitter 
table) 

    Image time codes 

    Integration Time (MS and Pan) 

    OLI MS and pan detector settling times (msec) 

    Nominal detector alignment fill table 

    L0R detector alignment Fill Table 

DEM file contents 

    Min and Max Elevation 

NOVAS Planetary Ephemeris file contents 

    JPL Ephemeris Table (DE405) for celestial bodies (i.e., the moon) (see note 
1) 
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7.2.2.4 Outputs 

OLI Grid (see Tables 1 and 2 below for detailed grid structure contents) 

  Grid Header (WRS path/row, acquisition type) 

  Output Image Framing Information (corner coordinates, map projection) 

  Image active area latitude/longitude bounds (for each band) 

  Grid Structure Information (number of bands/SCAs) 

  Grid Structures (one per SCA, per band) 

      Band number 

      Image dimensions (line/sample) 

      Pixel size 

      Grid cell size (image lines/samples per cell) 

      Grid dimensions (# rows/# columns/# Z-planes) 

      Z-plane zero reference and height increment 

      Arrays of input line/sample grid point coordinates 

      Arrays of output line and sample grid point mappings 

      Arrays of even/odd offset coefficients (2 per grid cell) 

      Arrays of forward (input/output) mapping polynomials (8 per grid cell per Z-plane) 

      Arrays of inverse (output/input) mapping polynomials (8 per grid cell per Z-plane) 

      Arrays of roll-pitch-yaw jitter line sensitivity coefficients (3 per grid cell per Z-
plane) 

      Arrays of roll-pitch-yaw jitter sample sensitivity coefficients (3 per grid cell per Z-
plane) 

      Rough mapping polynomials (one set per Z-plane) 

7.2.2.5 Options 

A NOVAS planetary ephemeris file (JPL DE405) must be provided when the Acquisition Type (in the 
LOS model) is Lunar. 

7.2.2.6 Prototype Code 

Input to the executable is an ODL file; output is a HDF4 formatted resampling grid file. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse –msse2 
 
The following text is a brief description of the main set of modules used within the prototype with each 
module listed along with a very short description.  It should be noted that not all library modules are 
referenced in the explanations below.   The modules within the main oligrid directory of the prototype 
are discussed and any library modules that were determined to be important to the explanation of 
either results, input parameters, or output parameters. 
 
 
oligrid 
Main driver for generating the resampling grid.  Calls modules to retrieve user parameters, establish 
the output image frame extent, and populate the grid structure with appropriate input to output, and 
output to input, mapping parameters. 
 
get_parms 
This routine opens the input ODL parameter file, reads the grid parameters, closes the parameter file, 
and returns the parameters.  Also will read the DEM, if the DEM is given as an input parameter, and 
determine the elevation extent within the DEM file.  This elevation extent will then be used for 
establishing the z-plane parameters within the grid structure. 
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oli_get_model 
Reads the OLI geometric model file and populates data within the OLI geometric model structure. 
 
read_num_ls_l0ra 
This routine extracts the number of image lines from the Level 1R image and the number of samples 
per band per SCA from the sensor model portion of the LOS model.  The routine then returns the 
number of lines and samples for the input band numbers. These values, along with the grid cell size, 
will be used to determine grid point locations.  The number of lines and samples will be returned in 
their respective arrays, in band-referenced order.  This is similar to the manner in which the grid is 
stored.  Thus the nlines and nsamps arrays must be of size nbands.  
 
det_num_grid_ls 
This routine will determine the number of input points to be stored in the grid according to the grid 
sampling rate or grid cell size chosen. 
 
validate_utm_zone 
This routine validates the UTM zone that was entered as an ODL parameter. The scene center 
longitude will be used for this verification. The nominal UTM zone to use is computed from the scene 
center longitude but the projection may be forced to an adjacent zone using input parameters. In 
particular, each WRS path/row may be preassigned to a UTM zone so that the same zone is always 
used for scenes near UTM zone boundaries. This should not introduce a zone offset greater than 1. 
The validation is performed by computing the UTM zone in which the scene center falls and then 
determining whether the input UTM zone (if any) is within one zone of the nominal zone. 
 
oli_malloc_grid 
Allocates memory for the grid based on image size and output elevation extent. 
 
setup_jpl_solarsystem 
Initializes JPL routines needed to determine position of the moon.  Only used for lunar acquisitions. 
 
calc_active_area 
This routine determines the bounds of that portion of the output image frame that contains actual OLI 
imagery, excluding "ragged" band/SCA edges. The resulting active area bounds for each spectral 
band are stored in the grid for subsequent use by the image resampling logic. 
 
north_up 
This routine will determine the frame in output space for the north-up product.  The actual frame is based on the 

output band's pixel size, but the frame is the same for every band. The method used to determine the scene 

corners depends on whether the corners were user input (PROJBOX) or calculated by projecting the Level 1R 

image corners (MAXBOX) but the framing logic is essentially the same in each case. Once given as input, or 

computed, the latitude/longitude scene corners are converted to the defined map projection, the extreme X and 

Y coordinates are found, and these extreme points are rounded to a whole multiple of the pixel size.  

 
calc_stellar_size 
Determines the output image extent for a stellar acquisition.  Extent is based on SCA corners. 
 
calc_lunar_size 
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Determines the output image extent for a lunar acquisition.  Extent is based on either all of the SCA 
corners for all bands or only the SCA that contains the moon. 
 
point_in_polygon 
Simple point in a polygon check.  Used with lunar process for determining if the moon lies within a 
SCA.  
 
oli_moonpos_ls 
Given a Level 1R line and sample location this module calculates the relative line of sight between 
the moon and satellite sensor.   
 
oli_moonpos 
Given a Julian day, this routine calculates the moon’s position.  Calls the JPL NOVAS libraries to 
determine the moon’s position.  Coordinates are given in terms of ECI true-of-date. 
 
maxbox 
This routine determines the frame in output space for the maxbox north-up product. Image framing is 
based on maximum image extent derived from SCA corners. 
 
path_oriented 
This routine will provide a path-oriented projection that is framed to a nominal WRS scene. The user 
specifies only the projection, pixel size, and the path and row of the scene.  
 
det_grid_ls 
Given the number of grid lines and samples that will be sampled in the input imagery, this routine 
calculates where each grid cell point will fall in the input Level 1R image.  These grid cell points will 
fall at integer locations in the input imagery. 
 
exx_mapedg 
This routine calculates the minimum and maximum projection coordinates for given upper left and 
lower right latitude, longitude coordinates. 
 
pad_corners 
This routine pads the input corners by a defined factor of the pixel size. The x/y min and max values 
are input for the corner locations.  These values are padded by PADVAL * the pixel size.   
 
calc_center_and_rotation_angle 
This routine will return the scene center and rotation angle for a nominal WRS scene.  The WRS path and row 

of the input scene and the projection parameters are needed as input.  Note: The WRS_Lat and WRS_Long are 

the Center_Lat_Long that need to be returned from this routine.  The Heading angle is the WRS rotation angle, 

i.e., the image orientation relative to geodetic north. 

 
calc_path_oriented_frame 
Given the center point and rotation angle, this function will calculate the image corner coordinates in 
an SOM or UTM product.  It also calculates the first-order polynomial coefficients which map output 
line/sample coordinates to their corresponding output projection coordinates. This routine will 
determine the frame in output space for the path-oriented product.  The frame is calculated for each 
band, but the frame must be the same for every band.   
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angle_to_map 
This routine will convert the WRS rotation angle (from geodetic north) to a frame orientation angle in map 

coordinates.  The orientation angle will be retained in the grid structure.   

 
path_maxmin_box 
This routine will provide a path-oriented product whose frame is large enough to contain all bands 
(maxbox).  
 
calc_path_oriented_maxbox_frame 
This routine calculates the path-oriented frame for the maxbox approach.  
 
make_grid 
This routine establishes the input to output mappings. It invokes make_grid_point for each point to 
compute the mapping, and then invokes make_grid_sensitivity for each point to compute the jitter 
sensitivity coefficients. 
 
make_grid_point 
Calculates the input to output space mapping for a single grid point. Calls oli_forward_model to 
perform input space location to output space location mappings.  
 
make_grid_sensitivity 
Calculates the roll-pitch-yaw to input space line/sample jitter sensitivity coefficients for one grid point. 
Calls oli_forward_model_pert while varying the spacecraft attitude, the input space line number, and 
input space sample number to determine the corresponding output space sensitivity. It then finds the 
input space offsets that provide the same effect in output space as a given attitude perturbation, 
yielding the input space correction needed to compensate for a unit jitter disturbance for each 
spacecraft axis. 
 
oli_init_lunar_projtran 
Initializes the position of the moon with respect the lunar acquisition.  Needed for oli_lunar_projtran. 
 
oli_forward_model 
For a given a Level 1R line, sample, band and SCA location, propagates the forward (geometric) 
model to determine a latitude and longitude for the specified point.  
 
oli_forward_model_pert 
A variant of oli_forward_model that accepts an additional input roll-pitch-yaw attitude perturbation 
array. This perturbation is added to the spacecraft attitude interpolated from the OLI LOS model at 
the time corresponding to the input space line/sample point being projected. This capability is used by 
make_grid_sensitivity in determining the jitter sensitivity coefficients. 
  

oli_findtime 
This function finds the time into the scene given the Level 1R line, sample, and band. The input 
sample number is 0-relative and relative to the SCA. 
 
oli_findlos 
This function finds the line of sight vector in sensor coordinates, using the Legendre polynomial LOS 
model stored in the LOS model. 
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oli_findatt 
This function computes the attitude, or roll, pitch, yaw, for a given time. 
 
oli_findjit 
This function is invoked by oli_forward_model when the input detector type parameter is set to 
EXACT. This is currently only used by the OLI L0Rp data simulator. This unit uses the input time to 
extract the high frequency attitude correction from the jitter table in the OLI LOS model, so that it can 
be added to the low frequency spacecraft attitude result in oli_forward_model. This unit is not invoked 
by grid generation processing, where the detector type is NOMINAL, but as part of the forward line-of-
sight model, it is described here for completeness. 
 
l8_movesat 
This function computes the satellite position and velocity at a delta time from the ephemeris reference 
time using Lagrange interpolation. 
 
l8_attitude 
This function finds the line of sight vector from the spacecraft to a point on the ground by transforming 
the line of sight vector in sensor coordinates to perturbed spacecraft coordinates. 
 
geo_center_mass_corr 
Adjusts the observation vector according to the spacecraft center of mass. 
 
geo_corr_vel_aberr 
Adjusts line of sight vector for velocity aberration. 
 
geo_findtarpos 
This function finds the position where the line of sight vector intersects the Earth's surface.  Used only 
for Earth based acquisitions. 
 
geo_corr_light_travel_time 
Adjusts target location according to the light travel time.  Used only for Earth based acquisitions. 
 
geo_centh2det 
This function converts between geocentric and geodetic coordinates.  Used only for Earth based 
acquisitions. 
 
exx_cart2sph 
Convert between cartesian and spherical coordinates.  For grid generation, applies only towards 
stellar and lunar acquisitions. 
 
exx_projtran 
This function converts coordinates from one map projection to another.  The transformation from 
geodetic coordinates to the output map projection depends on the type of projection selected.  The 
mathematics for the forward and inverse transformations for the Universal Transverse Mercator 
(UTM), Polar Stereo Graphic, and the Space Oblique Mercator (SOM) map projections are handled 
by U.S Geological Survey’s (USGS) General Cartographic Transformation Package (GCTP), which 
may be obtained at http://edcftp.cr.usgs.gov/pub/software/gctpc/. 
 
oli_lunar_projtran 

ftp://edcftp.cr.usgs.gov/pub/software/gctpc/
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Calculates the output line and sample location given the right ascension and declination angles 
associated with the sensor line-of-sight vector of a lunar acquisition.  Serves as the equivalent 
exx_projtran for a lunar based acquisition. 
 
 
exx_proj_err 
This function reports projection transformation package errors. The function receives a GCTP error 
code and prints the correct error message. 
  
gctp 
Map projections are handled by U.S Geological Survey’s (USGS) General Cartographic 
Transformation Package (GCTP), which may be obtained at 
http://edcftp.cr.usgs.gov/pub/software/gctpc/. 
 
xxx_eval 
Applies a polynomial at a given point. 
 
calc_map_coefs 
This routine calculates the bilinear mapping coefficients for each grid cell. Coefficients are calculated 
for mapping from input location to output location (forward mapping) and for mapping from output 
location to input location (inverse mapping).  A separate mapping function is used for lines and 
samples.  This equates to four mapping functions.  A set of four mapping functions is calculated for 
each grid cell, for each SCA, for every band, and for every elevation plane that is stored in the grid. 
 
exx_calc_forward_mappings 
This function, given grid points in both input and output space, uses the Calculate Map Coefficients algorithm 

described in the Procedure section to generate the mapping polynomial coefficients needed to convert from a 

line/sample in input space (satellite) to one in output space (projection).  It generates these coefficients for every 

cell in the grid. 

 

exx_calc_inverse_mappings 
This function, given grid points in both input and output space, uses the Calculate Map Coefficients 
algorithm described in the Procedure section to generate the mapping polynomial coefficients needed 
to convert from a line/sample in output space (projection) to one in input space (satellite).  It 
generates these coefficients for every cell in the grid. 
 
calc_rough_map_coefs 
This routine will find the rough mapping coefficients for the grid.   
 
oli_grid_cell_poly 
This utility function calculates a "rough" mapping of output to input lines/samples. The coefficients 
returned from this function are used as a rough estimate of an inverse model.   
 
calc_det_offsets 
This function computes the detector offset values and stores linear mapping coefficients associated 
with detector offsets in the grid structure.   
 
oli_all_ols2ils 

ftp://edcftp.cr.usgs.gov/pub/software/gctpc/
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This utility routine maps an output space line/sample back into its corresponding input space 
line/sample.  This is done using the "rough" polynomial from the grid to determine an initial guess at 
an input space line and sample.  From this initial guess a grid cell row and column is calculated and 
the inverse coefficients for that cell are retrieved from the grid.  These coefficients are used to 
determine an exact input space line and sample (in extended space). 
 

oli_findgridcell 
This utility function finds the correct grid cell that contains the output line/sample location. It finds the 
correct grid cell containing the output pixel by first determining the set of grid cells to be checked.  It 
then calls a routine to perform a "point in polygon" test on each of these grid cells to determine if the 
pixel does indeed fall within that grid cell. 

7.2.2.7 Procedure 

The LOS Projection algorithm uses the geometric LOS model created by the LOS Model Creation 
algorithm to relate OLI image pixels to ground locations or, in the case of lunar/stellar images, to ECI 
directions. The LOS model contains several components including: Earth orientation parameters, an 
image model (validated image time codes), a sensor model, an ephemeris model, and an attitude 
model. The Level 1R image line/sample location is used to compute a time of observation (from the 
image model), a LOS vector (from the sensor model), the spacecraft position (from the ephemeris 
model) at the time of observation, and the spacecraft attitude (from the attitude model) at the time of 
observation. The LOS vector is projected to the Earth's surface, either the topographic surface at a 
specified elevation (e.g., derived from an input Digital Elevation Model), or the WGS84 ellipsoid 
surface, to compute the ground position associated with that Level 1R image location. This LOS 
projection procedure relating an input image location to an output ground location is referred to as the 
forward model. In image resampling, we typically need to find the Level 1R input space line/sample 
location corresponding to a particular Level 1G output space location so that the corresponding image 
intensity can be interpolated from the Level 1R data. This "inverse model" computation must be 
performed for every pixel in the output Level 1G product. To make this computation efficient, we 
create a table, or grid, of input/output mappings, parameterized by height, for use by the image 
resampling algorithm. Both the forward model and grid generation procedures are described in this 
algorithm description document. 
 

7.2.2.7.1 The Geometric Grid 

The geometric grid provides a mapping from input Level 1R line/sample space to output Level 1G 
line/sample space. As such, it incorporates not only the sensor LOS to Earth intersection geometry 
captured by the forward model, but also the output image framing information, such as scene corners, 
map projection, pixel size, image orientation, and the bounds of the active image area for each band. 
The gridding procedure generates a mapping grid that defines a transformation from the instrument 
perspective (input space) to a user specified output projection on the ground (output space).  This 
output frame may be map-oriented (north-up) or path-oriented for Earth-view acquisitions. Celestial 
(lunar/stellar) acquisitions use an output frame based on inertial right ascension and declination 
coordinates. Once the frame is determined in output space, the input space is gridded. Then the grid 
in input space is mapped to the output space using the forward model. Transformation coefficients to 
transform a grid cell from input to output space are determined, as well as coefficients to transform a 
grid cell from output to input space. 
 
The concept behind creating this resampling grid is to define only a sparse set of points for the 
relationship between an input line and sample location to output line and sample location (see Figure 
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1). Four grid points define a grid cell. A grid cell is defined as a rectangle in input space but will be 
distorted when mapped to the output space. The sampling of points between grid cell points is 
chosen such that any two points defining a grid cell and a line in input space will map to a line in 
output space. Therefore every grid cell defines a bilinear mapping between the input and output 
space and vice versa. The method of only mapping and storing a small set of input points is much 
more efficient than trying to map points individually by invoking the LOS model for each point. This is 
especially the case since a rigorous implementation of the inverse model would have to be iterative. 

Figure 1:  The 3D grid structure stores the output space line/sample coordinates 
corresponding to an array of input space line/sample/height coordinates. 
 

 

Figure 2: Forward and Inverse Mapping Using the Grid 

 
The LOS projection grid contains projection information and three groups of mapping coefficients—
one for mapping each grid cell from output space to input space (inverse), a second for mapping each 

Input 
Space Output Space 

Forward 
mapping 

Inverse 
mapping 

Zn 

Zn+1 

Zn+2 

Zn+3 



LDCM-ADEF-001 
Version 3 

 

grid cell from input space to output space (forward), and third that gives an approximation or “rough” 
mapping of output space to input space. The first two mappings are described by a set of bilinear 
polynomials. The input space is represented by a line and sample location while the output space is 
represented by a line and sample location along with a Z component, where Z represents elevation. 
The output lines and samples can in turn be converted to X, Y projection space location by using the 
output image’s upper left projection coordinate and pixel size information in the grid header. Figure 2 
shows how one input grid cell is mapped to a number of output grid cells, each grid cell representing 
a different elevation. 
 
The number of grid cells is dependent on the line and sample size of each grid cell in the input image, 
elevation maximum, elevation minimum, and elevation increment. The input space is made up of 
evenly spaced samples and lines, values are associated with integer locations and can be indexed by 
an array of values: input_line[row] and input_sample[column]. Row refers to the index number, or row 
number, associated with the line spacing while column refers to the index number, or column number, 
associated with the sample spacing. The output lines and samples typically do not fall on integer 
values (see Figure 3). This creates a two dimensional array of indices for output line and sample 
locations. Adding elevation indices produces a three dimensional array for output line and sample 
locations. The output lines and samples are then indexed by output_line[z][row][column] and 
output_sample[z][row][column] where Z refers to an elevation value. The row and column are the 
indices associated with the gridding of the raw input space. Since there is a mapping polynomial for 
each grid cell, the mapping polynomial coefficients are indexed by the same method as that used for 
output lines and samples; i.e. there are z*row*column sets of mapping coefficients. 
 

 

Figure 3: Mapping integer locations to “non-integer” locations 
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If a grid is being generated for a non-terrain corrected image (i.e., no correction for relief is being 
applied) then the index for z is set such that zelev=0 = zero elevation.  Note that zelev=0 does not 
necessarily have to be the first index in the array since there could be values for negative elevations.  
If the grid is being generated for a terrain corrected image, then the indexes zn and zn+1 are used such 
that the elevation belonging to the output location falls between the elevations associated with the 
indexes n and n+1.  When performing an inverse mapping for a terrain corrected image, two sets of 
input lines and samples are calculated from the polynomials for n and n+1.  The actual input line and 
sample is interpolated between these lines and samples. 

 
Example: 
 
Output line/sample has r = row, c = col and z=n, n+1. If the inverse mapping coefficients are a 
and b for line and sample respectively then: 
           

input_linen        = bilinear(an,output_line,output_sample) 
input_samplen   = bilinear(bn,output_line,output_sample) 
input_linen+1        = bilinear(an+1,output_line,output_sample) 
input_samplen+1 = bilinear(bn+1,output_line,output_sample) 

 
bilinear is the bilinear mapping function (described below) for each grid cell. 
 
If e is the elevation for the output line and sample location then the weights used to interpolate 
between the two input line/sample locations are: 
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en, en+1 and e are the elevations associated with zn , zn+1 , and the output line and sample 
respectively.  
 
The final line/sample location is found from: 
 

input_line      = wn * input_linen      + wn+1 * input_linen+1 
input_sample = wn * input_samplen + wn+1 * input_samplen+1 

 
The grid must contain a zero elevation plane. If the input minimum elevation is greater than zero it is 
set to zero. If the input maximum elevation is less than zero it is set to zero. 
 
Given the elevation maximum, minimum, and increment determine the number of z planes and the 
index of the zero elevation plane. Adjust the minimum and maximum elevations to be consistent with 
the elevation increment. 
 
The number of z planes is determined from: 
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The plane for an elevation of zero is then found at: 
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The new minimum and maximum elevation due to the values calculated above are: 
 

 increment elevation *zminimum elevation 0elev  

incrementelevation *)z1z ofnumber (maximumelevation 0elev  

 

7.2.2.7.2 LOS Projection/Grid Generation Procedure Overview 

The LOS Projection/Grid Generation procedure is executed in five stages:  
1. Data Input - First, the required inputs are loaded. This includes reading the processing 

parameters from the input ODL parameter file, loading the LOS model from its HDF file, 
reading static gridding parameters from the CPF, and loading the elevation data from the DEM. 

2. Scene Framing - The parameters of the output image space are computed based on the scene 
framing scheme specified in the input ODL file. This includes calculating bounds for the active 
image area that excludes the leading and trailing SCA imagery, and using one of several 
available methods for determining the Level 1G scene corners. The scene framing parameters 
are stored in the grid structure for eventual inclusion in the geometric metadata for the Level 
1G product. 

3. Grid Definition - The grid parameters are established to ensure adequate density in the space 
(sample), time (line), and elevation (z-plane) dimensions. The required data structures are 
allocated and initialized. 

4. Grid Construction - The forward model is invoked for each grid intersection to construct the 
array of input space to output space mappings. A separate grid structure is created for each 
SCA and each band. The grid mapping polynomial coefficients are computed from the input 
space to output space mapping results for each grid cell. Once the basic grid mappings are 
defined, the forward model is invoked with small attitude perturbations about each axis in order 
to evaluate the sensitivity of the input space to output space mapping to small attitude 
deviations. The resulting sensitivity coefficients are stored with each grid cell for subsequent 
use in computing high frequency jitter corrections during image resampling. Figure 4 shows a 
high level data flow for the creation and use of these new coefficients. 

5. Finalize and Output Grid - Derived grid parameters such as the global rough mapping 
coefficients, are added to the grid structure, and the entire structure is written to a disk file. 
This also includes evaluating the small, but significant, parallax effects caused by the time 
delay between when adjacent even and odd detectors sample the same along-track location. 
These effects are modeled in the grid as along- and across-track sensitivity coefficients that 
are scaled by the output point elevation and the even/odd detector offset, which can vary by 
pixel for OLI (due to detector deselect) rather than by band. 
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Figure 4:  Jitter Correction Data Flow 

 
Figure 5 shows a block diagram for the LOS Projection algorithm. 
 

7.2.2.7.2.1 Stage 1 - Data Input 

The data input stage involves loading the information required to perform grid processing. This 
includes reading the framing parameters for the output scene from the ODL file, reading grid 
structural parameters from the CPF, loading the LOS model structure in preparation for invoking the 
forward model, and reading the DEM to determine the elevation range for the image.  
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Figure 5:  Line-of-Sight Projection Block Diagram 

7.2.2.7.2.2 Stage 2 - Scene Framing 

Framing the output image space involves determining the geographic extent of the output image to be 
generated by the resampler. This geographic extent of the output image space is referred to as the 
output space “frame,” and is specified in output image projection coordinates. There are four different 
methods that are used to determine the output frame for Earth-viewing acquisitions. Scene framing 
for lunar and stellar scenes uses either a maximum bounding rectangle (maxbox) or a minimum 
bounding rectangle (minbox) approach using inertial LOS declination and right ascension 
coordinates, and is discussed separately. These methods use the calculated coverage bounds of 
each band/SCA in different ways, with some excluding the leading and trailing SCA imagery based on 
a calculated active image area, and some including the leading/trailing imagery so as to preserve all 
available input pixels (e.g., for calibration purposes). Thus, the calculation of the active image area for 
each band is the first step in scene framing. 

7.2.2.7.2.2.1 Calculating the Active Image Area 

The along-track offsets between spectral bands and even/odd SCAs create an uneven coverage 
pattern when projected into output image space. In order to provide a more regular output image 
coverage boundary, we define a rectangular active image area that excludes the excess trailing 
imagery from even SCAs and the excess leading imagery from odd SCAs. This active area is used 
for the minbox framing methods which seek to limit the output product area to provide consistent, 
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contiguous coverage, but are ignored for maxbox framing methods, where all available imagery is 
desired. 
 
The active image area is computed by constructing 8 critical SCA corner points, labeled C1 through 
C8 in the figure below. Points C1 and C2 define the top edge of the active area, C3 and C4 the right 
edge, C5 and C6 the bottom edge, and C7 and C8 the left edge. Note that points C1 and C8 are the 
same (the upper left corner of SCA01) as are points C4 and C5 (the lower right corner of SCA14). 
The forward model projects these 8 line/sample locations to object space, computing the 
latitude/longitude coordinates of the WGS84 ellipsoid intersection for each point. 

 

Figure 6:  Active Image Area Construction 

 
The SCA and corner point assignments are made automatically by examining the SCA across-track 
and along-track Legendre coefficients to determine:  1) whether SCA01 is on the left (+Y) or right (-Y) 
side of the scene; 2) whether even or odd SCAs lead; and 3) whether the sample number increases 
in the –Y or +Y direction. If the across-track Legendre constant term (coef_y0) for SCA01 is positive 
then it is the left-most SCA and SCA14 is the right-most. If the along-track Legendre constant term 
(coef_x0) for SCA01 is greater than that for SCA02, then the odd SCAs lead. If the across-track 
Legendre linear term (coef_y1) for SCA01 is negative, then the sample number increases in the –Y 
direction. 
 
Having determined the orientation of the SCAs, we assign the top edge of the active area to the left-
most leading SCA upper left (UL) corner and the right-most leading SCA upper right (UR) corner, the 
right edge to the right-most SCA UR and lower right (LR) corners, the bottom edge to the right-most 
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trailing SCA LR corner and left-most trailing SCA lower left (LL) corner, and the left edge to the left-
most SCA LL and UL corners. As shown in the figure, for the OLI:  C1 = SCA01 (left-most odd SCA) 
UL, C2 = SCA13 (right-most odd SCA) UR, C3 = SCA14 (right-most SCA) UR, C4 = SCA14 (right-
most SCA) LR, C5 = SCA14 (right-most even SCA) LR, C6 = SCA02 (left-most even SCA) LL, C7 = 
SCA01 (left-most SCA) LL, and C8 = SCA01 (left-most SCA) UL. 
 
The geodetic latitudes computed by the forward model are converted to geocentric longitudes using: 

 = arctan( (1-e2) tan() ) 

 where:  = geocentric latitude 

   = geodetic latitude 
  e2 = WGS84 ellipsoid eccentricity squared 

 

This creates a set of 8 geocentric latitude/longitude (i, i) pairs, one for each “critical” corner, noting 
that geocentric longitude is equal to geodetic longitude. 
 
Use the geocentric latitude/longitude to construct a geocentric unit vector for each corner: 
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Note that these vectors are inherently normalized. 
 
Construct vectors normal to the top, right, bottom, and left edge great circles by taking cross products 
of the corner vectors: 
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Construct corner vectors from the edge vectors: 
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The top and bottom edges are next checked against all of the SCA corners to ensure that any 
curvature in the SCA field angle pattern is accounted for. This is done to suppress residual SCA edge 
“raggedness”. 
 
Adjust the top edge: 

Construct a vector in the plane of the top edge great circle: 
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Initialize the minimum “out of plane” distance:  amin = 1 
For each SCA: 

For the two upper corners:  UL (0,0) and UR (ns-1,0): 
Use the forward model to project the corner. 
Convert the geodetic latitude to geocentric latitude as above. 
Construct a geocentric unit vector, Xi, as above. 
Project the unit vector onto the Xg and XT vectors and compute the ratio: 
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If ai < amin 
amin = ai 
Xmin = Xi 

Next corner 
Next SCA 
 
If amin < 0 then the innermost corner lies inside the current active area and we need to adjust 
the top edge: 
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And update the top corner vectors using the adjusted edge vectors: 
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Adjust the bottom edge: 

Construct a vector in the plane of the bottom edge great circle: 
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Initialize the minimum “out of plane” distance:  amin = 1 
For each SCA: 

For the two lower corners:  LL (0,nl-1) and LR (ns-1,nl-1): 
Use the forward model to project the corner. 
Convert the geodetic latitude to geocentric latitude as above. 
Construct a geocentric unit vector, Xi, as above. 
Project the unit vector onto the Xg and XB vectors and compute the ratio: 
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If ai < amin 
amin = ai 
Xmin = Xi 

Next corner 
Next SCA 
 
If amin < 0 then the innermost corner lies inside the current active area and we need to adjust 
the bottom edge: 
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And update the bottom corner vectors using the adjusted edge vectors: 
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Convert the four corner vectors to the corresponding geodetic latitude/longitude: 

 = atan2( X.y, X.x ) 

 = atan2( X.z, 22 X.yX.x  ) 

 = atan( tan(  ) / (1-e2) ) 
 
The four latitude/longitude corners are the bounds of the active image area. 
 
Once the active image area bounds are calculated, the output product frame is determined using one 
of the following methods: 
 
Method 1: PROJBOX  

The user defines the upper-left and lower-right corner coordinates of the area of interest in 
target map projection coordinates. These coordinates are then projected to the output 
projection coordinate system using the Projection Transformation Package (see the Projection 
Transformation sub-algorithm below). This usually results in a non-rectangular area so a 
minimum-bounding rectangle is found (in terms of minimum and maximum X and Y projection 
coordinates) in the resulting output space. This minimum-bounding rectangle defines the 
output space frame. The output image pixel size is then applied to the projection space to 
determine the number of lines and samples in the output space. This creates an output image 
that is map projection north-up. 

 
Method 2:  MINBOX 

The image active areas for each band, calculated previously, are converted to the specified 
output map projection coordinate system and used in a minimum bounding rectangle 
computation to create an output image frame that includes the active area for each band. The 
computed (latitude/longitude) active area corners are maintained in the grid for subsequent 
use by the image resampler, so that the output product image will not include leading/trailing 
SCA imagery. 
 

Method 3:  MAXBOX  
The four corners of each SCA in each band are projected to the Earth. The maximum and 
minimum latitude and longitude found across all SCAs and all bands are used to establish the 
output scene frame in the manner described above for the PROJBOX method. This creates an 
output frame that contains all input pixels from all bands. The previously calculated image 
active areas are ignored in this process, and the band active area corners are all set equal to 
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the output product corners. Leading and trailing SCA imagery is thereby not excluded from 
MAXBOX framed products. 
 

Method 4: PATH 
The user specifies a path oriented Landsat product in either the SOM or UTM projection.  In 
this case, the framing coordinates are not user-specified. The standard path-oriented frame is 
a preset number of lines and samples based on the Landsat WRS scene size and the 
maximum rotation needed to create a path-oriented product. Additional options exist to apply 
either MINBOX or MAXBOX logic in determining the path oriented product frame. 
 

Method 5:  LUNAR 
Lunar image framing applies either the same framing methodology as MAXBOX,  defining the 
maximum and minimum corners  in right ascension and declination angles with respect to the 
ECI coordinate system determined by the corners of all the SCAs for all bands, or with a 
similar framing methodology as MINBOX, determining the corners based solely on the SCA 
that contains the moon.  The right ascension and declination angles are adjusted according the 
change in orbit of the moon during image acquisition. 

 
Method 6: STELLAR 

Stellar image framing applies the same framing methodology as MAXBOX only the output 
space frame defining the maximum and minimum corners are in right ascension and 
declination angles with respect to the ECI coordinate system.   

 
The scene framing logic uses the following sub-algorithms/routines: 
 
a)Validate UTM Zone  
The nominal UTM zone to use is computed from the scene center longitude but the projection may be 
forced to an adjacent zone using input parameters. In particular, each WRS path/row may be 
preassigned to a UTM zone so that the same zone is always used for scenes near UTM zone 
boundaries. This should not introduce a zone offset greater than 1. The validation is performed by 
computing the UTM zone in which the scene center falls and then determining whether the input UTM 
zone (if any) is within one zone of the nominal zone. 
 
Shift the scene center longitude to put it in the range 0-360 degrees: 
SC_long = mod( SC_long + 540, 360 ) 
 where: SC_long is the scene center longitude in degrees 
 
Compute the nominal UTM zone (note that UTM zones are six degrees wide): 
SC_zone = (int)floor( SC_long/6 ) + 1 
 
See if the input zone is within one zone of the nominal zone: 
if ( abs( input_zone - SC_zone ) < 2 or (60 - abs( input_zone - SC_zone )) < 2 ) 
then input_zone is valid. 
 
b) North Up Framing 
Determine the scene corners.  Scene corners depend on whether the corners were user input 
(PROJBOX) or calculated by projecting the Level 1R image corners (MAXBOX) but the framing logic 
is essentially the same in each case. Once given as input or computed, the latitude/longitude scene 
corners are converted to the defined map projection, the extreme X and Y coordinates are found, and 
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these extreme points are rounded to a whole multiple of the pixel size. The north-up framing methods 
are each described in the following sub-algorithms. 
 
b).1. Map Edge/PROJBOX Framing  
Calculates the minimum and maximum projection coordinates for given upper left and lower right 
latitude, longitude coordinates. 

o Calculate min/max coordinates along east edge of output area by computing 
latitude/longitude to map x/y projections for a series of points from (minimum latitude, 
maximum longitude) to (maximum latitude, maximum longitude). 

o Calculate min/max coordinates along west edge of output area by computing 
latitude/longitude to map x/y projections for a series of points from (minimum latitude, 
minimum longitude) to (maximum latitude, minimum longitude). 

o Calculate min/max coordinates along south edge of output area by computing 
latitude/longitude to map x/y projections for a series of points from (minimum latitude, 
minimum longitude) to (minimum latitude, maximum longitude). 

o Calculate min/max coordinates along north edge of output area by computing 
latitude/longitude to map x/y projections for a series of points from (maximum latitude, 
minimum longitude) to (maximum latitude, maximum longitude). 

Note that since lines of constant latitude and/or longitude may be curved in map projection space, the 
extreme map x/y points may not correspond to the four PROJBOX corners. 
 
b).2. Minbox/Maxbox Framing Determine the frame in output space for the minbox or maxbox north-
up product. The actual frame is determined based on the optimal band's pixel size, but the frame is 
the same for every band. 
 
b).2.1 Minbox Framing  Calculate the MINBOX frame bounds using the active area corner points for each 

band. 

1. Call projtran (see below) to get the output map projected x/y, for each active area corner point for each 

image band. 

 

2. Find the minimum and maximum output proj x/y from the full set of active area corner points. 

 

3. Pad the min and max output projection x/y to make them a multiple of pixsize.  

 

4. Fill in the corners for the grid in the order of UL, LL, UR, LR and Y/X coords. 

UL = min x, max y 

UR = max x, max y 

LL = min x, min y 

LR = max x, min y 

 

5. Find the number of lines and samples for the grid, for each specified band number. 

lines = (max y - min y)/pixsize + 1 

samples = (max x - min x)/pixsize + 1 

 

b).2.2 Maxbox Framing  Calculate the MAXBOX product frame bounds using the projected corners of each 

band/SCA. 

1. Find the four image corners in input space for each SCA and band.  

UL - (1, first_pixel) 

UR - (1, last_pixel) 
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LL - (NLines, first_pixel) 

LR - (NLines, last_pixel) 

 

2. Call the forward model (see below) to get the output lat/long, for each corner point. 

 

3. Call projtran (see below) to get the output map projected x/y, for each corner point. 

 

4. Find the minimum and maximum output proj x/y from the full set of corner points. 

 

5. Pad the min and max output projection x/y to make them a multiple of pixsize.  

 

6. Fill in the corners for the grid in the order of UL, LL, UR, LR and Y/X coords. 

UL = min x, max y 

UR = max x, max y 

LL = min x, min y 

LR = max x, min y 

 

7. Find the number of lines and samples for the grid, for each specified band number. 

lines = (max y - min y)/pixsize + 1 

samples = (max x - min x)/pixsize + 1 

 

8. Call projtran to convert the map projection Y/X coordinates of the output product corners to 

latitude/longitude. 

 

9. Replace the active area corner coordinates for each band with the converted output product corner 

coordinates. 

      

b).2.3. Pad Corners Pad the input corners by a defined factor of the pixel size. The x/y min and max 
values are input for the corner locations.  These values are padded by PADVAL * the pixel size.  The 
newly padded x/y min and max values are returned, replacing the original values. 

ixmin = int (Xmin/(PADVAL*pixsize)) 

Xmin = ixmin*PADVAL*pixsize 

ixmax = int (Xmax/(PADVAL*pixsize))+1 

Xmax = ixmax*PADVAL*pixsize 

iymin = int (Ymin/(PADVAL*pixsize)) 

Ymin = iymin*PADVAL*pixsize 

iymax = int (Ymax/(PADVAL*pixsize))+1 

Ymax = iymax*PADVAL*pixsize 

  
c) Path Oriented Framing 
Provide a path-oriented projection that is framed to a nominal WRS scene. The projection, pixel size, 
and the path and row of the scene must be defined.  
 
c).1. Calculate Center and Rotation Angle  
Calculate the scene center and rotation angle for a nominal WRS scene.  The WRS path and row of the input 

scene and the projection parameters are needed as input.  The nominal WRS scene center lat/long and rotation 

angle for the given projection are returned. The algorithm has the following steps: 

 

Convert input angles to radians: 
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Inclination_Angle_R = Pi / 180 * Inclination_Angle 

Long_Path1_Row60_R = Pi / 180 * Long_Path1_Row60 

 

Compute the Earth's angular rotation rate: 

earth_spin_rate = 2 * Pi / (24 * 3600) 

 

Note:  We use the solar rotation rate rather than the sidereal rate in order to account for the orbital precession 

which is designed to make the orbit sun synchronous. Thus, the apparent Earth angular velocity is the inertial 

(sidereal) angular velocity plus the precession rate which, by design, is equal to the solar angular rate. 

 

Compute the spacecraft's angular rotation rate: 

SC_Ang_Rate = 2 * Pi * WRS_Cycle_Orbits / (WRS_Cycle_Days*24*3600) 

 

Compute the central travel angle from the descending node: 

Central_Angle = (Row - Descending_Node_Row)/Scenes_Per_Orbit*2*Pi 

 

Compute the WRS geocentric latitude: 

WRS_GCLat = asin( -sin(Central_Angle) * sin(Inclination_Angle_R) ) 

 

Compute the longitude of Row 60 for this Path: 

Long_Origin = Long_Path1_Row60_R - (Path-1) * 2*Pi/WRS_Cycle_Orbits 

 

Compute the WRS longitude: 

Delta_Long = atan2( tan(WRS_GCLat)/tan(Inclination_Angle_R), 

cos(Central_Angle)/cos(WRS_GCLat) ) 

WRS_Long = Long_Origin - Delta_Long - Central_Angle * 

Earth_Spin_Rate / SC_Ang_Rate 

 

Make sure the longitude is in the range +/- Pi: 

While ( WRS_Long > Pi ) 

WRS_Long = WRS_Long - 2*Pi 

While ( WRS_Long < -Pi ) 

WRS_Long = WRS_Long + 2*Pi 

 

Compute the scene heading: 

Heading_Angle = atan2( cos(Inclination_Angle_R)/cos(WRS_GCLat), 

-cos(Delta_Long)*sin(Inclination_Angle_R) ) 

 

Convert the WRS geocentric latitude to geodetic latitude: 

WRS_Lat = atan( tan(WRS_GCLat) * (Semi_Major_Axis/Semi_Minor_Axis) * 

(Semi_Major_Axis/Semi_Minor_Axis) ) 

 

Convert angles to degrees: 

WRS_Lat = WRS_Lat * 180 / Pi 

WRS_Long = WRS_Long * 180 / Pi 

Heading_Angle = Heading_Angle * 180 / Pi 

 

Round WRS lat/long off to the nearest whole arc minute: 

WRS_Lat = round( WRS_Lat*60 ) / 60 
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WRS_Long = round( WRS_Long*60 ) / 60 

 

c).2. Calculate Path Oriented Frame  
Calculate the center point and rotation angle, and the image corner coordinates in an SOM or UTM 
projection.  Also calculate the first-order polynomial coefficients which map output line/sample 
coordinates to their corresponding output projection coordinates. Determine the frame in output space 
for the path-oriented product.  Calculate the frame for each band.  The frame must be the same for all 
bands.   
 
c).2.1. Angle to Map  
Convert the WRS rotation angle (from geodetic north) to a frame orientation angle in map coordinates.  The 

following is an algorithm to compute this: 

 

Convert the WRS scene center latitude/longitude to map projection x/y (X1, Y1) using the projtran routine. 

 

Add 1 microradian (0.2 seconds) to the WRS scene center latitude and convert this point to map projection x/y 

(X2, Y2). 

 

Compute the azimuth of this line in grid space as the arctangent of (X2-X1)/(Y2-Y1).  This is the grid azimuth 

of geodetic north at the WRS scene center. 

 

Add this angle to the WRS rotation angle to give the grid heading. A standard framed scene puts the satellite 

direction of flight at the bottom of the scene, so the scene orientation angle is the grid heading + or - 180 

degrees.  If the grid heading is <0 then subtract 180 degrees.  If the grid heading is >0 then add 180 degrees.  

This is the scene orientation angle to use with the WRS scene center. 

 

c).2.2. Path-oriented Minbox/Maxbox Frame  
Calculate the path oriented frame that is large enough to contain all bands. 
 
c).2.2.1. Calculate Path-oriented Minbox Frame 
Calculate path-oriented frame for the minbox approach.    

1. Compute the map projection coordinates of the four image active area corners for each band 
as described in step 1 of Minbox Framing. 

2. Offset and rotate the scene corners to the path oriented frame using the WRS scene center 
map projection coordinates (X1, Y1) and orientation angle: 

a. X' = (X - X1) cos(angle) - (Y - Y1) sin(angle) + X1 
b. Y' = (X - X1) sin(angle) + (Y - Y1) cos(angle) + Y1 

3. Compute the minbox frame as described in steps 2-4 of Minbox Framing. 
4. Convert the rotated minbox corners back to the unrotated map projection coordinate system: 

a. X =  (X' - X1) cos(angle) + (Y' - Y1) sin(angle) + X1 
b. Y = -(X' - X1) sin(angle) + (Y' - Y1) cos(angle) + Y1 

 
 
c).2.2.2. Calculate Path-oriented Maxbox Frame 
Calculate path-oriented frame for the maxbox approach.    

1. Compute the map projection coordinates of the four image corners for the optimal band as 
described in steps 1-3 of Maxbox Framing. 

2. Offset and rotate the scene corners to the path oriented frame using the WRS scene center 
map projection coordinates (X1, Y1) and orientation angle: 
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a. X' = (X - X1) cos(angle) - (Y - Y1) sin(angle) + X1 
b. Y' = (X - X1) sin(angle) + (Y - Y1) cos(angle) + Y1 

3. Compute the maxbox frame as described in steps 4-6 of Maxbox Framing. 
4. Convert the rotated maxbox corners back to the unrotated map projection coordinate system: 

a. X =  (X' - X1) cos(angle) + (Y' - Y1) sin(angle) + X1 
b. Y = -(X' - X1) sin(angle) + (Y' - Y1) cos(angle) + Y1 

5. Call projtran to convert the map projection Y/X coordinates of the output product corners to 

latitude/longitude. 

6. Replace the active area corner coordinates for each band with the converted output product corner 

coordinates. 

 
d) Celestial Acquisitions 
Celestial acquisitions use the same framing logic as Earth acquisitions (namely maxbox) but the 
output space coordinate systems are sufficiently different to merit separate discussion. For both lunar 
and stellar acquisitions the output space is defined in terms of directions in inertial space, defined by 
the ECI J2000 right ascension and declination of the OLI look vectors. In the case of stellar 
acquisitions, the output space "projection" uses the ECI J2000 right ascension and declination 
directly. For lunar acquisitions the output coordinate system is modified to use the LOS right 
ascension and declination offset from the lunar right ascension and declination at the time of 
observation. This creates a slowly rotating coordinate system that tracks the moon and is the reason 
for having a planetary ephemeris file as an input to this algorithm. These differences emerge in the 
forward model computations for celestial acquisitions where the LOS intersection logic used for Earth 
acquisitions is replaced by operations on the inertial lines-of-sight (after conversion to inertial right 
ascension and declination angles), with the resulting map projection x/y coordinates used in the 
Earth-view algorithms replaced by right ascension and declination (or delta-right ascension and delta-
declination).  Either the maxbox or minbox framing logic applied to the x/y map projection coordinates 
in Earth-view acquisitions is then applied to these angular celestial coordinates. 
 
e) Lunar Acquisitions 
Lunar acquisitions use either a MAXBOX or MINBOX framing type.  For the case of MAXBOX the 
framing logic is the same as that used for Earth viewing acquisitions; determine bounding viewing 
angles based on all SCAs of all bands.  For the case of MINBOX the minimum box, or viewing 
angles, are based on the SCA within which the moon resides.  The bounding viewing angles for this 
SCA for all bands define the frame for the output image.  The moon is found to reside within an SCA 
by using the moon’s coordinates, defined by the center of acquisition time of the scene, and checking 
to see if these coordinates fall within a SCA.  A simple point in a polygon routine is used for the 
check: 

If coordinate to check is defined as Xm and Ym 
e1)  Define rectangle using SCA corners, Xi and Yi 
e2) Find maximum Y coordinate of rectangle, Ymax. 
e3) Define a new coordinate as: 
 Xn = Xm 
 Yn = Delta + Ymax 

 Where Delta is large enough to put point (Xn, Yn) outside of polygon 
e4) Define a line from (Xm,Ym) to (Xn,Yn). 
e5) Determine number of times the line defined in e4) intersects sides of the rectangle from 
e1).  If the number of intersections is an odd number then the point is within the rectangle. 

 
Stage 3 - Grid Definition 
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The grid definition stage determines the required size of the grid, allocates the grid structure, and 
computes the input space (Level 1R) line/sample locations for each grid cell. 
 
a) Determine Number of Grid Input/Output Lines/Samples  
Determine the number of input points to be stored in the grid according to the grid sampling rate or 
grid cell size chosen. 
 
Loop through each band stored in the grid 
 

Loop through each SCA stored in the grid. 
   

Calculate the number of lines and samples stored in the grid according to the size of each grid 
cell and the size of the input image to be processed.  Store the number of grid lines and 
samples calculated in the grid. 
 
Calculate number of times grid cell size divides into Level 1R imagery 
 

 

1
direction sample size cell grid

SCAper  detectors ofnumber 
samples  gridnumber  

1
direction line size cell grid

lines image ofnumber 
lines  grid ofnumber  





 

     where: 
 number of image lines = number of lines in Level 1R (LOS model) 
 number of detectors per SCA = number of samples per SCA (LOS model) 
 grid cell size line direction = number of lines in one grid cell 
 grid cell size sample direction = number of samples in one grid cell 

 
If the grid cell size in the line direction does not divide evenly into the number of lines in the 
Level 1R then increment the number of grid lines by one.   
 
If the grid cell size in the sample direction does not divide evenly into the number of samples in 
the Level 1R then increment the number of grid samples by one. 

 
b) Determine Grid Lines/Samples  
Determine where each grid cell point will fall in the input Level 1R image.  These grid cell points will 
fall at integer locations in the input imagery. 
 
Loop through each band that is stored in the grid 
 
 Loop through each SCA stored in the grid 
 
  Initialize first grid cell line location to zero relative. 

 
 input line location grid cell0 = 0 

 
Loop until the grid cell line location is greater than or equal to the number of Level 1R 
lines, incrementing each new grid cell line location by the appropriate grid cell size in 
the line direction for the current band and SCA. 
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input line location grid celln = input line location grid celln-1  

+ grid cell size line direction 
 

 Set last grid cell line location to the last line in Level 1R image. 
 

input line location grid celllast = number of lines in Level 1R imagery 
 

Initialize first grid cell sample location to zero relative. 
 

input sample location grid cell0 = 0 
 

Loop until the grid cell sample location is greater than or equal to the number of Level 1R 

samples, incrementing each new grid cell sample location by the appropriate grid cell size in the 

sample direction for the current band and SCA. 

 

input sample location grid celln = input sample location grid celln-1  
                            + grid cell size sample direction 

  
Set last grid cell sample location to the last sample in Level 1R image. 
input sample location grid celllast = number of samples in Level 1R imagery  

 

Stage 4 - Grid Construction 
Once the grid structures are created (one per SCA per band) the forward model is evaluated at every 
grid intersection, that is, for every Level 1R line/sample location at every elevation plane. The forward 
model computes the WGS84 latitude/longitude coordinates associated with each input 
line/sample/height point. These latitude/longitude positions are then converted to output space 
line/sample by projecting them to map x/y, computing the offsets (and rotation if path-oriented) from 
the upper-left scene corner, and scaling the offsets from meters to pixels using the pixel size. 
 
a) Make Grid Given the number of grid lines and samples that will be sampled in the input imagery, 
loop on each band of each SCA, loop on number of z-planes, loop on number of input grid lines and 
samples calculating the corresponding output line and sample location. For each input line, sample 
location, and elevation, the instrument forward model function is called. This forward model function is 
outlined in the steps below. Additional detail on the sub-algorithms which comprise the forward model 
is provided in the subsection titled "Forward Model" later in this document.  
 
The forward model uses the LOS model structure and the CPF to map an input line and sample 
location to an output geographic location. These are the steps that are performed whenever 
calculating an output geodetic latitude and longitude from an input line and sample by invoking the 
instrument “forward model.” The GCTP function can then be used to transform the geographic 
latitude and longitude to a map projection X and Y coordinate. If the output image has a “North up” 
orientation, then the upper left projection coordinate of the output imagery and the output pixel size 
can be used to transform any projection coordinate to an output line and sample location. If the map 
projection space is in a rotated projection space, such as having a satellite path orientation, then a 
transformation handling rotation is established between projection space and output pixel location. 
This transformation is then used in converting projection coordinates to output pixel line and sample 
locations.  
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The process listed below is performed on all bands, all elevation planes, and all SCAs present in the 
grid. The detector type used in the process is nominal (see the LOS Model Creation ADD for a 
discussion of detector types). The list explains the actions taken if a detector type other than nominal 
is chosen, so that it can be referenced later. 
 
Loop on number of input grid lines. 
 

Loop on number of input grid samples. 
 
Read the input space (Level 1R) line/sample coordinate for this grid point. 

 
Loop on the number of elevation planes. 

 
Compute the height of the current elevation plane: 
 

 incrementelevation_*)zz(height 0elev  

 
 where: 
  z is the index of the current z-plane and 
  zelev=0 is the index of the zero elevation z-plane. 
 
Invoke the forward model to compute the corresponding ground position latitude/longitude 
for this point. The general steps of the forward model are described here and are presented 
in more detail below.  

 
Find Time 
Find the nominal time of input sample relative to the start of the imagery. This procedure is 
described in the LOS Model Creation ADD and is repeated below in the Find Time sub-
algorithm description. 
 
Find LOS 
Find the LOS vector for the input line/sample location using the Legendre polynomial 
coefficients as described below in the Find LOS sub-algorithm. 
 
Find Attitude 
Calculate the spacecraft attitude corresponding to the LOS, i.e. for the line/sample location, 
at the time computed above, using the Find Attitude sub-algorithm described below. Note 
that for Earth acquisitions the roll-pitch-yaw attitude sequence in the LOS model is relative 
to the orbital coordinate system whereas for celestial (lunar/stellar) acquisitions the LOS 
model roll-pitch-yaw sequence is with respect to the ECI J2000 coordinate system. The 
operations applied by the Find Attitude sub-algorithm are the same in either case. 
 
Find Ephemeris 
Calculate satellite position for line/sample using Lagrange interpolation. Reference the 
move_sat sub-algorithm described in the LOS Model Creation ADD and repeated below. 
Note that for Earth acquisitions the move_sat sub-algorithm is provided with the corrected 
ECEF ephemeris data from the LOS model whereas for celestial (lunar/stellar) acquisitions 
it will be passed the corrected ECI ephemeris. 
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Rotate LOS to ECEF (Earth-view) or ECI (Celestial) 
Use the OLI alignment matrix in the LOS model to convert the LOS vector from sensor to 
ACS/body coordinates. Then apply the interpolated roll, pitch, and yaw to the LOS to 
convert ACS/body to orbital (Earth-view) or ECI (celestial). If Earth-view, use the ephemeris 
to construct the orbital to ECEF rotation matrix and use it to transform LOS to ECEF. The 
procedure for Earth-view scenes is described in the Attitude sub-algorithm below. For 
celestial acquisitions, the procedure is complete once the LOS has been rotated to ECI 
using the roll-pitch-yaw perturbation matrix. 
 
Spacecraft Center of Mass to OLI Offset Correction 
Adjust the spacecraft position for the offset between the spacecraft center of mass and the 
OLI instrument. This offset, in spacecraft body coordinates, is stored in the LOS model 
structure. First, convert the offset from spacecraft body frame to ECEF using the attitude 
perturbation matrix (body to orbital) and the orbital to ECEF matrix: 
 

    OLI to CMbody onperturbatiOLI  toCM orbital   

 
    OLI  toCM orbitalORB2ECEFOLI  toCM ECEF   

 
Add the offset to the ECEF spacecraft position vector. This correction is not used for 
celestial (lunar/stellar) acquisitions. 

 
Correct LOS for Velocity Aberration 
The relativistic velocity aberration correction adjusts the computed LOS (ECEF for Earth-
view and ECI for celestial) for the apparent deflection caused by the relative velocity of the 
platform (spacecraft) and target. The preparatory computations are somewhat different for 
Earth-view and celestial acquisitions due to the differences in target velocity. 
 

Earth-view Case 
The LOS intersection sub-algorithm described below (see Find Target Position) is 
invoked with an elevation of zero to find the approximate ground target position. The 
ground point velocity is then computed as: 
 

Vg =  × Xg 

 
where: 
 Vg =  ground point velocity 
 Xg = ground point ECEF position 

  = Earth rotation vector = [ 0      0      e ]
T 

 e = Earth rotation rate in radians/second (from CPF) 
 
The relative velocity is then: 
 
V = Vs - Vg 
 
where Vs is the spacecraft ECEF velocity from the ephemeris data. 
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Correcting the Earth-View LOS 
The LOS vector is adjusted based on the ratio of the relative velocity vector to the 
speed of light (from the CPF): 
 

c

c
V

l

V
l

l





  where: l = uncorrected LOS and l' = corrected LOS 

 
Note that in this case the LOS velocity aberration correction is negative since we are 
correcting the apparent LOS to the true (aberration corrected) LOS. The correction is 
positive if we are computing the apparent LOS from the true (geometrical) LOS (see 
lunar case below). 
 
Celestial (Lunar/Stellar) Case 
Both lunar and stellar acquisitions use the spacecraft inertial velocity from the 
ephemeris data as the relative velocity. This is justified by the use of a lunar ephemeris 
(using the Naval Observatory's NOVAS-C package) that returns apparent places. The 
apparent location of the moon is already corrected for light travel time (see below) and 
velocity/planetary aberration due to the motion of the moon around the Earth. Thus, the 
residual aberration is due only to the motion of the spacecraft relative to the Earth. 
Thus, for both lunar and stellar acquisitions: 
 
V = Vs 
 
where Vs is the spacecraft ECI velocity from the ephemeris data. 

 
Correcting the Celestial LOS 
For stellar acquisitions, the LOS is corrected for aberration in the same manner as for 
Earth-view scenes. For lunar acquisitions, rather than correct the LOS vector, we adjust 
the apparent location of the moon. The lunar vector is thus adjusted based on the ratio 
of the relative velocity vector to the speed of light (from the CPF) as: 
 

c

c
V

l

V
l

l





  where: l = uncorrected LOS and l' = corrected LOS 

 
The correction is positive in this case since we are computing an apparent location 
rather than correcting one. 

 
LOS Intersection 
For Earth-view acquisitions, intersect the LOS in ECEF with the Earth model as described 
in the Find Target Position sub-algorithm below. This yields the geodetic latitude, longitude, 
and height of the ground point. 
 

For celestial acquisitions, convert the ECI LOS to right ascension (RA) and declination () 
angles: 
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









 

where the ECI los vector is [ x  y  z ]T. 
 
Correct Ground Position for Light Travel Time 
Since the light departing the ground point takes a finite time to arrive at the OLI sensor, 
there is a slight discrepancy in the corresponding time at the ground point and at the 
spacecraft. Since the LOS intersection logic assumed that these times were the same, a 
small correction can be made to correct for this light travel time delay. 
 
Given the ECEF positions of the ground point and the spacecraft, compute the light travel 
time correction as follows: 
 

Compute the distance from the ground point to the spacecraft: 

gs XX d  

where:  
 Xs is the spacecraft ECEF position and 
 Xg is the ground point ECEF position. 

 
Compute the light travel time using the speed of light (from CPF): 

c

d
ltt   

 
Compute the Earth rotation during light travel: 

θ = ltt * e     where e is the Earth angular velocity from the CPF. 
 
Apply the light travel time Earth rotation: 

gg XX















 



100

0cossin

0sincos





 

where: 
 Xg' is the corrected ECEF position 
 Xg is the uncorrected ECEF position 

 
Convert the corrected ECEF position to geodetic latitude, longitude and height. 
 

Note that the light travel time correction for lunar observations due to the difference 
between the Earth-moon distance and the spacecraft-moon distance is neglected. This is 
justified by the fact that that the lunar angular rate is less than 3 microradians per second 
and the maximum LTT difference is about 25 milliseconds making the magnitude of this 
effect less than 0.1 microradians. 

 
Convert Position to Output Space Line/Sample 
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The angular geodetic (latitude/longitude) or celestial (RA/declination) coordinates must be 
converted to the corresponding output space line/sample coordinate to complete the input 
space to output space mapping. 
 
For Earth-view acquisitions this is accomplished as follows: 
 
Calculate the map projection X/Y for the geodetic latitude and longitude. 
 
Convert map X/Y coordinate to output line/sample location: 
 

If the output map projection is of a path-oriented projection then the X/Y coordinate is 
transformed to output space with a bilinear transformation. 

 

YXbYbXbbsample

YXaYaXaaline

****

****

3210

3210




 

where: 
ai = polynomial coefficients that map X/Y to an output line location 
bi = polynomial coefficients that map X/Y to an output sample location 
X,Y = map projection coordinates  

 
The polynomial transformation is set up to handle the rotation involved in rotating a 
“Map North” projection to Satellite of “Path” projection (i.e. one that has the output line 
coordinate system more closely aligned with the along flight path of the satellite). 
 
If the output map projection is not path-oriented, but “North up,” the relationship 
between X/Y and output line/sample does not involve any rotation and the following 
equation is used: 

 

X  size  pixel

Xleft  upper  X
sample

Y  size  pixel

YYleft  upper  
line







 

 
   where: 

upper left Y = upper left Y projection coordinate of output image 
upper left X = upper left X projection coordinate of output image 
pixel size Y = output pixel size in Y coordinates 
pixel size X = output pixel size in X coordinates 

 
Note that these line and sample pixel coordinates are (0,0) relative (i.e., the center of 
the upper left pixel is at line,sample 0,0). 

 
For lunar acquisitions, the right ascension and declination angles derived from the inertial 
LOS are offset from the nominal lunar inertial position to establish an output frame that 
"tracks" the apparent location of the moon. This is done as follows: 
 

a) Compute the apparent ECI J2000 position of the moon. 
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1. Use the input JPL lunar ephemeris data in the NOVAS-C package to compute 
the ECI true-of-date (ECITOD) apparent location of the moon at the time 
corresponding to the current LOS (lxx_moonpos). This apparent location is 
provided as an ECITOD vector (i.e., including both direction and distance).  

2. Apply the nutation and precession corrections (see Ancillary Data Preprocessing 
ADD for additional information) to convert the ECITOD vector to ECI J2000. 

3. Subtract the current spacecraft ECI J2000 position vector from the lunar ECI 
J2000 vector to compute the spacecraft-lunar vector. 

4. Compute the apparent (parallax corrected) right ascension, declination, and 
spacecraft-lunar distance from the spacecraft-lunar vector (by invoking 
exx_cart2sph. 

 
b) Compute the differences between the LOS right ascension and declination and the 
apparent lunar right ascension and declination. 
 
c) Normalize the nominal angular pixel size by the ratio of the current spacecraft-moon 
distance (computed above) and the nominal spacecraft-moon distance. The nominal 
distance is computed at the acquisition center time. 
 psizecurrent = psizenominal * distancenominal / distancecurrent 

 
d) Divide the angular distances computed in b) above by the normalized pixel size 
computed in c) above. This yields the moon-relative line/sample coordinate. This is the 
coordinate space in which lunar images are framed, so the offset between these 
coordinates and the lunar scene upper left corner coordinates yields the output space 
line/sample for the current grid point. 
 

For stellar acquisitions, the right ascension and declination angles derived from the inertial 
LOS are used directly. The offsets relative to the scene upper left corner (in right 
ascension/declination space) are computed and divided by the angular pixel size to compute 
output space line/sample coordinates. 
 

One additional note regarding the celestial acquisition scene framing is in order. Since right 
ascension, like longitude, increases eastward, and declination, like latitude, increases northward, 
and given that celestial images are looking "up" rather than "down", the right ascension-x, 
declination-y coordinate system is left-handed. This can lead to the moon being apparently 
inverted left-to-right in the output image. This is not important for the applications (e.g., band 
registration characterization) in which the lunar images are to be used. If "anatomically correct" 
lunar images are required, some changes to the framing logic may be necessary. 

 
The line and sample location calculated is stored in the grid structure.  This line/sample location is 
then the output location for the corresponding input line/sample and the current elevation (current grid 
line/sample input locations).   

 

b) Calculate Jitter Sensitivity Coefficients  The forward model is invoked multiple times at each 
grid intersection to compute the effect that small attitude perturbations about each spacecraft axis 
have on the input space to output space line/sample mapping. This is done at each grid point as 
follows: 
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Save the current grid point input line/sample as in_line/in_samp and the current grid point output 
line/sample as line0/samp0. 
For each spacecraft axis (roll-pitch-yaw) : 

1. Perturb the attitude about the selected axis by 1 microradian. 
2. Use the forward model to compute the output line/sample corresponding to the current 

input line/sample using the perturbed attitude and store the result in line[0]/samp[0]. 
3. Perturb the input line number by 1 line (delta_line = 1) and recompute the corresponding 

output line/sample, storing the result in line[1]/samp[1]. 
4. Restore the input line number to in_line and perturb the input sample number by 1 sample 

(delta_samp = 1) and recompute the corresponding output line/sample, storing the result in 
line[2]/samp[2]. 

5. Calculate the output space to input space line/sample sensitivities as: 
a. delta_oline_per_iline = (line[1]–line[0]) / delta_line 
b. delta_oline_per_isamp = (line[2]–line[0]) / delta_samp 
c. delta_osamp_per_iline = (samp[1]–samp[0]) / delta_line 
d. delta_osamp_per_isamp = (samp[2]–samp[0]) / delta_samp 

6. Invert the resulting 2-by-2 sensitivity matrix to find the input line/samp per output line/samp 
sensitivities: 
a. determinant = delta_oline_per_iline * delta_osamp_per_isamp – delta_oline_per_isamp 

* delta_osamp_per_iline 
b. delta_iline_per_oline = delta_osamp_per_isamp / determinant 
c. delta_iline_per_osamp = -delta_oline_per_isamp / determinant 
d. delta_isamp_per_oline = -delta_osamp_per_iline / determinant 
e. delta_isamp_per_osamp = delta_oline_per_iline / determinant 

7. Apply the input line/samp per output line/samp sensitivities to the output line/samp offset 
due to the attitude perturbation, to find the equivalent input space offset : 
a. d_iline = delta_iline_per_oline * (line[0] – line0) + delta_iline_per_osamp * (samp[0] – 

samp0) 
b. d_isamp = delta_isamp_per_oline * (line[0] – line0) + delta_isamp_per_osamp * 

(samp[0] – samp0) 
8. Divide by the attitude perturbation to compute the input line/sample to attitude jitter 

sensitivities for this axis at this grid point: 
a. line_sens[axis] =  -d_iline / perturbation 
b. samp_sens[axis] = -d_isamp / perturbation 
Where :  

line_sens[] is the array of roll-pitch-yaw line sensitivities for the grid. 
 samp_sens[] is the array of roll-pitch-yaw sample sensitivities for the grid. 
 perturbation is the 1 microradian attitude perturbation introduced in step 1.  
Note that the sign of the sensitivities is inverted in this calculation. This is done because the 
sensitivities will be used to compute the equivalent input space corrections needed to 
compensate for an attitude disturbance. So, since d_iline is the input space line offset that 
is equivalent to one microradian of jitter for the current axis, an offset of –d_iline will 
compensate for this jitter. 

A 2-by-3 array containing the line and sample sensitivity coefficients for the roll, pitch, and yaw axes 
is stored for each grid point. 
 
c) Calculate Map Coefficients Bilinear mapping coefficients for each grid cell are calculated for 
mapping from input location to output location (forward mapping) and for mapping from output 
location to input location (inverse mapping).  A separate mapping function is used for lines and 
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samples.  This equates to four mapping functions.  A set of four mapping functions is calculated for 
each grid cell, for each SCA, for every band, and for every elevation plane that is stored in the grid. 
 
The following methodology is used for calculating one set of four bilinear mapping equations: 
 
A 9x4 matrix is used to fit nine points within a grid cell.  The matrix equation takes the form of: 
 

    bcoeffA   

 
In this equation, matrix A is 9x4, vector b is 9x1, and the coefficient matrix is 4x1. The coefficient 
matrix, [coeff], can be solved to obtain the mapping coefficients as: 
  

     bAAAcoeff TT 1
  

 
 
In the case of solving for an equation to map an input line and sample location to an output sample 
location, belonging to one grid cell, the matrices can be defined as: 

 
An,0 = 1    where n=0,8  

A0,1 = upper left input sample location for current grid cell 
A1,1 = upper right input sample location for current grid cell 
A2,1 = lower left input sample location for current grid cell 
A3,1 = lower right input sample location for current grid cell 
A4,1 = (A0,1+A1,1+A2,1+A3,1)/4 
A5,1 = (A0,1+A1,1)/2 
A6,1 = (A1,1+A3,1)/2 
A7,1 = (A2,1+A3,1)/2 
A8,1 = (A2,1+A0,1)/2 
A0,2 = upper left input line location for current grid cell 
A1,2 = upper right input line location for current grid cell 
A2,2 = lower left input line location for current grid cell 
A3,2 = lower right input line location for current grid cell 
A4,2 = (A0,2+A1,2+A2,2+A3,2)/4 
A5,2 = (A0,2+A1,2)/2 
A6,2 = (A1,2+A3,2)/2 
A7,2 = (A2,2+A3,2)/2 
A8,2 = (A2,2+A0,2)/2 
An,3 = An,1*An,2  where n=0…8 

 
b0 = upper left output sample location for current grid cell 
b1 = upper right output sample location for current grid cell 
b2 = lower left output sample location for current grid cell 
b3 = lower right output sample location for current grid cell 
b4 = (b0+b1+b2+b3)/4 
b5 = (b0+b1)/2 
b6 = (b1+b3)/2 
b7 = (b2+b3)/2 
b8 = (b2+b0)/2 
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The line and sample locations listed above are defined at the grid cell corners coordinates.  The 
points interpolated in between the grid cell line segments provide stability for what could be, most 
notably a mapping that involves a 45o rotation, an ill-defined solution if only four points were used in 
the calculation.  The set of coefficients define a bilinear mapping equation of the form: 
 

sampleo = coeff0 + coeff1 * samplei + coeff2 * linei + coeff3 * samplei * linei 
 
where: 

sampleo = output sample location 
samplei  = input sample location 
linei       = input line location 

 
The forward mapping equations, mapping input line and sample locations to output line locations can 
be solved by swapping output line locations for output sample locations in the matrix [b].  The reverse 
mapping equations, mapping output locations to input line and sample, can be found by using output 
line and sample locations in the [A] matrix and the corresponding input sample and then line locations 
in the [b] matrix. 
 
c).1. Calculate Forward Mappings  
Using the Calculate Map Coefficients algorithm described above generate the mapping polynomial coefficients 

needed to convert from a line/sample in input space (satellite) to one in output space (projection).  Coefficients 

for every cell in the grid are generated. 

 

c).2. Calculate Inverse Mappings  
Using the Calculate Map Coefficients algorithm described above generate the mapping polynomial 
coefficients needed to convert from a line/sample in output space (projection) to one in input space 
(satellite).  Coefficients for every cell in the grid are generated. 
 

Stage 5 - Finalize the Grid 
The final stage of grid processing generates the global (rough) mapping coefficients, used to initially 
identify the appropriate grid cell, and computes the parallax sensitivity coefficients, used to correct for 
even/odd detector offset effects, for each grid cell. 
 
a) Calculate Rough Mapping Coefficients  
Calculate the rough mapping coefficients for the grid.  The rough polynomial is a set of polynomials 
used to map output line and sample locations to input line and sample locations.  The rough 
polynomial is generated using a large number of points distributed over the entire scene, and by 
calculating a polynomial equation that maps an output location to an input location.  The rough 
polynomial is only meant to get a “close” approximation to the input line and sample location for a 
corresponding output line and sample location.  Once this approximation is made, the value can be 
refined to get a more accurate solution.  A rough mapping polynomial is found for every SCA, for 
every band, and for every elevation plane that is stored in the grid file. 
 
Bilinear mapping was found to be sufficient for the rough mapping.  The mapping function therefore 
looks like the ones used for each individual grid cell.  However, the set up of the matrices to solve for 
the mapping coefficients is different:  
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    
1144 NxxNx

bcoeffA   

 
Where the matrix [A] is defined by the output line and sample locations, matrix [b] is defined by either 
the input lines or input samples, and N is equal to the total number of points stored in the grid for one 
elevation plane, of one band, for a single SCA.  The rough polynomial is therefore found by using all 
the point locations stored in the grid for a given band and elevation plane for a single SCA.  There is 
one mapping for output line and sample location to input sample location and one mapping for output 
line and sample location to input line location. 
 
Grid Cell Polynomial  
Calculate a "rough" mapping of output to input lines/samples. These coefficients are used as a first 
order approximation to an inverse line-of-sight model.  This polynomial is used to initially locate the 
grid cell to be used in the resampling process, providing a starting point for the more accurate inverse 
model based on individual grid cell parameters. 
 

b) Calculate Detector Offsets Computes the detector offset values and stores linear mapping 
coefficients associated with detector offsets in the grid structure.  Using the zero elevation plane, for 
each band and each SCA, loop on the input lines and samples calculating the odd/even detector 
offsets.  The detector offsets are set up to account for the geometric differences between the 
odd/even, secondary, and tertiary detectors and the “nominal” set of detectors.  (See the LOS Model 
Creation ADD).  These differences are considered to be consistent between actual and nominal 
detectors when they occur under the same acquisition conditions, i.e. they are slowly varying. These 
actual to nominal detector differences are due to the imperfect trade-off between space (detector 
offset) and time (detector delay) that is made when we temporally shift (through the use of Level 1R 
image fill) the even/odd and deselected detectors to compensate for their spatial offsets on the focal 
plane. The degree to which this time/space trade is imperfect varies with height and, so, the 
corrections derived here and stored in the grid structure, are functions of detector offset and height. 
 
There are also the sub-pixel detector specific offsets that are stored in the CPF.  These "exact" 
detector specific offsets are accounted for in the resampling process.  Note that the potential for 
deselected detectors has made it necessary to also store per-detector full-pixel offsets in the CPF 
(and LOS model). As a result, this detector offset sensitivity logic has been changed to compute the 
offset sensitivity per pixel of detector offset rather than a fixed value derived from the static even/odd 
detector offset. The routine ols2ils listed below, used for mapping an output line and sample to an 
input line and sample using the geometric grid, is discussed in the Image Resampling ADD.   
 
Loop on number of bands stored in grid 
 Loop on number of SCAs stored in grid 
  Loop on lines and samples stored in the grid 
 
   Get the maximum detector offset value for this band from the CPF. 
 

Calculate the output line/sample location for the current input line and sample 
and the zero elevation plane, calculated using the forward model (see below) 
with the detector location set to MAXIMUM. This detector type is the same as 
ACTUAL but uses the maximum detector offset rather than the detector-specific 
value. 
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Map calculated output line/sample back to input space using the geometric grid 
and ols2ils. 

 
Delta line/sample per pixel of offset are calculated by: 
 

line0 = (nominal line - mapped line) / max offset 

sample0 = (nominal sample - mapped sample) / max offset 
 
   where: 

nominal line = current grid cell line location 
mapped line = input line location from ols2ils mapped "maximum" output 

line 
nominal sample = current grid cell sample location 
mapped sample = input sample location from ols2ils mapped  “maximum” 

output sample 
max offset = detector offset used in the MAXIMUM forward model 

calculations 
 

These delta lines and samples represent the input space correction necessary to 
compensate for the difference between nominal and actual detectors per pixel of 
detector offset, for the zero elevation plane. 

 

Repeat these calculations for the maximum elevation plane to compute lineH 

and sampleH where H is the elevation corresponding to the maximum z-plane. 
 
Compute the line and sample even/odd offset sensitivity coefficients: 
 

 c0 = line0 

 c1 = (lineH - line0) / H 

 d0 = sample0 

 d1 = (sampleH - sample0) / H 
 
Note that c0 and d0 are in units of pixels per pixel and c1 and d1 are in units of 
pixels per meter per pixel. 

 
These ci and di coefficients are stored in the projection grid to be used during the 
resampling process. 

 

Output Line/Sample to Input Line/Sample  
Map output space line/sample locations back into its corresponding input space line/sample locations.  
This is done using the "rough" polynomial from the grid to determine an initial guess at an input space 
line and sample.  From this initial guess a grid cell row and column is calculated and the inverse 
coefficients for that cell are retrieved from the grid.  These coefficients are used to determine an exact 
input space line and sample (in extended space). 
 

Find Grid Cell  
This utility function finds the correct cell that contains the output line/sample. It finds the correct grid 
cell containing the output pixel by first determining the set of grid cells to be checked.  It then calls a 
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routine to perform a "point in polygon" test on each of these grid cells to determine if the pixel does 
indeed fall within that grid cell. 
 

Forward Model  
Having described the grid generation procedure we now turn to the forward model, referred to 
extensively above, in more detail. 
 
For a given line, sample and band, propagate the forward model to determine a latitude and longitude 
for the specified point. This involves finding the time of the observation, constructing the instrument 
line-of-sight, calculating the spacecraft attitude and ephemeris for the observation time, and 
intersecting the projected line-of-sight with the Earth’s surface. The entire forward model procedure is 
referred to as LOS projection and is described step by step below. 
  

a) Project LOS  
Find the position where the line of sight vector intersects the Earth's surface. It invokes the following 
sub-algorithms: 
 

a).1. Find Time Find the time into the scene given the line, sample, and band. The input sample 
number is 0-relative and relative to the SCA. The accounting for the odd/even, secondary, and tertiary 
detector offsets is based on the value of the dettype variable which may be NOMINAL, ACTUAL, 
MAXIMUM or EXACT. Note that the EXACT selection is treated the same as ACTUAL. This is due to 
the fact that even though fractional-pixel detector offsets can occur, the compensating time shifts 
implemented by inserting fill pixels can only be introduced in whole-line increments. So, the sub-pixel 
difference between the ACTUAL and EXACT detector types affects only the LOS angle not the time.  
The MAXIMUM detector type represents a theoretical offset that is used for calculate the odd/even 
offset, or parallax, coefficients within the grid. This maximum is stored as #define in the prototype 
code, called MAX_DET_DELAY. 
 
Due to the staggered odd/even and multiple pixel select detectors, a nominal and an actual time can 
be found in a scene.  If the current position within the image is given as a line and sample location, 
the two different “types” of times for multispectral pixels are calculated by: 
 
      if detector type is set to MAXIMUM 
 detector_shift_x = maximum_detector_shift 
 l0r_fill_pixels = round(detector_shift_x) + nominal_fill 
      else  
 detector_shift_x = shift stored in geometric model 
            l0r_fill_pixels = Fill from L0rp (also stored in geometric model) 
    

time_index = MS_line - l0r_fill_pixels 
if ( time_index < 0 ) time_index = 0 
if (time_index > (num_time_stamps - 1)) time_index = num_time_stamps - 1 
 
MS_actual_time = line_time_stamp[time_index] - MS_settle_time  - MS_integration_time/2 
                            + (MS_line - l0r_fill_pixels - time_index) * MS_sample_time 
 
MS_nominal_time = MS_actual_time + (l0r_fill_pixels – nominal_fill) * MS_sample_time 

 
where: 
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 MS_line is the zero-referenced multispectral line number (N). 

 l0r_fill_pixels is the total amount of even/odd detector alignment fill to be inserted at the 
beginning of the pixel column associated with the current detector. This table is stored in 
the LOS model. 

 num_time_stamps is the total number of time codes (data frames) in the image. It is tested 
to ensure that time_index, the line_time_stamp index, does not go out of bounds. 

 detector_shift_x (unless type is MAXIMUM) is the amount of even/odd detector offset for 
the current detector from the LOS model detector delay table. It is rounded to the nearest 
integer pixel because time offsets can only occur in whole line increments.  This detector 
shift is stored within the geometric model. 

 MS_settle_time is a small sample and hold time delay constant. 

 nominal_fill is the nominal fill associated with current band and SCA. 

 maximum_detector_shift is the theoretical offset used in calculating the geometric effects 
associated with the odd/even offset of the detectors. 

 
The MS_settle_time correction is expected to be a small (tens of microseconds) constant offset that 
should be captured in the CPF. The detector_shift_x offset parameter from the LOS model detector 
delay table is rounded to include the effects of even/odd detector stagger and detector deselect but 
not the detector-specific sub-pixel offsets. 
 
For the panchromatic band the corresponding equations for a pan detector in the two pan lines (2N 
and 2N+1) associated with MS line N are computed as: 
 
     if detector type is set to MAXIMUM 
 detector_shift_x = maximum_detector_shift 
 l0r_fill_pixels = round(detector_shift_x) + nominal_fill 
      else 

detector_shift_x = shift stored in geometric model 
            l0r_fill_pixels = Fill from L0rp (also stored in geometric model) 
 

time_index = floor( (pan_line - l0r_fill_pixels)/2 ) 
if ( time_index < 0 ) time_index = 0 
if (time_index > (num_time_stamps - 1)) time_index = num_time_stamps - 1 
 
Pan_actual_time = line_time_stamp[time_index] - Pan_settle_time - Pan_integration_time/2 
                           + (pan_line - l0r_fill_pixels - 2*time_index)*Pan_sample_time 
 
Pan_nominal_time = Pan_actual_time + (l0r_fill_pixels – nominal_fill) * Pan_sample_time 
 

where: 

 pan_line is the zero-referenced panchromatic line number (2N or 2N+1). 

 l0r_fill_pixels is the total amount of even/odd detector alignment fill to be inserted at the 
beginning of the pixel column associated with the current detector. These values are stored 
in the LOS model. Note that these values will always be even for the panchromatic band. 

 num_time_stamps is the total number of time codes (data frames) in the image. It is tested 
to ensure that time_index, the line_time_stamp index, does not go out of bounds. 

 detector_shift_x (unless type is MAXIMUM) is the amount of even/odd detector offset for 
the current detector from the LOS model detector delay table. It is rounded to the nearest 
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integer pixel because time offsets can only occur in whole line increments.  This detector 
shift is stored within the geometric model. 

 Pan_settle_time is a small sample and hold time delay constant. 

 nominal_fill is the nominal fill associated with current band and SCA. 

 maximum_detector_shift is the theoretical offset used in calculating the geometric effects 
associated with the odd/even offset of the detectors. 

 
For the panchromatic band, the l0r_fill_pixels and detector_shift_x parameters are in units of 
panchromatic pixels. 
 

a).2. Find LOS Find the line of sight vector in sensor coordinates, using the Legendre polynomial 
LOS model stored in the LOS model, as follows: 
 

Find normalized detector for Legendre polynomial: 
 

 
 

1
1-detectors ofnumber 

detectorcurrent  *2
detector   normalized   

 
    where: 

current detector = sample location (in the range 0 to number of detectors-1) 
number of detectors  = number of detectors (samples) for current band and SCA
 (from LOS model) 

 
 
Find across track (y) and along track (x) angles: 
 

   

    )5.0detector  normalized*5.1(*_detector  normalized*__

)5.0detector  normalized*5.1(*_detector  normalized*__

2

210

2

210





ycoefycoefycoefy

xcoefxcoefxcoefx
 

where: 
coef_x = Legendre coefficients for along track direction 
coef_y = Legendre coefficients for across track direction 

(Note: coef_x and coef_y are read from the CPF and stored in the LOS model) 

 
If LOS requested is ACTUAL, add the whole pixel detector shift (detector, band, and SCA 
dependent for OLI) from the LOS model. This detector shift is only in the along track 
direction. Note that the LOS model contains the combined whole pixel and sub-pixel detector 
offset, so it must be rounded to the integer part for the ACTUAL detector type and left 
unrounded for the EXACT detector type. 
 
  x = x + round(detector_shift_x) * IFOV 
  
If LOS requested is EXACT, then add individual detector offsets (detector number, band, and 
SCA dependent).  This detector shift is in both the along and across track directions.  These 
values are stored within the LOS model.   
 
  x = x + (detector_shift_x) * IFOV 
  y = y + (detector_shift_y) * IFOV 
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Note that the detector_shift_y parameter, from the LOS model detector delay table, is always 
sub-pixel. See LOS Model Creation ADD for further explanation of 
NOMINAL/ACTUAL/EXACT line of sight. 
 
If the LOS request in MAXIMUM then add the maximum, or theoretical,  detector offset. 
 

x = x + (maximum_detector_shift_x) * IFOV 
 

Calculate LOS vector. 

 


















1

los y

x

 

 
Normalize LOS. 








los

los
los  

 
a).3. Find Attitude  
Find the precise roll, pitch and yaw at the specified time. This routine uses the "corrected" version of 
the attitude data stored in the OLI LOS model. This attitude data sequence includes the effects of 
ground control point precision correction (if any).  

Find the current time relative to attitude data start time stored in the LOS model. 
 

dtime = time + image epoch time – attitude epoch time 
Note: 

time = nominal time of input sample relative to the start of the image epoch time 
= image start time from LOS model, only need seconds of day field since all 
epochs are adjusted to the same day. 
attitude epoch time = attitude data start time from LOS model, only need seconds 
of day field since all epochs are adjusted to the same day. 

 
Find index into attitude data (stored in model) corresponding to dtime: 
 











rate sampling attitude

dtime
floorindex  

where: 

attitude sampling rate = sample period from LOS model  
 
This attitude index determination could also be implemented as a search through the attitude 
data time stamps which are stored in the LOS model. The selected index would be the index 
of the last time that does not exceed dtime. 
 
Attitude is found by linearly interpolating between the attitude values located at index and 
index+1 using the corrected attitude sequence from the LOS model: 
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 
rate sampling attitude

rate sampling attitudedtime,fmod
w  

 

 

w

w

w

indexindexindex

indexindexindex

indexindexindex

*)yaw  modelyaw  model(yaw  modelyaw

*)pitch  modelpitch  model(pitch  modelpitch

*roll  modelroll  modelroll  modelroll

1

1

1













 

 

a).3.i. Find Jitter Find the high frequency roll, pitch and yaw corrections at the specified input image 
line/sample coordinate. This routine uses the jitter table stored in the OLI LOS model. This table is 
time aligned with the OLI panchromatic band line sample times, so the jitter table look-up proceeds 
directly from the input line/sample coordinates:  

Find the current detector number from the input sample location: 
 detector = round(sample) 
Verify that the detector is in the valid range for this band (return error if not). 
Look up the number of L0R fill pixels for this detector (from the fill table). 
Calculate the jitter table index: 
 If (band = pan) 
  Index = round(line) – l0r_fill_pixels 
 Else 
  Index = 2*(round(line) – l0r_fill_pixels) 
Verify that jitter table index is within the valid range for the table (return zeros if not). 
Extract the roll-pitch-yaw jitter values for the current index from the jitter table and return 
these values. 
 

Note that the jitter values are a direct look-up without interpolation. This does not compromise 
accuracy because this function is only used for cases of EXACT detector projection (e.g., the OLI 
data simulator) for which the input line/sample coordinates are integers. The jitter values extracted by 
Find Jitter are added to the low frequency roll-pitch-yaw values interpolated by Find Attitude by the 
calling procedure Get LOS when the EXACT option is in force. 
 

a).4. Move Satellite Sub-Algorithm Compute the satellite position and velocity at a delta time from 
the ephemeris reference time using Lagrange interpolation. This is a utility sub-algorithm that 
accesses the "corrected" version of the model ephemeris data to provide the OLI position and velocity 
at any specified time. Since the model ephemeris arrays are inputs to this sub-algorithm it will work 
with either the ECI or ECEF ephemeris data. 
 

Calculate time of current line/sample relative to start time of ephemeris start time. 
 

reference time = time + image epoch time – ephemeris epoch time 
 

  where: 

time = nominal time of input sample relative to the start of the imagery 
image epoch time = image start time from LOS model, only need seconds of day since all 

epochs are on same day. 

ephemeris epoch time = ephemeris start time from LOS model,  only need 
seconds of day since all epochs are on same day. 

 
Find index into ephemeris data stored in model. 
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









2

points Lagrange ofnumber 

steps    timeephemeris

  timereference
floorindex  

where: 

ephemeris time steps = time between ephemeris samples 
number of Lagrange points = number of points to use in Lagrange interpolation 

 
Use Lagrange interpolation to calculate satellite position and velocity in ECEF (or ECI, 
depending on which sequence is provided) coordinates at time of current line/sample. 
 

X    = Lagrange(model satellite ECEF/ECI x[index]) 
Y    = Lagrange(model satellite ECEF/ECI y[index]) 
Z    = Lagrange(model satellite ECEF/ECI z[index]) 
XV = Lagrange(model satellite ECEF/ECI vx[index]) 
YV = Lagrange(model satellite ECEF/ECI vx[index]) 
ZV = Lagrange(model satellite ECEF/ECI vx[index]) 

 
where:  

X    = satellite x coordinate 
Y    = satellite y coordinate 
Z    = satellite z coordinate 
XV = satellite x velocity 
YV = satellite y velocity 
ZV = satellite z velocity 

 
a).5. Convert Sensor LOS to Geocentric  
Find the line of sight vector from the spacecraft to a point on the ground by transforming the line of 
sight vector in sensor coordinates to perturbed spacecraft coordinates. 
 

Use the OLI alignment matrix in the LOS model to convert the LOS vector from sensor to 
body. Then apply roll, pitch, and yaw to the LOS to convert body to orbital. Finally, use the 
ephemeris to construct the orbital to ECEF rotation matrix and use it to transform LOS to 
ECEF.   
 
First, using the 3x3 ACS to instrument alignment transformation matrix stored in the LOS 
model, calculate the instrument to ACS transformation matrix. 
 

    1
Instrument    toACSACS    toInstrument


  

 
Transform LOS from Instrument to ACS/body coordinates. 
 

    losACS    toInstrumentlos  navigation   

 
Calculate attitude perturbation matrix using interpolated attitude values. Note that these 
values include the effects of precision LOS correction (if any) as these will be built into the 
"corrected" attitude stream in the LOS model. The Earth-view acquisitions the roll-pitch-yaw 
values will be with respect to the orbital coordinate system but for celestial acquisitions they 
will be with respect to ECI. 
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Calculate perturbation matrix, [perturbation], due to roll, pitch, and yaw: 
 

      rollpitchyaw RPYonperturbati  attitude

cos( ) cos( ) sin( ) sin( ) cos( ) cos( ) sin( ) sin( ) sin( ) cos( ) sin( ) cos( )

cos( ) sin( ) cos( ) cos( ) sin( ) sin( ) sin( ) cos( ) sin( ) sin( ) sin( ) cos( )

sin( ) sin( ) cos( ) cos( ) cos( )

p y r p y r y r y r p y

p y r y r p y r p y r y

p r p r p

 

  



















 

 
 
Calculate new LOS in orbital coordinates (Earth-view) or ECI (celestial) due to attitude 
perturbation: 
 

    los  navigationonperturbatiloson  perturbati   

 
For Earth-view acquisitions, calculate the transformation from Orbital Coordinates to ECEF.  
The position and velocity vectors used in calculating the transformation are those calculated 
above.  These vectors are in ECEF allowing the LOS to be transformed from the instrument 
coordinate system to the ECEF coordinate system. 
 
Transform perturbed LOS from Orbital to ECEF. 

 
    loson  perturbatiORB2ECEFlos  ECEF   

 
For celestial acquisitions, the ECI los ([perturbation los]) is returned. 

 

a).6. Find Target Position  
Finds the position where the line of sight vector intersects the Earth's surface. 
  

Intersect the LOS in ECEF with the Earth model calculating the target ECEF vector. The ECEF vector 
is then used to compute the geodetic latitude and the longitude of the intersection point.  

 

                                        
Figure 7:  Intersecting LOS with Earth model 
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   rs = satellite position vector 
   re = geocentric Earth vector 
   los = line-of-sight vector 

 
Intersect LOS with ellipsoid 
 

a) Rescale vectors with ellipsoid parameters. 
 











b
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a
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




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b
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a
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a
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where: 

a = semi-major axis of Earth ellipsoid 
b = semi-minor axis of Earth ellipsoid 
rs' = rescaled satellite position vector 
re' = rescaled geocentric Earth vector 
los' = rescaled LOS vector 
 

b) From the Law of Cosines 
 

)cos(''*2''*'
222

rslosdrslosdre   

where:  
d =  los’ vector length 
δ = angle between rs’ and los’ 

 

 
''

''
cos

rslos

rslos 
  

 
 By definition  | re’ | = 1 
 
Rearranging the equation determined from the Law of Cosines in terms of the 
constant d. 
 

  1'''2'
222  rsrslosdlosd  

 
 
 
 

Solving for d using the quadratic equation. 
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 
2

222

'

1''''''

rs

rslosrslosrslos
d


  

 
c) Compute new target vector. 
 

'*'' losdrsre   
 
d) Rescale target vector. 
 

 '*'*'* rezbreyarexare   

 
e) Compute Geodetic coordinates (see Geocentric to Geodetic below). 
 

   000 ,,,, hrezreyrex   

                              
If target height (H), or elevation corresponding to current z plane, is not zero: 
 
Initialize:  

Target vector:   rt=re 
Target height:   h0=0 
 

                   Iterate until Δh =(hi-H) is less than TOL 
 

a) Calculate delta height. 
 

Δh=hi-H 
 

b) Compute length of LOS. 
 

     222
rszrtzrsyrtyrsxrtxd   

 
where: 

d = length of LOS vector 
rt = target vector 
rs = spacecraft position vector 

 
c) Compute LOS /height sensitivity. 

 
losnq   

 
Where n is a vector normal to the ellipsoid surface. 
 

          Tiiiiin  sinsincoscoscos  

 
and: 

q = LOS height sensitivity coefficient 
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los = LOS unit vector 

i = current estimate of ground point latitude 

i = current estimate of ground point longitude 
 

d) Adjust LOS. 
 

hqdd  *  

 
e) Re-compute target vector. 

 

losdrsrt *  
 

f) Calculate new geodetic coordinates and corresponding height above ellipsoid. 
 

   111 ,,,,  iii hrtzrtyrtx   

    
   Calculate the geodetic latitude and longitude from the final ECEF vector. 

 

 

a).7. Geocentric to Geodetic The relationship between ECEF and geodetic coordinates can be 
expressed simply in its direct form: 
 

e2 = 1 - b2 / a2 
N = a / (1 - e2 sin2(φ))1/2 
X = (N + h) cos(φ) cos(λ) 
Y = (N + h) cos(φ) sin(λ) 
Z = (N (1-e2) + h) sin(φ) 
 

where: 
X, Y, Z - ECEF coordinates 

φ, λ, h  - Geodetic coordinates (lat , long , height h) 
N  - Ellipsoid radius of curvature in the prime vertical 
e2  - Ellipsoid eccentricity squared 
a, b  - Ellipsoid semi-major and semi-minor axes 

 
The closed-form solution for the general inverse problem (which is the problem here) involves the 
solution of a quadratic equation and is not typically used in practice.  Instead, an iterative solution is 
used for latitude and height for points that do not lie on the ellipsoid surface, i.e., for h ≠ 0.   
 
To convert ECEF Cartesian coordinates to spherical coordinates: 
 

Define: 
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Initialize:  
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Iterate until abs(hi-hi+1) < TOL 
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Projection Transformation 
Convert coordinates from one map projection to another.  The transformation from geodetic 
coordinates to the output map projection depends on the type of projection selected.  The 
mathematics for the forward and inverse transformations for the Universal Transverse Mercator 
(UTM), Lambert Conformal Conic, Transverse Mercator, Oblique Mercator, Polyconic, and the Space 
Oblique Mercator (SOM) map projections are handled by U.S Geological Survey’s (USGS) General 
Cartographic Transformation Package (GCTP), which may be obtained at 
http://edcftp.cr.usgs.gov/pub/software/gctpc/. 
 

ftp://edcftp.cr.usgs.gov/pub/software/gctpc/
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Grid Structure Summary 
Tables 1 and 2 below show the detailed contents of the geometric grid structure. 

Geometric Grid Structure Contents 

Satellite Number (8) 

WRS Path 

WRS Row (may be fractional) 

Acquisition Type (Earth, Lunar, Stellar) 

Scene Framing Information: 

   Frame Type:  PROJBOX, MAXBOX, PATH_MAXBOX, LUNAR, or 
STELLAR 

   Projection Units (text): METERS, RADIANS, ARCSECONDS 

   Projection Code:  GCTP integer code for UTM, SOM, etc... 

   Datum:  WGS84 

   Spheroid:  GCTP integer code = 12 (WGS84/GRS80) 

   UTM Zone:  UTM zone number (or 0 if not UTM) 

   Map Projection Parameters: 15-element double array containing 
parameters 

   Corners:  4 by 2 array of projection coordinates for UL, LL, UR, and LR 
corners 

   Path Oriented Framing Information: 

      Center Point:  latitude and longitude of WRS scene center 

      Projection Center:  Map x/y of WRS scene center 

      Rotation Angle:  Rotation (from true north) of the path frame (degrees)  

      Orientation Angle:  Rotation (from grid north) of the path frame 
(degrees) 

    Active Image Areas:  latitude and longitude (in degrees) of the four 
corners of the active image area (excluding leading and trailing SCA 
imagery) for each band 

Grid Structure Information: 

   Number of SCAs 

   Number of Bands 

   Band List:  array of band IDs included in grid 

   Array of band grid structures, one for each SCA in each band (see Table 
2) 

Table 1:  Geometric Grid Structure Contents 
 

Grid Structure Contents for Each SCA in Each Band 

Band number 

Grid cell size:  number of image lines and samples in each grid cell 

Grid cell scale:  1/lines per cell and 1/samples per cell 

Pixel size:  in projection units (usually meters) 

Number of lines in output image 

Number of samples in output image 

Number of lines in grid (NL) 

Number of samples in grid (NS) 

Number of z-planes (NZ) 

Index of zero-elevation z-plane 
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Z-plane spacing:  elevation increment between z-planes 

1D array of input line numbers corresponding to each grid row 

1D array of input sample numbers corresponding to each grid column 

3D array of output lines for each grid point (row-major order) (NS*NL*NZ) 

3D array of output samples for each grid point (row-major order) 
(NS*NL*NZ) 

Array of line c0, c1 even/odd offset coefficients (row-major order) (2*NS*NL) 

Array of sample d0, d1 even/odd offset coefficients (row-major order) (2* 
NS*NL) 

3D array of forward mapping (ils2ols) coefficient sets (NS*NL*NZ) 

3D array of inverse mapping (ols2ils) coefficient sets (NS*NL*NZ) 

3D array of line jitter sensitivity coefficient vectors (note 2) (3*NS*NL*NZ) 

3D array of sample jitter sensitivity coefficient vectors (note 2) 
(3*NS*NL*NZ) 

Degree of rough polynomial 

Array of rough line polynomial coefficients ((degree+1)2 * NZ values) 

Array of rough sample polynomial coefficients ((degree+1)2 * NZ values) 

Table 2:  Per Band Geometric Grid Structure Contents 
 
Geometric Grid Size 
To fully capture the potential variability of the 50 Hz attitude data that will be available within the 
LDCM ancillary data stream would require a grid spacing of 5 lines. This may be impractical. 
Fortunately, the OLI error budgets assumed that attitude variations at frequencies up to only 10 Hz 
would be corrected in the LOS model. Such variations can be captured by sampling at 20 Hz or 
higher. This corresponds to a grid spacing of 11-12 lines. The grid has been successfully tested down 
to a line sampling of 10 but this does make for a large grid structure. The inclusion of a high 
frequency jitter table in the OLI model and jitter sensitivity coefficients in the grid structure allow the 
grid to be less dense in the time (line) dimension. The baseline assumption is that attitude 
frequencies above 3 Hz will be relegated to the jitter table allowing the grid density to be reduced to 
30 lines thus saving grid space even with the addition of the new jitter sensitivity fields. 

7.2.2.8 Notes 

Some additional background assumptions and notes include: 
1. The NOVAS planetary ephemeris file provides the lunar ephemerides used to define the reference 

output space for lunar image processing. This file is in the original JPL format and is provided to 
the NOVAS routines as an input. 

2. The TIRS implementation of the LOS projection grid will include another new feature that has also 
been applied to OLI as of version 3.4 of this algorithm – a set of sensitivity coefficients that map 
roll-pitch-yaw deviations to the corresponding line and sample differences, for each grid cell. 
These sensitivity coefficients will be used by the resampler to convert high frequency (per image 
line) attitude variations to line and sample adjustments. Modeling the high frequency deviations 
separately and correcting them in the resampler allows for a sparser and more manageable sized 
grid. 
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7.2.3 OLI Line-of-Sight Model Correction Algorithm 

7.2.3.1 Background/Introduction 

The line-of-sight (LOS) model correction algorithm uses the results of ground control point (GCP) 
measurements in an image that was systematically and terrain corrected using the original LOS 
model, to derive estimates for corrections to the model. Corrections to the spacecraft attitude and 
ephemeris are computed in a least squares procedure which minimizes the differences between the 
measured locations of the control points and their true ground locations. This procedure includes the 
detection and removal of outlier GCPs using a modified t-distribution test. These corrections are 
added to the LOS model structure to create a “precision” model for subsequent use by other 
geometric algorithms. Creating the precision model involves repeating some of the processing 
originally performed by the LOS model creation algorithm to incorporate the model corrections. Once 
the precision model corrections are computed the algorithm performs simple threshold tests (e.g., on 
the pre-fit and post-fit RMS GCP residuals and the percentage of GCPs declared outliers) to 
determine if the solution was successful. If the solution is not successful, the LOS model is not 
updated with the corrections. 
 
The OLI LOS model correction algorithm is derived from the ALI precision correction algorithm used 
in ALIAS. Its implementation should be very similar to the aliprecision application. As with the LOS 
model creation algorithm, model correction makes extensive use of the ALIAS geometric sensor (axx) 
and spacecraft (exx) model libraries. 

7.2.3.2 Dependencies 

The LOS Model Correction algorithm assumes that ground control points exist for the ground site and 
that the Model Creation, LOS Projection and Gridding, and Image Resampling algorithms have been 
executed to create a systematic terrain corrected image for GCP mensuration. Note that the band 
selection and resolution of this mensuration image will depend upon the flow being executed/control 
source being used. For standard L1T product generation the GLS control (SWIR1 band, 30m 
resolution) will be used whereas for characterization and calibration flows the DOQ control 
(panchromatic 15m) will be used. It further assumes that the GCP Correlation algorithm/utility has 
been executed to measure the GCP locations in the mensuration image. The mensuration image may 
be either SCA-separated or SCA-combined though SCA-combined images will be the preferred mode 
of operation. 

7.2.3.3 Inputs 

The LOS Model Correction algorithm uses the inputs listed in the following table. Note that some of 
these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the 
values of and pointers to the input data; including data set IDs to provide unique identifiers for data 
trending). 
Algorithm Inputs 

ODL File (implementation) 

  Measured GCP file name 

  OLI LOS model file name 

  OLI grid file name 

  DEM file name 

  CPF file name 

  L1G image file name 

  Precision solution parameters: 

    Apriori weights for attitude correction parameters (in microradians and 
microradians/second) 
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    Apriori weights for ephemeris correction parameters (in meters and meters/second) 

    Correction model parameterization options (att_orb, eph_yaw, both, weight - default is 
"both")  

    Bias correction or rate of change correction option (time flag) 

    Apriori weights for GCP measurements (in at-sensor microradians) 

    Iteration limit 

    Outlier threshold 

  Processing Options (implementation): 

    Residual Trending On/Off Switch (new) 

    Solution/Alignment Trending On/Off Switch (new) 

  L0Rp ID (for trending) 

  Work Order ID (for trending) 

Measured GCP File Contents (see GCP Correlation ADD for additional details)  

    GCP image positions 

    GCP ground coordinates 

OLI Grid File Contents (see LOS Projection ADD for additional details) 

    Arrays of Input/Output Mappings 

    Output Image Frame (e.g., corners, map projection) 

OLI LOS Model Contents (see LOS Model Creation ADD for additional details) 

   WRS Path/Row 

    Number of input image (L1R) lines 

    Smoothed image time 
codes 

    Integration Time (pan and multispectral bands) (new) 

    Smoothed ephemeris at 1 second intervals 

    Earth orientation parameters (UT1UTC, pole wander) 

    OLI to ACS reference alignment matrix/quaternion 

    Spacecraft CM to OLI offset in ACS reference frame (new) 

    Focal plane model parameters (number of SCAs, number detectors/band, Legendre 
coefficients) 

    Detector offset table (including detector deselect offsets) (new) 

CPF File Contents 

   Pre-fit RMS threshold 

   Post-fit RMS threshold 

    Percent outlier threshold 

    Minimum number of valid GCPs threshold 

L1G Image File Contents 

    L1G Metadata 

DEM File Contents (see Maturity items 5 and 6) 

    DEM Metadata (new) 

    Elevation Data (new) 

 

7.2.3.4 Outputs 

Precision LOS Model (only items that are updated from the input LOS model are listed 
below) 

  Updated corrected ephemeris at 1 second intervals 

  Updated corrected attitude data sequence 

  Precision correction reference date/time 

  Precision attitude and ephemeris corrections 

LOS Model Correction Solution File (see Table 1 below for additional details) 

  LOS model correction reference date/time 

  Final iteration precision correction values 

  Final iteration precision correction covariance 

LOS Model Correction Residuals File (see Table 2 below for additional details) 
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  GCP residuals for each point for each iteration 

Correction Solution and Alignment Trending Data (new) (see Table 3 below for additional 
details) 

  Precision correction reference date/time 

  Precision attitude/ephemeris correction values (see note 1) 

  Reduced precision correction covariance (see note 2) 

  Solution quality metrics (see note 4) 

  Control type used (GLS or DOQ) 

  Off-nadir angle (in degrees) 

  L0Rp ID 

  Work Order ID  

  WRS Path/Row 

Correction Residuals Trending Data (see note 3) (new) (see Table 4 below for additional 
details) 

  WRS Path/Row 

  GCP ID 

  GCP Type (GLS or DOQ) 

  Date/Time of imaging 

  Spacecraft position/velocity at image time 

  GCP ground coordinates (lat,lon,height) 

  Apparent GCP position (lat, lon, height) in mensuration image 

LOS Model Correction Success/Failure Status Return (new) 

7.2.3.5 Options 

Solution/Alignment Trending On/Off Switch 
Residual Trending On/Off Switch 

7.2.3.6 Procedure 

The LOS correction procedure uses the ground control point (GCP) measurements collected by the 
GCP Correlation algorithm to estimate updates to the spacecraft attitude and ephemeris data which 
minimize the discrepancies between the actual (known) GCP locations and the apparent locations 
measured in the terrain corrected L1G image. The solution method adopted for OLI is essentially the 
same as that used for Landsat 7 and for the ALI wherein "truth" and "observed" line of sight (LOS) 
vectors are constructed in the orbital coordinate system and a weighted least squares solution is used 
to minimize the misalignments between the truth and observed vectors. The solution supports the 
estimation of offset and rate corrections for all three ephemeris position axes and for all three attitude 
angles (roll-pitch-yaw) though options are provided to reduce the number of parameters (e.g., solve 
for offsets only) to accommodate situations where the ground control points are few in number, poorly 
distributed, or inaccurate. 
 
There are several differences in the implementation of the OLI LOS correction model as compared to 
the previous missions. The first is a change in the coordinate system in which the corrections are 
applied. For Landsat 7 and ALI data, the precision corrections were applied in the orbital coordinate 
system. For OLI, they are applied in the spacecraft body/attitude control system coordinate system 
(this was also noted in the Ancillary Data Preprocessing ADD). For nadir-viewing scenes there is little 
difference but the case of off-nadir viewing leads to a few adjustments to the heritage algorithm in 
what follows. 
 
The second significant difference is in the way that the corrections are reflected in the precision LOS 
model created as an output by this procedure. In the heritage implementation, the ephemeris 
corrections were used to update the model ephemeris data sequence but the attitude corrections 
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were stored as a separate correction model that was applied explicitly in the forward model. For OLI, 
corrected versions of both the ephemeris and attitude data sequences are computed using the LOS 
correction solution results. These corrected data are stored in the LOS model along with the original 
ephemeris and attitude values. The parameters of the correction model are also included in the model 
though they are there primarily for documentation purposes and are no longer used in the forward 
model computation. 
 
The third difference is the inclusion of a portion of the sensor alignment calibration logic into the LOS 
correction algorithm. This logic uses the OLI to ACS alignment matrix stored in the OLI LOS model to 
convert the computed attitude offset corrections to OLI alignment angles. This yields updated 
estimates of the OLI to ACS alignment angles that are output to the characterization database for 
subsequent trending in the sensor alignment calibration procedure. 
 
A fourth difference is the use of L1G terrain but not precision corrected images to measure the control 
points (see the GCP Correlation ADD). This gives the apparent (measured) GCP location a non-zero 
height coordinate. The true GCP elevation (from the known GCP ground location) could be used but it 
is more correct to interpolate the apparent point height from the DEM used to create the terrain 
corrected L1G mensuration image. The use of terrain corrected mensuration images also allows 
these images to be SCA-combined since the SCA overlap areas will be geometrically consistent. 
 
The mathematical underpinnings of the LOS correction algorithm are presented first, followed by an 
overview of the procedure for implementing the algorithm. 
 
Mathematical Development 
The mathematical background of the LOS correction algorithm is presented in the following sub-
sections. In what follows the equations presented are numbered so that they can be more easily 
referenced in the subsequent mathematical formulation and in the algorithm procedure sections. 
 
1. Formulating the Observations 
The geometric measurement in the OLI sensor system can be regarded as the look vector, lsc, in the 
spacecraft body-fixed system. This vector is transformed into the Orbit Reference Frame (OB) system 
(see Figure 1) as described in the Ancillary Data Preprocessing ADD, through the spacecraft attitude 
parameters: 
 

lob  =  TT(r, p, y) lsc.        (1.1) 
 

where r, p, and y are roll, pitch, and yaw angles, T is the transformation matrix, and can be 
expressed as 
 

      T (r, p, y)  =  R3(y)R2(p)R1(r)  
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where R1, R2, and R3 are the coordinate system transformation matrix for rotation around x, y and z-
axis respectively. 
 

 

Figure 1:  Definition of Orbit Reference System 

 
The vector lob is further transformed into the ECF system 
 

lef = Tf(ref, vef) lob        (1.3) 
 
where Tf is the forward transformation for vectors from the OB system to the ECF system, as a 
function of the satellite position ref and velocity vef vectors in the ECF system. Note that vef should be 
the "inertial" velocity expressed in the ECF system as described in the Ancillary Data Preprocessing 
ADD.  Vector lef, together with the satellite position vector, ref, is then used to intersect the ellipsoid 
Earth surface to pin down a point position, Ref, as the target point on the Earth. This is the common 
forward image pixel geolocation calculation (forward model). Note that when using a terrain corrected 
L1G mensuration image, the Ref point represents the intersection of the LOS with the DEM used to 
create the L1G image rather than the Earth ellipsoid surface. The target point will thus have a non-
zero height coordinate. 
 

Mathematically, Ref is a function of   lsc, r, p,y, ref, and vef. 
 

Ref   =   F(lsc, r, p,y, ref, vef )       (1.4) 
 
Because of errors in the satellite orbit ephemeris and attitude data, this calculated Ref is different than 
the true location of the image pixel. If we know the true location of a landmark pixel (Rcp) from other 
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sources (i.e., base map, survey etc.), this point can be taken as a GCP to check the accuracy of the 
computed image pixel location. The precision correction process uses the GCP coordinates to 
estimate the correction to the satellite ephemeris and attitude data, so that with the corrected 
parameters in equation (1.4) the calculated image pixel location, Ref, will be close to its true location, 
Rcp (depending on the GCP positional accuracy). 
 
To calculate the precision correction, the difference between Ref and Rcp is taken as the observable, 
and the observation equation becomes: 
 

dR  =  Rcp  -   F(lsc, r, p,y, ref, vef )      (1.5) 

 
according to equation (1.4). However, the actual calculation of Ref is usually not an explicit function of 
the orbit and attitude parameters, especially for the intersecting procedure. Therefore, it is 
inconvenient to linearize equation (1.5) with standard estimation techniques. Instead, the calculation 
of look vector lcp corresponding to Rcp, in the OB system, is much more explicit: 
 

 

efcp

efcp

efeficp ),(
rR

rR
vrTl




       (1.6) 

 
where (Rcp - ref) is the LOS vector in the ECF system corresponding to Rcp, and Ti(ref, vef) is the 
inverse transformation for the look vector from the ECF system to the OB system.  If all the satellite 
attitude and ephemeris parameters are accurate, the lcp from equation (1.6) and lob from equation 
(1.1) should be equal. Since the measurement lsc is accurate compared to the attitude and ephemeris 
information, any systematic difference between lcp and lob can be attributed to the attitude and orbit 
errors. Thus we can use the difference between lcp and lob as the observable.  
 

dl  =  lcp - lob  =  Ti(ref, vef)
efcp

efcp )(

rR

rR




 -  T(r, p, y) lsc   (1.7) 

 
The task of precision modeling is then to calculate the correction to those satellite ephemeris and 

attitude parameters (i.e., ref, vef and 's) so that the residuals of dl after correction are minimized for 
all selected GCPs.  The orbit correction is modeled as a linear function of time for each component in 
the OB system. Referred to as the short arc method, this purely geometric method shifts and rotates 
the short arc of orbit defined by the original ephemeris points to fit the GCP measurements. 
 
2. Linearizing the Observations 
These observation equations can be linearized with the following steps.  In equation (1.7), the 
calculation of  lob can also be carried out through 
 

lob = Ti(ref, vef)(Ref - ref) / | Ref - ref  |      (2.1) 
 
if Ref is more conveniently accessible. Since equation (2.1) is simply the inverse of equation (1.4) and 
equation (1.3), the lob calculated from equation (2.1) is the same as the one in equation (1.1) except 
for the possible inclusion of numerical errors.  However, it should be mentioned that the true 
relationship between lob and the parameters is always equation (1.1).  Equation (2.1) should not be 
confused with this because Ref in equation (2.1) is not an independent variable but a function of 
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equation (1.4).  So, in observation (1.7) information about the attitude parameters is contained in lob 
and the information about orbit parameters comes from lcp. 
 
Since the measurement of lsc is 2-dimensional in nature, only 2-dimensional information is contained 
in equation (1.7) though there are 3 components involved. If a look vector (either lcp or lob) has the 
three components in the OB system. 
 

l  =  {xl, yl, zl}         (2.2) 
 
The real information in these three components can be summarized in two variables like the original 
look angle measurements. We chose the following two variables: 
 

atan (yl / zl )         (2.3)  
 

atan (xl / zl )         (2.4) 
 
So that the three components of equation (1.7) can be reduced to the two equations: 
 

cp  ob         (2.5)  
 

cpob         (2.6) 
 
Note that in equation (2.3) and (2.4) the components of xl, yl, and  zl can be that of LOS vector 

instead of unit look vector, so that cp and cp are explicit functions of orbit position. In that case zl is 
approximately the height of the satellite. 
 
If we define,  
 
 true value = approximate value + correction 
 

and differentiate equations (2.3) and (2.4) with respect to the orbit position (for cp and cp), 

differentiate equation (1.1) with respect to the satellite attitude (for ob and ob) at their corresponding 
approximate values, then equations (2.5) and (2.6) can be linearized as the function of correction 
parameters. 
 

      cos2
cp / h) dy  (coscp sincp / h) dz + dr    (2.7)  

 

h) dx  dp + tancp dy     (2.8) 
 

where dx, dy, and dz are the correction to satellite position vector rob in the OB system, and d's are 

the corrections to the satellite attitude angle 's.  Other quantities are functions evaluated at the 

approximate values of ref, vef, and 's.  
 
The linearization above is done by directly differentiating equation (2.3) and (2.4), with transformation 
Ti regarded unaffected by the error in ref and vef. This, however, ignores the curvature of the satellite 
orbit and the Earth, resulting in about 10% of error in the coefficients of dx, dy, and dz. A more 

accurate way to evaluate these coefficients is to examine the sensitivity terms dcp/dx, dcp/dy, and 

dcp/dz through the geometry of the look vector (see Figure 2). 
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Figure 2:  Look Vector Geometry 

 

 R – the radius of the Earth 
 r  – the radius of the satellite position 
 h  – the altitude of the satellite 
 d  – the magnitude of the look vector (from satellite to target) 

  – the across-track angle of the look vector 

 the Earth centered angle between the satellite and the target 

 –  the zenith angle of the look vector at the target 
x,y,z – the coordinates of the satellite  position in the OB system 

  
We have 
 

      R sin( + )  =  r sin         (2.9) 
 
Differentiating the equation (holding R and r constant) yield 
 

      R cos( + )(d + d)  =  r cos d      (2.10) 
 

Note that when  +   =  ,  and d  =  dy / r, we have 
 

  =  d  =  (b / (r d)) dy        (2.11) 
 
Similarly for the along-track direction, we have 
 

        = d  =  (-(r - d cos) / (r d cos)) dx      (2.12) 
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For the effect of altitude error, differentiate equation (2.9) with respect to  and r (holding  constant) 
and noting dr = -dz, we have 
 

        =  d  = (sin  / d) dz        (2.13) 
 
Note that the dx, dy, and dz in equations (2.11) through (2.13) are error terms, which are opposite in 
sign to the correction terms. With this in mind, we can replace the correction terms in equation (2.7) 
and (2.8) and rewrite the linearized observation equation as: 
 

        =  (b / (r d)) dy  (sin  / d) dz + dr      (2.14)  
 

  =  ((r - d cos) / (rd cos)) dx - dp + tan  dy    ( 2.15) 
 
where: 
 

      b  =  R cos  =  sqrt(R2  (r2sin2
))      (2.16)  

 

d  =  r cos  - b         (2.17) 
 
This formulation does not account for the effects of applying the attitude correction in the ACS/body 
frame rather than the orbital frame. This is particularly significant in the case of off-nadir pointing. In 
the general case, applying the attitude correction in the ACS coordinate system leads to the following 
linearized observation equations: 
 

        =  (b / (r d)) dy  (sin  / d) dz + M11 dr + M12 dp + M13 dy  (2.18)  
 

  =  ((r - d cos) / (rd cos)) dx + (M31 tan  - M21) dr  

    + (M32 tan  - M22) dp + (M33 tan  - M23) dy    (2.19) 
 
where: 
 

M11, M12, M13, M21, M22, M23, M31, M32, M33 are the elements of the ACS to Orbital rotation matrix 
MACS2ORB at the time of the GCP observation. Thus, it is necessary to know the spacecraft roll-
pitch-yaw corresponding to the GCP. 

 
MACS2ORB = 
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Note that for nominal nadir viewing M11 = M22 = M33 = 1 and M12 = M13 = M21 = M23 = M31 = M32 = 0 
and equations (2.18) and (2.19) reduce to equations (2.14) and (2.15). 
 
Both linearized observation equations (2.18) and (2.19) include all three attitude correction terms. 
This has the effect of linking the along- and across-track observations in the new OLI formulation, 
unlike the heritage implementation which used separate along- and across-track solutions. 
 
3. Weighted Least Squares Solution 
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A weighted least squares solution to the parameters is found using the following steps.  The 
correction parameters in equations (2.18) and (2.19) can be expanded to include the correction to the 
change rates of the satellite attitude and position by defining 
 

      dx  =  dx0 + dxdotdt       and    dr  =  dr0 + drdotdt    (3.1) 
 
Since both the coordinates of the GCP and the measurement of the apparent GCP location in the 

image contribute random errors in computing  and , the covariance matrix for the observation 
equations (2.18) and (2.19) should be the sum of the covariance matrix of Rcp in equation (1.6) and 
the covariance matrix of Ref in equation (2.1), mapped through equations (1.7), (2.3), and (2.4). 
 

Note that in the observation equations (2.14) / (2.15) and (2.18a) / (2.19a),  is only related to 

parameters dy, dz, and dr, and  is only related to dx, dp, and dy.  The parameters are uncoupled 

in the two observations. In the simplified case where observational error of and  are uncorrelated, 
the observation equations can be separated into two independent equations and solved individually. 
In the more general case of equations (2.18) and (2.19) the equations are coupled and must be 
solved together. This coupling is, in fact, present due to the yaw offsets introduced by yaw steering. 
 
While it might be tempting to try to circumvent this complication by redefining the orbital coordinate 
system to be based on the Earth-rotation corrected ECEF velocity vector (thereby "yaw-steering" the 
orbital coordinate system) this would lead to a different set of complications in the application of the 
ephemeris corrections. In the baseline algorithm we will adopt the general formulation of equations 
(2.18) and (2.19) and have adjusted the heritage separable least squares solution formulation 
accordingly. 
 
Proceeding with the integrated formulation, we define the parameter vector as: 
 

X’  =  {dr0, dp0, dy0, dx0, dy0, dz0, drdot, dpdot, dydot, dxdot, dydot, dzdot} (3.2) 
 
(deleted)          (3.3) 

 
where ' means transpose of a vector or matrix.  Then, the two observation equations can be written 
as: 
 

  =  h1 X + a         (3.4) 
 

 =  h2 X + b         (3.5) 
 
where: 
 

h1 = { M11,    M12,      M13,     0.0, b/(d r),     -sin /d,  

          M11 dt, M12 dt, M13 dt, 0.0, b dt/(d r), -sin  dt/d}    (3.6) 
 

h2 = {(M31 tan - M21,     (M32 tan - M22,     (M33 tan - M23, 

         (r - d cos/(r d cos),     0.0, 0.0,    

         (M31 tan - M21dt, (M32 tan - M22 dt, (M33 tan - M23 dt,  

         (r - d cos) dt/(r d cos), 0.0, 0.0}       (3.7) 
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with M11, M12, M13, M21, M22, M23, M31, M32, M33 the elements of the ACS to Orbital rotation matrix 
MACS2ORB at the time of the GCP observation. 

 

a and b are the random error of  and  respectively. With all GCPs included, the along- and across-
track observation equation can be written as: 
 

A = H1X + A         (3.8) 
 

B = H2X +B         (3.9) 
 
and the integrated parameters can be solved by WLS estimation as: 
 

X = (H1’WaH1 + H2’WbH2)
-1 (H1’WaA + H2’WbB)    (3.10)  

 

where A and B are the observation vectors, composed of and  for all the GCPs, respectively. H1 

and H2 are corresponding coefficient matrix with h1 and h2 as rows corresponding to each  and , 
Wa and Wb are the diagonal weight matrix for A and B respectively, composed of inverse of the 

variance of each individual a and b. 
 
4. Parameter Correlation and Covariance Estimation 

One problem in this solution is the nearly linear correlation between parameter dx and dp in the 
observation equation (3.7). The along-track orbit error and the pitch angle error have the very similar 

effect on  The two parameters cannot be well separated in the solution without additional 
information – including both parameters in the observation equations results in a near-singular normal 
equation and therefore an unstable solution of the parameters. Similarly, high correlation exists 
between the cross-track position and the roll attitude errors in equation (3.6) and an ill-conditioned 
normal equation would result. 
 
For the purpose of correcting the image, we do not have to distinguish between orbit position 
correction and attitude correction parameters. Letting either the orbit or attitude correction parameters 
absorb the existing errors will correct the image in a similar manner.  Therefore, we can choose to 

estimate either dx and dy or dp and dr.  This can be done by setting those coefficients in h1 and h2, 
corresponding to the unwanted parameters to zero. 
 
One of the challenging tasks is to distinguish satellite attitude error from the orbit positional error. The 
purpose of precision correction estimation is not only to correct the image but also to extract 
information about the sensor alignment, which is reflected in the attitude correction parameters. In 
order to separate the ephemeris error from the attitude error as much as possible, we should first use 
the most precise ephemeris data available and correct systematic errors with available models. 
Second we should use available a priori information in addition to the observation to cure the ill 
condition of the normal equation in statistical estimation. 
 
Let the observation equation be: 
 

      Y  =  HX + ; 

      [] = 0,   Cov[] = s2C       (4.1) 
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where Y is the measurement vector, X the parameter vector, H the coefficient matrix and  the 
residual error vector, and s2 is a covariance scaling factor; 
 
and the a priori information of the parameters be: 
 

X_ = X + x;   

[x] = 0,  Cov[x]  = q2Cx      (4.2) 
 

where X_ is the apriori parameter vector, x is the residual vector and q2 is a covariance scaling 
factor; 
 
then the normal equation for the Best Linear Unbiased Estimate (BLUE) X^ of the unknown 
parameter vector X is: 
 
      ((l/s2)H’WH + (l/q2)Wx)X^ = (l/s2)H’WY + (l/q2)WxX_   (4.3) 
 
where W and Wx are weight matrices. 
 

W = C-1;  
 
Wx = Cx

-1         (4.4) 
 
The covariance matrix of X^ is: 
 
      Cov[X^] = ((l/s2)H’WH + (l/q2)Wx)

-1     (4.5) 
 

Usually, the Cov[] and Cov[x] can not be exactly known. In the case of GCP, for example, the 
position error involves many factors like base map error, and human marking error, etc...  If there are 
unknown scale factors s2 and q2, we can still obtain the WLS estimate from the normal equation. 
 

(H’WH + Wx)X^ = H’WY + WxX_     (4.6) 
 
In such case, the inverse of the normal matrix can not be taken directly as the Cov[X^]. Factor s2 and 
q2 should be estimated with appropriate variance component estimation from the residual of the 
solution of equation (4.6). The weighted residual square summation can be calculated as: 
 

V’WV = Y’WY - 2 X^’M + X^’ NX^     (4.7)  
 
Vx’WxVx = X_’WxX_ - 2 X^’WxX_ + X^’WxX^   (4.8) 

 
where: 
 

V = Y - HX^  the measurement residual vector  (4.9)  
 
Vx = X_ - X^  the apriori parameter residual vector  (4.10)  
 
N = H’WH         (4.11)  
 
M = H’WY        (4.12) 
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When the factors s2 and q2 are appropriately estimated, the weight matrix W and Wx should be 
correspondingly corrected by factors 1/s2 and 1/q2, respectively. Equation (4.6) should be resolved 
with the new weight matrices. In the new solution, information from the observation and the a priori 
information are appropriately combined and the  
(H' WH + Wx)

-1 is the Cov[X^]. 
 
 
 
 
5. Weight Factor Estimation 
One of the estimates of s2 and q2 is the Helmert type estimate. For the problem here, the equation for 
the estimate can be derived following Helmert's variance component analysis, 
 

E s2 + D q2 = V’WV       (5.1)  
 
D s2 + G q2 = Vx’WxVx       (5.2) 

 
where: 
 

E = n - 2 tr{Q N} + tr{Q N Q N}      (5.3) 
 
G = m - 2 tr{Q Wx} + tr{Q Wx Q Wx}     (5.4)  
 
D = tr{Q N Q Wx}       (5.5)  
 
Q = (H’ W H + Wx)

-1       (5.6)  
 
n = number of observations  
 
m = number of parameters 
 
tr{A} indicates the trace of matrix A 

 
Equation (5.1) and (5.2) do not guarantee positive solution of s2 and q2. In some cases, especially for 
small s2 and q2, noise can drive the solution negative. Another type of estimate, the iterative 
Maximum Likelihood Estimate (MLH), guarantees positive solution, though the estimate s2 and q2 
may not be statistically unbiased. The MLH solution is obtained by iteratively solving equation (4.6) 
and 
 

s2 = V’WV / n        (5.7)  
 
q2 = Vx’WxVx / m        (5.8)  
 
W = W / s2         (5.9)  
 
Wx = Wx / q

2        (5.10) 
 
until s2 and q2 converge. 



LDCM-ADEF-001 
Version 3 

 

 
The solution above provides the estimate of the corrections to the ephemeris and attitude data as well 
as to their covariance matrix. The covariance information can be used as a measure of precision for 
assessing the alignment errors of the sensor system. It can also be propagated to any pixel in the 
scene to evaluate the pixel location error after the precision correction. 
 
6. Covariance Propagation 
Given the sample time and across-track look angle of a pixel, the coefficients h1 and h2 can be 

calculated for  and  according to equation (3.6) and (3.7). The variance of  and  are then 
calculated as: 
 


2 = h1 Cov[X^]h1’       (6.1) 

 


2 = h2 Cov[X^]h2’       (6.2) 

 
These are the variance of the pixel location in sample and line directions due to the uncertainty of the 
estimated precision correction parameters. They are in angles but can be easily converted into IFOV 
according to the sensor system specifications. 
 
7. Outlier Detection 
Outlier detection for the precision correction solutions seeks to identify GCPs that are likely to be in 
error due to miscorrelation. This is done by analyzing the GCP residuals, taking into account the 
relative importance of the GCP as reflected in the precision solution normal equation matrix. 
 
Definitions: 

A = matrix of coefficients (partial derivatives) relating parameters to observations 

 = parameter vector 
X = observation vector 
V = residual vector 
C = observation covariance matrix 
n = the number of observations 
p = the number of parameters 

A is n x p,  is p x 1, X and V are n x 1, and C is n x n 
 
Observation Equation: 

A = X - V         (7.1) 
 
X = Xtrue + E where E = error vector ~ G(0,C)    (7.2) 
 

Atrue = Xtrue where true is the “true” parameter vector   (7.3) 
 

A = Xtrue + E - V         (7.4) 

so V = E if  = true 
 
Minimum Variance Parameter Estimate: 

’ = [ATC-1A]-1ATC-1X        (7.5) 
 
Estimated Residual Error: 
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V’ = X - A[ATC-1A]-1ATC-1X       (7.6) 
 
Define Projection matrix P: 

P = A[ATC-1A]-1ATC-1        (7.7) 
This matrix projects the observation vector into the parameter subspace (the column space of A). 
This projection is only orthogonal if C has the special structure described below. 

 
Substituting: 

V’ = X - PX = [I - P]X        (7.8) 
[I - P] projects X into the parameter null space. 

 
Looking at the Error Estimate V’: 

V’ = [I - P]X = [I - P][Xtrue + E] = [I - P]Xtrue + [I - P]E    (7.9) 
 
but [I - P]Xtrue = 0 since Xtrue lies entirely within the parameter subspace. 
 
so V’ = [I - P]E = E - PE        (7.10) 

 
Here are some comments about V’ and E: 

For a given precision solution the elements of E are not random variables, they are realizations of 
random variables. 

V’ is an estimate of the actual (realized) error E which includes an estimation error equal to PE. 
We cannot exactly recover E from [I - P]-1V’ because [I - P] is singular (it is an n x n matrix of rank 

n-p). 
We can attempt to predict how accurate our estimate (V’) of E is likely to be by looking at the 

estimation error R = PE. 
Since we want the predicted accuracy to apply in general, we treat R as a random vector, which is 

a function of another random vector E. 
Expected Value:  E[ R ] = E[ P E ] = P E[ E ] = P 0 = 0  (7.11) 
Variance:  E[ R RT ] = E[ P E ET PT ] = P E[ E ET ] PT = P C PT (7.12) 

 
Special Structure of Observation Covariance Matrix for Precision Correction: 

C = 2I          (7.13) 
since the observation errors are realizations of independent and identically distributed zero mean 

Gaussian random variables with variance 2. 
 
Substituting (7.13) into equation (7.7) for P yields: 

P = A[(1/2)ATIA]-1ATI(1/2) = A2[ATA]-1AT(1/2) = A[ATA]-1AT  (7.14) 
 
And the equation for the variance of R: 

E[ R RT ] = 2 P I PT = 2 P       (7.15) 
noting that PT = P and P P = P 

so R ~ G( 0, 2 P ) 
 
For a particular component of R ri: 

E[ ri ] = 0          (7.16) 

E[ ri
2 ] = 2 pii         (7.17) 

Where pii is the ith diagonal component of P 



LDCM-ADEF-001 
Version 3 

 

 
Looking at the equation for P we see that: 

pii = Ai
T [ATA]-1 Ai        (7.18) 

Where Ai
T is the ith row of A 

 
Considering a particular component of the Residual Error Vector V’: 

vi = ei - ri          (7.19) 
Where ei is the corresponding component of the observation error vector 

so vi is an unbiased estimate of ei with variance 2 pii 
 
If we knew what ei was, we could test it against a probability threshold derived from its standard 

deviation, , to determine if it is likely to be an outlier. Instead of ei we have vi which includes the 
additional error term ri. Including the additional estimation error in the threshold computation leads to: 

v
2 = 2 + 2 pii         (7.20) 

Where 2 is the term due to the actual error variance and 2 pii is the term due to the estimation 
error variance. 

 
This may seem like cheating since ei and ri are not independent for a given realization.  

E[ vi
2 ] = E[ (ei - ri)

2 ] = E[ ei
2 - 2eiri + ri

2 ] and ri = j pij ej  

E[ vi
2 ] = 2 (1 - pii)        (7.21) 

 
It is tempting to use vi / (1 - pii)

1/2 for ei in the outlier test (or, equivalently, to test vi against a threshold 

based on 2 (1 - pii)) but this becomes dangerous as pii approaches 1. The factor pii can be 
interpreted as a measure of the uniqueness of, or as the information content of, the ith observation. As 
pii approaches 1, the ith observation lies almost entirely within the parameter subspace, which implies 
that it is providing information to the solution that the other observations do not. Note that such 
“influential” observations can be identified from the structure of the coefficient matrix, A, without 
reference to the observation residuals. Attempting to use 1/(1 - pii)

1/2 to rescale the residual vi to 
better approximate ei will, in a sense, punish this observation for being important. Instead, we view pii 
as a measure of how poor an estimate of the actual error, ei, the residual, vi, is and ignore the fact 

that vi will tend to be an underestimate of ei. We therefore use v
2 (= 2 (1 + pii) as shown above) to 

construct the outlier detection threshold. 
 

One remaining problem is that we do not know exactly what 2 is and must estimate it from the 
observation residuals. This is done by scaling the a priori observation variance using the variance of 
unit weight that was computed in the precision solution. The fact that we are using an estimated 
variance to establish our outlier detection threshold modifies the algorithm in two ways:  1) we 
compensate for the fact that removing a point as an outlier will alter the computation of the variance 
of unit weight by removing one residual and reducing the number of degrees of freedom; and 2) we 
base the detection threshold computation on student’s t-distribution rather than the Gaussian 
distribution. 
 
The variance of unit weight is computed as: 

var0 = VTC-1V/(n - p) = VTV/0
2(n - p) = vj

2/0
2(n - p)    (7.22) 

 Where: n = number of observations, 
  p = number of parameters, and 

  0
2 is the a priori variance. 
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The estimated variance is: 

var = var0 0
2 = vj

2/(n - p)       (7.23) 
 
Removing the kth observation makes this: 

vark = (vj
2 - vk

2)/(n - 1 - p) = (n - p)/(n - p - 1) * (vj
2 - vk

2)/(n - p) 
vark = (n - p)/(n - p - 1) * var - vk

2/(n - 1 - p)     (7.24) 
 

To normalize the kth residual we divide it by the estimated standard deviation ’ = (var)1/2: 

wk = vk / ’         (7.25) 
 
We can rescale this normalized residual to reflect the removal of this observation from the variance 
estimate without having to actually compute a new variance: 

wk’ = vk / k’ = wk ’/k’ = wk (var/vark)
1/2 

var/vark = 1 / [(n - p)/(n - p - 1) - vk
2/var (n - p - 1)] = (n - p - 1)/(n - p - vk

2/var) 
var/vark = (n - p - 1)/(n - p - wk

2) 
 noting that vk

2/var = wk
2 

wk’ = wk [(n - p - 1)/(n - p - wk
2)]1/2      (7.26) 

 
Finally, we include the (1 + pkk) factor discussed above and our normalized and reweighted residual 
becomes: 

wk’ = wk [(n - p - 1)/(1 + pkk)(n - p - wk
2)]1/2     (7.27) 

 where:  wk = vk / ’ 
 
This normalized and reweighted residual is compared against a probability threshold computed using 
Student’s t-distribution with (n - p) degrees of freedom. 
 
LOS Correction Procedure Overview 
The precision correction procedure developed mathematically above is implemented as an iterative 
solution to account for the non-linearity of the observation equations presented in (2.5) and (2.6) 
above. Each step in the iteration solves the linearized correction problem using equation (3.10) 
above, using the current correction estimates, to compute incremental corrections for the current 
iteration. These corrections are used to update the current estimates, and the iteration continues until 
the incremental corrections are smaller than some threshold (or the iteration limit is exceeded). 
 
An additional layer of iteration is introduced by the need to perform outlier filtering on the input GCP 
data. The procedure thus includes two levels of iteration: 1) use the current active set of GCPs to 
perform the iterative weighted least squares solution (the linearization iteration); 2) filter the resulting 
GCP residuals for outliers, remove those exceeding the specified tolerance, and iterate the weighted 
least squares procedure with the new (reduced) active set until no new outliers are found. 
 
The LOS correction procedure can be viewed as a five phase process in which the third and fourth 
phases are nested: 

a) Phase 1 - Load the necessary data and initialize the solution procedure. 
b) Phase 2 - Load and initialize the GCPs. For each GCP, use the geometric grid to compute the 

input space (L1R) location and time of observation. Interpolate the spacecraft position, 
velocity, and attitude at the time of observation. 

c) Phase 3 - Use the current active set of GCPs to form and solve the linearized weighted least 
squares equation. Use the computed corrections to update the current estimates. Iterate the 
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linearized solution procedure until the incremental corrections are below the convergence 
threshold. Compute and write residuals for each iteration (the initial pre-correction and final 
iteration residuals are both used in geodetic accuracy assessment). Note that the residuals file 
is reinitialized at the beginning of each phase 4 loop so that the output residual file will reflect 
only the final pass through the outlier detection loop (phase 4). 

d) Phase 4 - Run the outlier detection and removal iteration loop using the results of the iterative 
weighted least squares solution procedure (phase 3) by testing the resulting residuals for 
outliers. Remove any newly detected outliers from the active GCP list and recompute the 
phase 3 solution with the reduced GCP set. Continue to iterate until no new outliers are 
detected. 

e) Phase 5 - Write the precision solution file to document the final result, update the LOS model, 
and, if requested, convert the attitude corrections to OLI alignment angles and write the 
resulting alignment calibration information to the characterization database. 

 
Figure 3 shows a block diagram of the LOS correction procedure in which the individual process 
steps are identified by phase using the codes P1 through P5. 
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Figure 3:  LOS Correction Algorithm Block Diagram 

 
We next examine the individual process steps in the prototype LOS correction procedure. 

7.2.3.7 Prototype Code 

Inputs to the executable are an ODL parameter file, an ASCII GCP measurement file created by the 
GCP correlation algorithm, the L1G image used to measure the GCPs, the OLI LOS model used to 
create the L1G image, the LOS projection grid file used to create the L1G image, the calibration 
parameter file used to create the L1G image, and the DEM file (if any) used to terrain correct the L1G 
image. Note that only the L1G image metadata is used, not the imagery itself. The outputs are an 
updated (precision corrected) OLI LOS model file, an ASCII report file containing a standard header 
that identifies the data set analyzed, and the results of the precision correction solution, and an ASCII 
file containing the computed GCP residual errors at each iteration of the solution. The GCP residuals 
for the first and last iteration are subsequently used by the geodetic accuracy characterization 
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algorithm. The prototype implementation also includes an option to generate trending data which, 
rather than being stored in a database, is written to the standard output in a comma-delimited format. 
 
The prototype code accesses two environment variables to populate fields used in the standard 
report header. These are IAS_REL which contains the IAS software version number, and IAS_SITE 
which contains a text string identifying the processing center. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall -march=nocona -m32 
 
Get Precision Parameters (get_prec_par) 
This function gets the precision correction algorithm parameters. 
 

Read Precision Parameters (read_prec_parm) 
This function reads all the parameters from ODL and CPF files that precision requires.   

 
 
Get Position (get_position) 
This function finds the satellite position, velocity, attitude and reference time for each GCP. 
 

Add Position (add_position) 
This function adds the position to the ground control point structure and assigns the reference 
time to the time structure using the following steps.  

1. From the 1G line and sample, find the latitude and longitude, and use the DEM to find the height at 

that line/sample (new for LDCM); then transform to earth fixed. 

2. From the L1G line and sample use the geometric grid and the ols2ils routine (reference the LOS 

Projection ADD) to compute the corresponding input space line and sample. Note that this 

computation includes the DEM height interpolated in step 1 above, which is new for LDCM. 

3. From the input space line and sample calculate the reference year, day, and seconds, satellite 

position and velocity, and spacecraft attitude (roll-pitch-yaw). Note that the inclusion of roll-pitch-

yaw here is new for LDCM. 

4. Calculate the transformation matrix from earth fixed to orbit oriented. 

5. Calculate the line of sight. 

 
 

Calculate Position (oli_calc_position) 
This function finds the satellite position, velocity, attitude, and time using the forward model. 
This unit invokes oli_findtime to get the time, oli_findatt to get the attitude, and l8_movesat to 
compute position and velocity. These sub-algorithms are described in the OLI LOS Projection 
ADD. 
 
Get Latitude/Longitude (getlatlong) 
This function finds the latitude/longitude given the L1G line/sample. 

1. Find first order rotation coefficients if there is a rotation. 

2. Find output projection coordinate of pixel. 

3. Call projtran routine (see the LOS Projection ADD for details) to convert projection X/Y 

coordinates to the corresponding latitude/longitude. 
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4. Access the DEM to interpolate the height at the L1G line/sample coordinates. Note that this is a 

departure from the ALIAS heritage approach and is a consequence of using terrain corrected 

mensuration images. 

5. Convert the latitude, longitude, and height into Cartesian ECEF coordinates (x,y,z) as described 

below. 

 

Geodetic to Cartesian (geo_geod2cart) 
This function converts geodetic coordinates (lat, lon, height) into Cartesian coordinates (x, 
y, z) as described in the LOS Projection ADD and reiterated below. Input latitude and 
longitude are in radians, height, semi-major axis, and output Cartesian position vector are 
in meters; flattening is a dimensionless number. 
 

b = a (1 - f) 
e2 = 1 - b2 / a2 
N = a / (1 - e2 sin2(φ))1/2 
X = (N + h) cos(φ) cos(λ) 
Y = (N + h) cos(φ) sin(λ) 
Z = (N (1-e2) + h) sin(φ) 
 

where: 
X, Y, Z - ECEF coordinates 

φ, λ, h  - Geodetic coordinates (lat , long , height h) 
N  - Ellipsoid radius of curvature in the prime vertical 
f  - Ellipsoid flattening (f = 1 - b/a) 
e2  - Ellipsoid eccentricity squared 
a, b  - Ellipsoid semi-major and semi-minor axes 

 

Calculate Line of Sight (calc_line_of_sight) 
This function calculates the line-of-sight angles from the satellite position to the ground point 
from their position coordinates. 
 

For x, y, and z, assign:  ecf_look = pixpos - satpos. 

 

Perform matrix multiplication to transform earth fixed look vector to orbit oriented look vector (see the 

Earth Fixed to Orbit Oriented sub-algorithm below for the construction of the Tecf2oo transformation 

matrix): 

 

      [Tecf2oo]3x3 [ecf_look]3x1 = [oo_look]3x1 

 

Compute the along- and across-track angles: 

 

      psi = arctan(oo_look[0] / oo_look[2]) 

     delta = arctan(oo_look[1] / oo_look[2]) 

 

Calculate Correction (calc_correction) 
This function solves for the attitude and/or ephemeris correction using the Ground Control Points. 
 
1. Initialize the correction parameter structure. 
2. Allocate memory for residuals structure. 
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3. Begin the outlier detection and rejection iteration loop. 
4. Prepare the residual file to be written to. 
5. Reset the GCP information to its original state. 
6. Initialize weight factor for observation and a priori parameters. 
7. Iterate the precision correction solution process. 

a) Initialize the normal equations. 

b) For each GCP compute the observables ( and ), relate them to the correction parameters, 
and then form the normal equation to accumulate. 

c) Accumulate the normal equations by adding up information from each GCP. 
d) compute diff_time = gcps[gcp_num].time - ref_time[2] 
e) Write the residual information for this iteration. This will be done for each iteration. The 

structure get_residuals must be filled before writing to this file. We store the RMS residuals for 
the first and last iteration as solution quality metrics. 

f) Solve the Normal equations. Solve for the corrections from the normal equation using the 
Weighted Least Square sub-algorithm. 

g) If the parameter flag is 4 (weight factor estimation option): 
1. Estimate the variance factor with Minimum Norm Quadratic Unbiased Estimate 

(MINQUE). 
2. If MINQUE solution is obtained, compute the residual square sum. 
3. If MINQUE solution failed Try Maximum Likelihood Estimate (MLHE) solution. 
4. If MLHE fails, the solution can not be obtained. 
5. Calculate the posteriori standard error. 

Else If the parameter flag is not 4 (no a priori weight factor estimation is used): 
1. Compute the residual square sum. 
2. Calculate the posteriori standard error. 

h) Update the total correction estimate. 
i) Update the observable and orbit state for each GCP. 
j) If the sum of the absolute values of the elements of the across-track and along-track solution 

vectors are greater than 1 and the number of iterations is less than max iterations, iterate 
again, otherwise end iteration. 

8. Calculate the residual in alpha and beta for each GCP. 
9. Check the residuals for new outliers, if any are found continue the outlier iteration loop from step 3 

above. 
10. Extract the final solution and update the correction parameters. 
11. Free memory. 
 

Write Residuals (write_residuals) 
This function writes out the residual for along- and across-track components for each GCP to the 
residual file. 
  

For each GCP: 

    Rescale residuals to meters. 

    Compute the projection space value of the residuals. 

    Copy the information to the residual structure. 

    Write out the residual information. 

 
Get Ground (get_ground) 
This function calculates the projection (x/y) residual values in meters from the earth orbit delta 
and psi residual values. 
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1. Calculate the Earth Centered Fixed (ECF) to Orbit Oriented (OO) transformation system and 

transpose the matrix to get the OO to ECF matrix. 

2. Given the satellite position and correction terms, calculate a new look vector. 

3. Transform the vector from OO to ECF. 

4. Convert the ECF latitude and longitude to projection in meters. 

5. Convert the true latitude and longitude to projection in meters. 

6. Subtract the projection and assign to residual. 

 
Earth-fixed to Orbit-oriented (xxx_earth2orbit) 
This function generates the transformation matrix from the Earth-fixed cartesian system to 
the orbit-oriented cartesian system as described in the Ancillary Data Preprocessing ADD 
and reiterated below. Note that the ECEF velocity vector is really the ECI velocity vector 
rotated into the ECEF coordinate system (i.e., it is still an inertial velocity) and does not 
include the relative Earth rotation velocity. This is done so that the ECEF velocity vector 
remains parallel to the attitude control reference X axis, which is defined in ECI 
coordinates. 
 
The relationship between the orbital and Earth Centered coordinate systems is based on 
the spacecraft's instantaneous ECEF position and velocity vectors.  The rotation matrix to 
convert from orbital to ECEF can be constructed by forming the orbital coordinate system 
axes in ECEF coordinates: 
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where: 

p = spacecraft position vector in ECEF 
v = spacecraft velocity vector in ECEF 
n = nadir vector direction 
h = negative of angular momentum vector direction 
cv = circular velocity vector direction 
[ORB2ECEF] = rotation matrix from orbital to ECEF 

 
The transformation from orbital to ECEF coordinates is the inverse of the ECEF to orbital 
transformation matrix.  Since the ECEF to orbital matrix is orthogonal the inverse is also 
equal to the transpose of the matrix. 
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Detect Outliers (det_outliers) 
This function detects GCP outliers using the residuals and normal equations.  Given a tolerance 
value, outliers are removed within the data set until all values deemed as “non-outliers” or “valid” 
fall inside the confidence interval of a T-distribution.  The tolerance, or associated confidence 
interval, is specified per run and usually lies between 0.9-0.99.  The default value is 0.95.  The 
number of degrees of freedom of the data set is equal to the number of valid data points minus 
one.  The steps involved in this outlier procedure are as follows: 

1. Calculate standard deviation of all valid points in the data set. 
2. Loop on “valid” data points until no outliers are found. 

a) Find two tailed T-distribution (T) value for current degree of freedom and confidence 
level specified α. 

b) Calculate largest deviation allowable for the specified degree of freedom and α. This is 

not scaled by  since the residuals themselves are normalized by  in step c below. 
Δ = T  

c) For each data point, compute the along- and across-track weight factors using equation 
(7.18) above and the normalized and weighted along- and across-track residuals using 
equation (7.27) above. 

d) Find the data point with the largest normalized and weighted residual. 
e) If maximum residual value found in step d is less than Δ, then exit 
f) If value found in step d is greater than Δ, then flag the data point as an outlier and 

calculate the standard deviation of the new set of “valid” data points. 
 

Get Correction (get_correction) 
This function extracts the estimated correction parameters and their covariance matrix from the 
Weighted Least Square solution, update the correction parameter structure.  

1. Record the reference time for the correction. 

2. Extract satellite position corrections 

3. Extract satellite velocity corrections 

4. Extract satellite attitude angle corrections 

5. Extract satellite attitude angle rate corrections 

6. Record the covariance matrix for the correction parameters 

 

Reset Observations (resetobserv) 
This function resets the satellite state vector and the look angles corresponding to each GCP to 
their original values. This resets the inputs for the next iteration of the outlier loop. 

  

Initialize Precision (initial_precision) 
This function initializes the normal matrix for attitude and ephemeris correction estimate by least-
square solutions. 
  
1. Initialize the observational and a priori part of the normal equation, obs_mx, obs_rgt, apr_corr, 

apr_wgt_par, to zero or almost zero. 

2. if param_flag = both or input weights are provided, estimate all corrections. 

3. Form the a priori normal matrix for the parameters. 

4. Form the a priori right-side term for the parameters. 
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5. Subtract the current net correction (Yb) terms from the right hand side to restrain the magnitude of the 

net correction. 

6. if param_flag = eph_yaw, estimate orbit corrections: 

a) set zero a priori mean for roll 

b) set zero a priori mean for roll dot 

c) set huge a priori weight for roll 

d) set huge a priori weight for roll dot 

e) set zero a priori mean for pitch 

f) set zero a priori mean for pitch dot 

g) set huge a priori weight for pitch 

h) set huge a priori weight for pitch dot 

7. if param_flag = att_orb, estimate attitude corrections: 

a) set zero a priori mean for dy 

b) set zero a priori mean for dy dot 

c) set huge a priori weight for dy 

d) set huge a priori weight for dy dot 

e) set zero a priori mean for dx 

f) set zero a priori mean for dx dot 

g) set huge a priori weight for dx 

h) set huge a priori weight for dx dot 

8. if time_flag = FALSE 

a) Block out the rate terms by setting a huge weight for zero apriori mean. 

9. Initialize the number of observations. 

10. Initialize weighted residual square summation. 

 

Process One GCP (process_one_gcp) 
This function updates the normal equation of the least-square problem for correction solution by 
adding one Ground Control Point. 
 
Calculate the transformation matrix from ECF to Orbit system 

Calculate the line-of-sight angles for GCP 

 

Note:  The look vectors here should be in the Orbit reference system. 

 

If the line of sight angle for the pixel Pi is from the forward model (in the spacecraft-fixed system), then it 

should be transformed into the Orbit reference system (through matrix A(roll, pitch, yaw)) first before the 

observable alpha and beta can be formed. 

 

Compute the observable alpha and beta 

If not an outlier: 

Relate the observable to correction parameters 

Update the weighted square summation of observation 

Accumulate the normal equation contribution for alpha 

Accumulate the normal equation contribution for beta 

 

Partial (partial) 
This function composes the partial coefficients matrix of the observation equation, given the 
angle delta for one GCP. 
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Partial Attitude (partial_att) 
This function composes the partial coefficients matrix of the observation equation for 
param_flag = "att_orb", estimating attitude plus height corrections. 
  
Calculate the constants needed for the partial derivative (H) matrix calculation such as sin(delta), 

cos(delta), and satellite radius. 

The side perpendicular to the look vector = satellite_radius * sindelta 

Compose the H matrix by finding: 

    alpha w.r.t roll, microradian 

    alpha w.r.t pitch, microradian 

    alpha w.r.t yaw, microradian 

    alpha w.r.t. dz, meter scaled to microradian 

    beta w.r.t roll, microradian 

    beta w.r.t. pitch, microradian 

    beta w.r.t. yaw, microradian 

 

Partial Ephemeris (partial_eph) 
This function composes the partial coefficients matrix of the observation equation for 
param_flag = "eph_yaw", estimating ephemeris plus yaw corrections.   
  
Calculate the constants needed for H calculation by assigning sin(delta), cos(delta) and satellite 

radius. 

Compose the H matrix by finding: 

    alpha w.r.t. dy, meter scaled to microradian 

    alpha w.r.t. dz, meter scaled to microradian 

    alpha w.r.t. yaw, microradian 

    beta w.r.t. dx, meter scaled to microradian 

    beta w.r.t. yaw, microradian 

 

Partial All (partial_all) 
This function composes the partial coefficients matrix of the observation equation for 
param_flag = "both" or "weight", estimating both attitude and ephemeris corrections. Note 
that this is the normal case. 
  
Calculate the constants needed for H calculation sin(delta), cos(delta), and satellite radius (see 

equations (3.6) and (3.7) above). 

Compose the H matrix: 

    alpha w.r.t. roll, microradian 

    alpha w.r.t. pitch, microradian 

    alpha w.r.t. yaw, microradian 

    alpha w.r.t. dy, meter scaled to microradian 

    alpha w.r.t. dz, meter scaled to microradian 

    beta w.r.t. dx, meter scaled to microradian 

    beta w.r.t. roll, microradian 

    beta w.r.t. pitch, microradian 

    beta w.r.t. yaw, microradian 

 

Accumulate Normal Equation (accum_normal_equation) 
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This function accumulates the normal equation of the least-square problem by adding one 
observation. 
  
Update the n x n normal matrix by accumulating: 

H_transpose * wo * H 

 

Update the n x 1 right-hand-side array of the normal equation by adding: 

H_transpose * wo * obs 

 

where:   

H is the matrix of partial derivatives 

wo is the observation weight 

obs is the observation value 

 

Weighted Least Square (weighted_least_square) 
This function solves the weighted least square problem with nxn normal matrix. 
  
Form the normal equation for the Weighted Least Square (WLS) problem, including any weight factors: 

    A[i][j] = weight_factor_for_observation * normal_matrix_for_observation[i][j] 

Augment the diagonal terms using the apriori observations: 

    A[i][i] += weight_factor_for_apriori * normal_matrix_for_apriori[i] 

 

Form the constant vector including both observations and apriori contributions: 

    L[i] = weight_factor_for_observation * observation_rhs[i] 

           + weight_factor_for_apriori * apr_corr[i] 

 

Solve the equation: 

    solution = sol_Ya = A
-1

 L 

 

Note that the inverted normal equation matrix (A
-1

) is returned along with the solution so that it can be used 

to construct the solution aposteriori covariance matrix. 

 

MINQUE (minque) 
This function estimates the variance factor with MINQUE (Minimum Norm Quadratic Unbiased 
Estimate). 
 
let: 

wght_rss_obs = weighted residual square for observation 

cov_mx          = Inverse of the WLS problem normal matrix 

obs_mx          = the observation part of the normal matrix 

apr_wgt_par  = the a priori weights loaded into a diagonal weight matrix 

wgt_fact_obs = the estimated variance factor for the observation 

wgt_fact_apr = the estimated variance factor for the a priori variance 

 

compute the weighted residual square for the observation (rss_obs) 

 

compute the weighted residual square for the a priori parameters (rss_apr) 

 

Allocate memory for arrays 
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compute the trace coefficients for the weight estimate equation 

    cc2 = cov_mx * apr_wgt_par 

    cc1 = cov_mx * obs_mx 

      s1 = ngcp - 2tr[cc1] + tr[cc1 * cc1]   ref. equation (5.3) 

      s2 = n_aprior - 2tr[cc2] + tr[cc2 * cc2]  ref. equation (5.4) 

    s12 = tr[cc1 * cc2]     ref. equation (5.5) 

 

solve for the weight factors: 

    ss1 = s1 * s2 - s12 * s12 

    wgt_fact_obs = (rss_obs * s2 - rss_apr * s12) / ss1 

    wgt_fact_apr = (rss_apr * s1 - rss_obs * s12) / ss1 

 

If wgt_fact_obs and wgt_fact_apr are less than 0.0--return, minque failed. 

Run WLS where the scale factor for the weight of observation and a priori are 1/wgt_fact_obs and 

1/wgt_fact_apr respectively. 

If WLS fails, return minque with failed status. 

If WLS returns a non-error value, assign wght_rss_obs. 

 
Residual Square Sum (resquare) 
This function computes the residual square sum by adding the dot product of:  

sol_YaT * obs_mx * sol_Ya - 2 * obs_rgtT * sol_Ya  
where: 

sol_Ya is the weighted least squares solution vector 
obs_mx is the normal equation matrix 
obs_rgt is the right hand side vector of the normal equations 
 

to the observation square sum (post_sig). 
 

MLHE (mlhe) 
This function estimates the variance factor with MLHE (Maximum Likelihood Estimate). 
 
Initialize the weight factor to zero. 

Iterate the estimation of the weight factors. 

Compute the weighted residual square for the observation and for the apriori parameters. 

Compute the weight factor estimate. 

Compute the weight factor difference for this iteration. 

Solve the new WLS solution with the new weight factors. 

Compute the final variance factor estimate. 

 
New Observation Angle (new_observ_angle) 
This function updates the satellite state vector and the look angles corresponding to each GCP, 
according to the correction parameters, for the purpose of iteration. 
 
Extract the orbit and attitude correction parameters from the solution vectors. 

 

Orbit corrections: 

    dorbit[0] = sol_Ya[3] 

    dorbit[1] = sol_Ya[4] 
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    dorbit[2] = sol_Ya[5] 

    orbit_rate[0] = sol_Ya[9] 

    orbit_rate[1] = sol_Ya[10] 

    orbit_rate[2] = sol_Ya[11] 

 

Attitude corrections: 

    datt[0] = sol_Ya[0] 

    datt[1] = sol_Ya[1] 

    datt[2] = sol_Ya[2] 

    att_rate[0] = sol_Ya[6] 

    att_rate[1] = sol_Ya[7] 

    att_rate[2] = sol_Ya[8] 

 

For each GCP 

    Calculate the orbit perturbation and update the orbit state vector 

    Calculate the attitude perturbation and update the look angles 

 

Update Ephemeris (update_eph) 
This function calculates the orbit position change and updates the ephemeris data in Earth 
Fixed system. 
 
Construct the ECF to orbital transformation Tef2oo from the input position and velocity vectors 
(using xxx_earth2orbit). 
 
Take the transpose of (the orthogonal matrix) Tef2oo to find the inverse Too2ef. 
 
Transform the input orbital position and velocity corrections to ECF using Too2ef. 
 
Update the input ECF position and velocity by adding the transformed position and velocity 
corrections. 
  

Calculate New Look Angles (newlook) 
This function calculates the new look angles by adding the attitude angle perturbation. The 
heritage ALIAS implementation was modified as described below to account for applying the 
attitude corrections in the ACS rather than the orbital coordinate system. 
  
Convert the units of the attitude corrections (to radians). 

Construct the look vector from the two look angles. 

 

    look_vector[0] = tan(psi) 

    look_vector[1] = tan(delta) 

    look_vector[2] = 1.0 

 

 

Convert the orbital look vector to the ACS coordinate system: 

Use the roll-pitch-yaw values for this GCP to construct the orbital to ACS rotation matrix 
MORB2ACS = [MACS2ORB]T. 

Where:  MACS2ORB = 
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Convert look_vector to ACS_look_vector by multiplying it by [MACS2ORB]
T
: 

ACS_look_vector = [MACS2ORB]
T
 look_vector 

 

Use the attitude corrections to construct the ACS correction rotation matrix MPrecision: 

8. Compute the precision correction at the time (t_att = att_seconds + att_time) 
corresponding to the attitude sample: 

a. roll_corr = roll_bias + roll_rate * (t_att – t_ref – image_seconds) 
b. pitch_corr = pitch_bias + pitch_rate * (t_att – t_ref – image_seconds) 
c. yaw_corr = yaw_bias + yaw_rate * (t_att – t_ref – image_seconds) 

Note that only the seconds of day fields are needed for the attitude and image 
epochs as they are constrained to be based on the same year and day. 

9. Compute the rotation matrix corresponding to roll_corr, pitch_corr, and yaw_corr 
(MPrecision) using the same equations used for MACS2ORB above. 

 

Apply the attitude corrections to the look vector by multiplying by MPrecision: 

ACS_pert_look_vector = MPrecision ACS_look_vector 

 

Rotate line of sight back to the orbital coordinate system using the transpose of the MORB2ACS matrix, 

which is the same as MACS2ORB: 

pert_look_vector = MACS2ORB ACS_pert_look_vector 

 

Note that this can be achieved with a single rotation of: 

Mcorr = MACS2ORB MPrecision [MACS2ORB]
T

 

pert_look_vector = Mcorr look_vector 

 

Calculate the new look angles: 

    psi = arctan(pert_look_vector[0]/pert_look_vector[2]) 

    delta = arctan(pert_look_vector[1]/pert_look_vector[2]) 

 

 

 

Calculate Observation Residual (observation_residual) 
This function corrects the final values of alpha and beta for all GCPs for the effects of the final 
solution iteration. These values are updated by process_one_gcp for all but the final iteration. 
  
For each GCP 

    Calculate the full partial coefficients matrix for alpha and beta. 

For all 6 elements 

    Calculate the residual for alpha by subtracting the calculated observation. 

        gcps.va = gcps.va -  H1 *Ya 

Calculate the residual for beta by substracting the calculated observation. 

        gcps.vb = gcps.vb - H2 *Ya 

Where Ya is the vector containing the incremental parameter corrections for the last iteration. 
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Finish Processing (finish_processing) 
This function updates the OLI model file and writes to the solution and residual files. It has new 
functions added to check the solution quality statistics (pre-fit RMS, post-fit RMS, outlier percent, 
number of valid GCPs) to determine if the solution was successful. 
  
Compute the percentage of GCPs that were declared outliers: 

   percent_outlier = num_outlier / num_GCP * 100 

Compute the number of valid GCPs: 

   num_valid = num_GCP – num_outlier 

Check the pre-fit RMS, post-fit RMS, percent_outlier, and num_valid metrics against the thresholds (maximum 

pre-fit RMS, maximum post-fit RMS, maximum outlier percentage, minimum number of valid GCPs) from the 

CPF. 

If the pre- and post-fit RMS values are both below the thresholds, and either the percent_outlier metric is below 

threshold or the num_valid metric is above threshold: 

Update the model to make a precision model. 

Fill the gcp_solution structure with the appropriate values. 

Write to the solution file. 

Return success status. 

Else return failure status. 

 

Update LOS Model (oli_update_model) 
This function updates the LOS model file with the precision correction values.  The LOS model will be 
read from the LOS model file, the new precision correction values will be placed in the LOS model 
structure, the LOS model will be processed with the new precision correction values, and the new 
precision LOS model structure will be output to the precision LOS model file.  
 
Unlike the heritage ALIAS approach, not only are the precision correction parameters stored in the 
LOS model, they are also applied to both the ephemeris and attitude data sequences. This is 
captured in the LOS model by storing both original and corrected attitude and ephemeris data 
sequence. This update procedure operates as follows: 
 

Correct Attitude Sub-Algorithm (l8_correct_attitude) 
This function applies the ACS/body space attitude corrections computed by the LOS/precision 
correction procedure to the attitude data sequence. It outputs a parallel table of roll-pitch-yaw 
values with the precision corrections applied. This "corrected" table is created by the LOS Model 
Creation algorithm but initially it is identical to the original attitude data sequence. 
 
The sequence of transformations required to convert a line-of-sight in the OLI instrument 
coordinate system, generated using the Legendre polynomials, is: 

 
xECEF = MORB2ECEF MACS2ORB MPrecision MOLI2ACS xOLI 

 
where:  xOLI  is the Legendre-derived instrument LOS vector 

MOLI2ACS is the OLI to ACS alignment matrix from the CPF 
MPrecision is the correction to the attitude data computed by the LOS/precision 
correction procedure 
MACS2ORB is the spacecraft attitude (roll-pitch-yaw) 
MORB2ECEF is the orbital to ECEF transformation computed using the ECEF 
ephemeris 
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xECEF is the LOS vector in ECEF coordinates 
 

Note that in the heritage ALIAS implementation the sequence was: 
 
xECEF = MORB2ECEF MPrecision MACS2ORB MOLI2ACS xOLI 
 

For nadir-viewing imagery the MACS2ORB matrix is nearly identity, so there is little difference. Since 
OLI will occasionally be viewing off-nadir and it is more natural to model attitude errors in the 
ACS/body coordinate system, the order has been reversed for LDCM. The impact is minimal in 
the model and LOS projection but becomes more important for the LOS/precision correction 
algorithm. 
 
This new sub-algorithm pre-computes the MACS2ORB MPrecision combination and stores the 
corresponding corrected roll-pitch-yaw attitude sequence in the model structure. This approach 
has several advantages: 
4. It streamlines the application of the model for LOS projection by removing the step of explicitly 

applying the precision correction. 
5. It allows for the use of a more complex correction model in the future since the application of 

the model is limited to this unit. Note that the Earth-view attitude correction model consists of 
the following model parameters: 

Precision reference time: t_ref in seconds from the image epoch (nominally near the 
center of the image time window) 
Roll bias and rate corrections: roll_bias, roll_rate 
Pitch bias and rate corrections: pitch_bias, pitch_rate 
Yaw bias and rate corrections: yaw_bias, yaw_rate 

This model is dealt with in more detail in the line-of-sight correction algorithm description. 
6. Retaining both the original and corrected attitude sequences in the model make the model self-

contained and will make it unnecessary for the LOS/precision correction algorithm to access 
the preprocessed ancillary data. 

The disadvantage is that it doubles the size of the attitude data in the model structure. 
 

The construction of the corrected attitude sequence proceeds as follows: 
 For each point in the attitude sequence j = 0 to K-1: 

1. Compute the rotation matrix corresponding to the jth roll-pitch-yaw values: 
MACS2ORB = 
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2. Compute the precision correction at the time (t_att = att_seconds + att_time(j)) corresponding 
to the attitude sample: 

a. roll_corr = roll_bias + roll_rate * (t_att – t_ref – image_seconds) 
b. pitch_corr = pitch_bias + pitch_rate * (t_att – t_ref – image_seconds) 
c. yaw_corr = yaw_bias + yaw_rate * (t_att – t_ref – image_seconds) 

Note that only the seconds of day fields are needed for the attitude and image epochs as they 
are constrained to be based on the same year and day. 

3. Compute the rotation matrix corresponding to roll_corr, pitch_corr, and yaw_corr (MPrecision) 
using the same equations presented in step 1 above. 

4. Compute the composite rotation matrix:  M = MACS2ORB MPrecision 
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5. Compute the composite roll-pitch-yaw values: 
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6. Store the composite roll’-pitch’-yaw’ values in the jth row of the corrected attitude data table. 
 

Correct Ephemeris Sub-Algorithm (l8_convert_ephem) 
The heritage ALIAS function converted the ephemeris information (position and velocity) from the 
Earth Centered Inertial (ECI J2000) system to the Earth Centered Earth Fixed (ECEF) system and 
applied the ephemeris corrections computed in the LOS/precision correction procedure to both 
ephemeris sets. Since both ECI and ECEF representations of the ephemeris are now provided by 
the ancillary data preprocessing algorithm, the first portion of the heritage algorithm is no longer 
necessary. 
 
The precision correction parameters are stored in the LOS model in the spacecraft orbital 
coordinate system as three position (x_bias, y_bias, z_bias) corrections and three velocity (x_rate, 
y_rate, z_rate) corrections that, like the attitude corrections, are relative to t_ref.  These values 
must be converted to the ECEF and ECI coordinate systems.  Once the precision correction is 
determined in the ECEF/ECI coordinate system, the ECEF/ECI ephemeris values can be updated 
with the precision parameters. 
 
Loop on LOS model ephemeris points j = 0 to N-1 
 

         Compute the precision correction: 
 
Calculate delta time for precision correction: 

dtime = ephem_seconds + ephem_time(j) – t_ref – image_seconds 
 

Calculate the change in X, Y, Z due to precision correction.  Corrections are in terms of 
spacecraft orbital coordinates. 
 

dx orb = model precision x_bias + model precision x_rate * dtime 
dy orb = model precision y_bias + model precision y_rate * dtime 
dz orb = model precision z_bias + model precision z_rate * dtime 

  
where: 

 model precision x_bias = precision (orbital coord sys) update to X position 
 model precision y_bias = precision (orbital coord sys) update to Y position 
 model precision z_bias = precision (orbital coord sys) update to Z position 
 model precision x_rate = precision (orbital coord sys) update to X velocity 
 model precision y_rate = precision (orbital coord sys) update to Y velocity 
 model precision z_rate = precision (orbital coord sys) update to Z velocity 

 
Construct precision position and velocity “delta” vectors. 
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 
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orbdz

orbdy

orbdx
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
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
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rate  z precision   model

ratey   precision   model

rate x  precision   model

dvorb  

 
Calculate the orbit to ECF transformation [ORB2ECEF] using ECEF ephemeris (See the 
ancillary data preprocessing ADD for this procedure). 
 
Transform precision “delta” vectors to ECEF. 
 

    

    dvorbORB2ECEFdvef

dorbORB2ECEFdef





 

 
 

Adjust ECEF ephemeris by the appropriate “delta” precision vector and store the new 
ephemeris in the model.  These ephemeris points will be used when transforming an input 
line/sample to an output projection line/sample. 
 

dvecf velocityecef ephemeris velocityef model

decfpostion ecef ephemerispostion ef model




 

where:  
All parameters are 3x1 vectors 
ephemeris ecef values are the interpolated one-second ephemeris values in 
ECEF coordinates 

 
Calculate the orbit to ECI transformation [ORB2ECI] using ECI ephemeris. 

 
Transform precision “delta” vectors to ECI. 
 

    

    dvorbORB2ECIdveci

dorbORB2ECIdeci





 

 
 
Adjust ECI ephemeris by the appropriate “delta” precision vector and store the new ephemeris 
in the model.  These ephemeris points will be used with lunar/stellar observations. 
 

dveci velocityeci ephemeris velocityeci model

decipostion eci ephemerispostion eci model




 

where:  
All parameters are 3x1 vectors 
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ephemeris eci values are the interpolated one-second ECI ephemeris  
 
Convert the Net Attitude Corrections to Alignment Angles (calc_alignment) 
This new sub-algorithm combines the newly computed attitude correction with the OLI sensor 
alignment matrix from the LOS model to construct corrected alignment angles. 
 
Compute the precision correction at the reference time t_ref: 

roll_corr = roll_bias 
pitch_corr = pitch_bias 
yaw_corr = yaw_bias 

 
Compute the rotation matrix corresponding to roll_corr, pitch_corr, and yaw_corr (MPrecision) using the 
standard rotation matrix equations: 

MPrecision = 

cos( ) cos( ) sin( ) sin( ) cos( ) cos( ) sin( ) sin( ) sin( ) cos( ) sin( ) cos( )

cos( ) sin( ) cos( ) cos( ) sin( ) sin( ) sin( ) cos( ) sin( ) sin( ) sin( ) cos( )

sin( ) sin( ) cos( ) cos( ) cos( )

p y r p y r y r y r p y

p y r y r p y r p y r y

p r p r p
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Extract the ACS to OLI alignment matrix, MACS2OLI, from the OLI LOS model, and take the transpose 
to compute MOLI2ACS. 
 
Compute the composite alignment matrix:  M = MPrecision MOLI2ACS 
 
Compute the composite roll-pitch-yaw alignment angles: 
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Extract the orbital ephemeris biases from the precision solution: (x_bias, y_bias, z_bias). 
 
Extract the attitude bias correction and ephemeris bias correction covariance terms from the precision 
solution covariance matrix: 
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The solution provides: 
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We want to form: 
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With (see note #2): 





























]5][5[]4][5[]3][5[]2][5[]1][5[]0][5[

]5][4[]4][4[]3][4[]2][4[]1][4[]0][4[

]5][3[]4][3[]3][3[]2][3[]1][3[]0][3[

]5][2[]4][2[]3][2[]2][2[]1][2[]0][2[

]5][1[]4][1[]3][1[]2][1[]1][1[]0][1[

]5][0[]4][0[]3][0[]2][0[]1][0[]0][0[

CovCovCovCovCovCov

CovCovCovCovCovCov

CovCovCovCovCovCov

CovCovCovCovCovCov

CovCovCovCovCovCov

CovCovCovCovCovCov

CovX  

 
The covariance matrix captures the correlations between the attitude and ephemeris correction 
parameters (e.g., roll-Y and pitch-X). 
 
The following fields are output to the alignment characterization database: 

Reference time:  image epoch year, image epoch day, image epoch second + t_ref 
Alignment vector:  X above 
Alignment covariance:  CovX above 
RMS GCP fit 
Number of GCPs used 
Outlier threshold used 
Scene off-nadir roll angle 
Control type flag (DOQ or GLS) 
L0Rp ID 
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Work Order ID 
WRS Path/Row 
 

LOS Model Correction Output Summary 
The primary output of the LOS model correction algorithm is the updated "precision" LOS model. This 
model has the same structure as the input LOS model which is described in the LOS Model Creation 
ADD. Though the model structure is the same, the corrected ECI position and velocity and the 
corrected ECEF position and velocity sections of the Ephemeris Model, the corrected roll-pitch-yaw 
section of the Attitude Model, and the Precision Correction Model all contain updated values as a 
result of the LOS model correction algorithm. 
 
The contents of the output LOS Model Correction Solution File are presented in Table 1 below. This 
report file documents the results of the LOS model correction procedure. It contains standard header 
fields common to all geometric report files. 
 

Field Description 

1. Date and time 2. Date (day of week, month, day of 
month, year) and time of file creation. 

3. Spacecraft and 
instrument source 

4. LDCM and OLI 

5. Processing Center 6. EROS Data Center SVT 

7. Work order ID 8. Work order ID associated with 
processing (blank if not applicable) 

9. WRS path/row 10. WRS path and row 

11. Software version 12. Software version used to create report 

13. Off-nadir angle 14. Off-nadir roll angle of processed image 
file 

15. Acquisition Type 16. Earth viewing or Lunar 

17. L0Rp ID 18. Input L0Rp image ID 

19. L1G image file 20. Name of L1G used to measure GCPs 

21. Precision solution 
reference time 

22. Time reference for model correction 
parameters as year, day of year and seconds 
of day. 

23. Roll-pitch-yaw attitude 
corrections 

24. Attitude bias corrections in microradians 

25. Roll-pitch-yaw rate 
corrections 

26. Attitude rate corrections in 
microradians/second 

27. Roll-pitch-yaw standard 
deviations 

28. Attitude bias parameter sigmas in 
microradians 

29. Roll-pitch-yaw rate std. 
devs. 

30. Attitude rate parameter sigmas in 
microrads/sec 

31. Ephemeris position 
corrections 

32. Ephemeris X-Y-Z bias corrections in 
meters 

33. Ephemeris velocity 
corrections 

34. Ephemeris Vx-Vy-Vz corrections in 
meters/second 

35. Position standard 
deviations 

36. Ephemeris X-Y-Z sigmas in meters 

37. Velocity standard 38. Ephemeris Vx-Vy-Vz sigmas in 
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deviations meters/second 

39. Across-track covariance 
matrix 

40. 6-by-6 covariance matrix for roll, Y, Z, 
roll rate, Vy, Vz correction parameters. 

41. Along-track covariance 
matrix 

42. 6-by-6 covariance matrix for X, pitch, 
yaw, Vx, pitch rate, yaw rate correction 
parameters. 

43. Spacecraft roll-pitch-yaw 
at solution reference time 

44. Spacecraft attitude at solution reference 
time in microradians 

Table 1:  LOS Model Correction Solution Output File Contents 
 
The contents of the LOS Model Correction Residuals file are shown in Table 2 below. This file 
documents the GCP residuals for the final set of GCPs (after the outlier rejection loop has found no 
additional outliers), including the residuals for each iteration of the weighted least squares solution 
procedure. It thus contains both the initial (pre-correction) and final (post-correction) residuals. This 
file is used as an input by the Geodetic Accuracy Assessment algorithm. The output residual file also 
contains the standard report header mentioned above. 
 

Field Description 

45. Date and time 46. Date (day of week, month, day of month, 
year) and time of file creation. 

47. Spacecraft and 
instrument source 

48. LDCM and OLI 

49. Processing Center 50. EROS Data Center SVT 

51. Work order ID 52. Work order ID associated with processing 
(blank if not applicable) 

53. WRS path/row 54. WRS path and row 

55. Software version 56. Software version used to create report 

57. Off-nadir angle 58. Off-nadir roll angle of processed image 
file 

59. Acquisition Type 60. Earth viewing or Lunar 

61. L0Rp ID 62. Input L0Rp image ID 

63. L1G image file 64. Name of L1G used to measure GCPs 

65. Number of GCPs used 66. Number of valid (non-outlier) GCPs 

67. Heading for individual 
GCPs 

68. One line of ASCII text containing column 
headings for the individual GCP fields. 

For each iteration:  

  Iteration number Starts with 0 for initial (uncorrected) residuals 
and ends with "Final" for results of last iteration. 

  For each GCP:  

    Point ID GCP ID (see GCP Correlation ADD for details) 

    Predicted L1G Line Predicted L1G line location 

    Predicted L1G Sample Predicted L1G sample location 

    GCP Time of Observation Seconds from image epoch time 

    Latitude GCP latitude in degrees 

    Longitude GCP longitude in degrees 

    Height GCP height in meters 

    Across-track Angle (delta) Across-track LOS angle in degrees 

    Across-track Residual Residual on delta converted to meters 
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    Along-track Residual Residual on psi converted to meters 

    Y Residual Residual in Y/line direction in meters 

    X Residual Residual in X/sample direction in meters 

    Outlier Flag 0 for outlier, 1 for valid GCP 

    GCP Source DOQ or GLS 

Table 2:  LOS Model Correction Residuals Output File Contents 
 
The fields stored in the characterization database for future sensor alignment calibration operations 
are listed in Table 3 below. 
 

Field Description 

69. Work order ID 70. Work order ID associated with 
processing 

71. WRS path/row 72. WRS path and row 

73. L0Rp ID 74. Input L0Rp image ID 

75. Control Type 76. DOQ or GLS 

77. Off-nadir angle 78. Off-nadir roll angle of scene (in degrees) 

79. Number of GCPs used 80. Number of valid (non-outlier) GCPs 

81. Outlier threshold used 82. Confidence level used for outlier 
rejection threshold 

83. RMS GCP Fit 84. RMS of final iteration across- and along-
track residuals in meters. This field would 
subsequently be used to identify entries that 
may be suspect due to poor fits to the ground 
control. 

85. Precision solution 
reference time 

86. Time reference for model correction 
parameters as year, day of year and seconds 
of day. 

87. Roll-pitch-yaw alignment 
angles 

88. Composite alignment angles in 
microradians 

89. Ephemeris position 
corrections 

90. Ephemeris X-Y-Z bias corrections in 
meters 

91. Alignment covariance 
matrix 

92. 6-by-6 covariance matrix for roll, pitch, 
yaw, X, Y, Z correction parameters. 

Table 3:  Model/Alignment Characterization Database Output Fields 
 
The fields stored in the characterization database to support future GCP quality assessment and 
improvement activities are listed in Table 4 below (see note #3). Only the residuals for non-outlier 
GCPs from the initial (zeroth) iteration are written to the characterization database. 
 

Field Description 

For each GCP:  

93.   Work order ID 94. Work order ID associated with processing 

95.   WRS path/row 96. WRS path and row 

97.   L0Rp ID 98. Input L0Rp image ID 

  Point ID GCP ID (see GCP Correlation ADD for details) 

  GCP Time of Observation Year, day of year, and seconds of day  

  Ephemeris Position Spacecraft ECEF position at GCP time (meters) 



LDCM-ADEF-001 
Version 3 

 

  Ephemeris Velocity Spacecraft ECEF velocity at GCP time 
(meters/sec) 

  Spacecraft Roll-Pitch-Yaw Spacecraft roll-pitch-yaw at GCP time (radians) 

  True Latitude GCP latitude in radians 

  True Longitude GCP longitude in radians 

  True Height GCP height in meters 

  Apparent Latitude Latitude measured in L1G image in radians 

  Apparent Longitude Longitude measured in L1G image in radians 

  Apparent Height Height interpolated from DEM in meters 

  GCP Source DOQ or GLS 

Table 4:  GCP Residual Characterization Database Output Fields 

7.2.3.8 Maturity 

Though much of the ALI model correction algorithm was reusable there were several areas where 
changes were required: 

9. Logic which computes the OLI sensor alignment corrections implied by the precision attitude 
and ephemeris corrections has been added to this algorithm (it runs as a pre-process in the 
ALIAS alignment calibration algorithm) to ensure that the computed corrections are applied to 
the proper sensor alignment matrix. Storing only the corrections leaves open the question of 
what alignment they are relative to. This was not a problem in the heritage systems (L7 IAS, 
ALIAS) because the alignment calibration process was run as one continuous flow using the 
same set of data throughout. This approach limited the number of scenes that could be 
processed and restricted the order of processing to be in data acquisition order. This restriction 
will be lifted for OLIAS so that a much larger volume of data can be reduced and trended for 
subsequent offline analysis. This requires the trended data to be converted to apparent 
alignment angles so that acquisitions processed using different alignment calibrations can be 
compared. 

10. The covariance data that are trended for subsequent use in alignment calibration are a subset 
of the full precision solution covariance. 

11. Trending of a slightly enhanced version of the initial (zeroth) iteration GCP residuals has been 
added to support offline research into large scale area triangulation. The path/row, date/time, 
GCP ID, true position, and apparent (mensuration image) position are recorded for all non-
outlier GCPs. 

12. Since the precision correction process will likely be run prior to any cloud screening and will 
therefore frequently fail due to the inability to correlate GCPs in cloud covered imagery, 
thresholds and bounds will need to be developed to detect cases in which the solution has 
failed. In this case, scene processing would fail over to a terrain-corrected systematic data 
flow. The prototype computes and reports three quality metrics:  prefit GCP RMS, postfit GCP 
RMS, and percent GCP outliers, but does not apply any threshold logic. The operational 
version should apply thresholds on the pre-fit and post-fit GCP RMSE values, and make sure 
that either a sufficient number of valid GCPs were used or that the percentage of GCPs 
declared outliers was not too high.  

13. Using a systematic terrain corrected image for GCP mensuration instead of the heritage 
systematic image required some modifications to the GCP processing logic. Specifically, the 
DEM elevation associated with the measured GCP image position is used to construct the 
“apparent” LOS instead of using zero for a LOS projected to the ellipsoid surface as the 
heritage algorithm does. Note that, while the actual GCP elevation could be used, this would 
introduce error that would grow with the misregistration between the systematic image and the 
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DEM, making the simpler approach less robust. This change was motivated by the large GCP 
search areas that would be required in systematically corrected images for off-nadir scenes in 
high elevation areas.  

14. Using the DEM as the source of “apparent” GCP height allows the algorithm to support either 
terrain corrected or systematic image inputs. If an input DEM is not provided, the “apparent” 
GCP height will be set to zero as it is now. If an input DEM is provided, it will be used as the 
source of the “apparent” GCP height. Note that the capability to use SCA-combined 
mensuration images only applies for terrain corrected images. 

15. The heritage ALIAS implementation generates a fatal error if the square root of a negative 
number is encountered while computing partial derivatives. This can happen in the case of an 
invalid GCP measurement. This will be enhanced for OLI to adopt the logic used in Landsat 7 
wherein this condition is detected and used to declare the offending point an outlier rather than 
generating a terminal error condition. 

7.2.3.9 Notes 

Some additional background assumptions and notes include: 
6. The heritage aliprecision process uses the DDR for the L1G mensuration image to retrieve the 

image framing and projection parameter information necessary to convert output space 
line/sample coordinates to latitude/longitude but the same information is available in the grid 
file, so either could be used. 

7. The extent to which the model creation logic must be rerun was scaled back as compared to 
the heritage implementation. The precision ephemeris corrections are embedded in the model 
ephemeris so it must be regenerated but full model reprocessing is not truly necessary. This 
was done in the past for convenience (because it’s fast and was easy to simply invoke the 
model creation logic as a subroutine – Update LOS Model). 

8. Possible additional solution quality metrics include initial vs. final GCP distribution metrics but 
are not implemented in the baseline version. 

9. The heritage ALIAS (and Landsat) LOS model correction algorithms required the L1R file as 
input data so as to provide the L1R input space image dimensions. This information will now 
be available in the LOS model in the image sub-model so the L1R input is no longer required. 
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7.2.4 OLI Resampling Algorithm 

7.2.4.1 Background/Introduction 

The Operational Land Imager (OLI) resampling method is used to take a L1R image, which has 
unevenly spaced pixels with respect to the surface of the object imaged, and creates a reprojected 
image where all image pixels are located within an evenly spaced set of grid points, or output space, 
with respect the object imaged.   This mapping is subject to the errors associated with the 
interpolation method used to determine the digital numbers associated with the output image. 
 
The geometric resampling grid and the geometric model are used to calculate the mappings between 
the input and output space.  The geometric model contains the individual detector offsets from a 
nominal location while the geometric resampling grid contains all other mapping variables.   The 
resampling grid provides a mapping from a 2D input space to a 3D output space and vice versa.  The 
output space corresponds to x/y/z projection locations while the input space corresponds to 
line/sample locations within the L1R.  The z component in output space is elevation.  If elevation is 
not to be accounted for during processing an elevation of zero is used for mapping output pixels to 
input pixels. 
 
Due to what can be rather large sample-to-sample offsets within a L1R image, the cubic convolution 
interpolation option works in a two step process. A hybrid set of pixels in the sample direction are 
created using cubic convolution resampling in the line direction.  This creates a set of unevenly 
spaced pixels in the sample direction.  The Akima A interpolation method is then used to determine 
the final digital number for the output image by resampling the hybrid pixels in the sample direction.  
The nearest neighbor resampling option simply determines the closest input pixel for corresponding 
output pixel. 
 
The OLI resampling algorithm is derived from the corresponding ALI algorithm used in ALIAS. The 
sensor architecture between the instruments is similar enough that a majority of the ALIAS algorithm 
can be reused. The baseline geometric modeling approach assumes that the 3D gridding approach 
used within ALIAS can also be used for OLI.  The heritage algorithm will have to be modified to 
accommodate LDCM data formats. 
 

7.2.4.2 Dependencies 

The OLI resampling algorithm assumes that the Ancillary Data Preprocessing, Line-of-Sight (LOS) 
Model Creation and Line-of-Sight Projection to Ellipsoid and Terrain algorithms have been executed 
and a L1R has been generated.  If a digital elevation model (DEM) is given as input to account for 
relief, or terrain, displacement the grid must have an adequate number and range (elevation bounds) 
of z-planes to cover the entire elevation range within the L1R.  A geometric model and grid must be 
available for the L1R.  More information about the data structure and contents of the Geometric 
Model and Resampling Grid can be found in the Ancillary Data Preprocessing, Line-of-Sight (LOS) 
Model Creation and Line-of-Sight Projection to Ellipsoid and Terrain Algorithm Description 
Documents (ADDs). 
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7.2.4.3 Inputs 

The resampling algorithm and its component sub-algorithms use the inputs listed in the following 
table. Note that some of these “inputs” are implementation conveniences (e.g., using an ODL 
parameter file to convey the values of and pointers to the input data).  
 

Algorithm Inputs 

L1R Image 

Resampling Grid (see the Line of Sight Projection ADD for contents) 

Bands to process 

Terrain correction Flag (yes/no) 

DEM (if terrain flag set to yes) 

SCA combine flag (yes/no) 

Geometric model (see Line of Sight Model Creation ADD for contents) 

Resampling type (CC,NN) 

Minimum and maximum DN of output (see note #9) 

Output data type 

α (if resampling type is CC) (defaults to -0.5) 

Fill pixel value 

 

7.2.4.4 Outputs 

Resampled output image (L1G, L1GT or L1T) 

     Resampled image data (band separated, either SCA combined or SCA 
separated) 

     Image data metadata fields (See tables 1 and 2) 

7.2.4.5 Options 

Cubic convolution or nearest neighbor resampling 
Creating an output image with Sensor Chip Assemblies (SCAs) combined or separated 
Applying terrain correction, yes or no 

7.2.4.6 Procedure 

 
OLI resampling interpolates radiometrically corrected but geometrically raw image data to a map 
projected output space.  The resampling process uses information stored in the resampling grid along 
with focal plane calibration data stored in the geometric model to map output projection locations to 
an input location. Since an input location for an output pixel typically lies at a non-integer location 
interpolation is used to find the pixel values associated with this non-integer location.  OLI resampling 
is performed on the geometrically raw L1R data using one of two methods; cubic convolution 
combined with the Akima A method, or nearest neighbor. Note that modulation transfer function 
compensation (MTFC) and bilinear resampling are not supported in the baseline algorithm.  Due to 
the lack of inherent band registration and the need to perform sub-pixel registration to achieve OLI 
band alignment, cubic convolution combined with the Akima A interpolation method will be used to 
generate the standard LDCM products. It is also important to have the best subpixel accuracy in the 
output image during geometric characterization and calibration, so cubic convolution is chosen for 
interpolation during the characterization and calibration of the OLI instrument.  The ALIAS-heritage 
nearest neighbor interpolation capability is also provided as an option for special-purpose science 
products and testing purposes. Since both standard product generation and geometric 
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characterization and calibration are the focus of this document, the only interpolation method 
discussed in detail here is the cubic convolution combined with the Akima A method. 
 
During resampling, there is a need to know what input pixel goes with a given output pixel.  The OLI 
geometric processing system does not have a “true” inverse model to perform this calculation.  
Instead, for a given output pixel, the corresponding input pixel is found from the forward and inverse 
mapping coefficients stored in the resampling grid.  There are two scenarios when performing this 
calculation.  The first involves performing resampling for a systematic image in which case the 
dimension for z, or elevation, is either zero or a constant value.   This involves only a two dimensional 
operation in line and sample.  The second involves performing resampling for a terrain corrected 
image.  A terrain corrected image has the effects of relief removed from the output imagery.  When 
working with a terrain corrected image, a 3-dimensional operation is performed during the inverse 
mapping with the dimensions being input (L1R) line, input sample, and elevation (figure 1).  Both 
procedures of mapping output pixel locations to input pixel locations are discussed below. 
 
Due to layout of the OLI focal plane, there are along-track offsets between spectral bands within each 
SCA, along-track offsets between even and odd SCAs, and a reversal of the band ordering in 
adjacent SCAs. This leads to an along-track offset in the imagery coverage area for a given band 
between odd and even SCAs as well as an offset between bands within each SCA. To create a more 
uniform image coverage within a geometrically corrected output product, the leading and trailing 
imagery associated with these offsets is trimmed.  This trimming is controlled by a set of 
latitude/longitude bounds for the active image area for each band, contained in the input resampling 
grid. Trimming is implemented  by converting these bounds to a look up table that lists the starting 
and ending sample location of active (non-fill) data for each line of the output image. 

 
Figure 1.  3D Grid Representation 
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7.2.4.6.1 Using the geometric grid to map an output pixel location to an 
input pixel location. 

 
To find an input line/sample location for an output line/sample location given that the elevation is zero:  

 
1) Calculate an input line and sample location using the rough polynomial stored in the resampling 
grid and the current output line and sample location.  
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Where: 
 ra = rough polynomial mapping coefficients for line mapping 
 rb = rough polynomial mapping coefficients for sample mapping 
 M = Number of sample coefficients in polynomial 
 N = Number of line coefficients in polynomial 

 
Previous experience when working with the ALI instrument has demonstrated a 1st order polynomial 
in both the line and sample direction will suffice for the rough polynomial,  thus M = N = 1. 
 

lineoutput  * sampleoutput    lineoutput   sampleoutput    sampleinput  eapproximat

lineoutput  * sampleoutput   lineoutput   sample output   lineinput  eapproximat
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There is no evidence to believe that this will not also be the case when working with the OLI 
instrument. 
 
2) Calculate the grid cell location for the approximate input line and sample location. 

 

cellper    samples  ofnumber  

sampleinput    eapproxinat
column

cellper    lines  ofnumber  

lineinput    eapproximat
row





 

 
Where: 
number of lines per cell      = size of grid cell in lines 
number of samples per cell = size of grid cell in samples  
 
Set this grid cell column and row location as the current grid cell column and row location. 
 

3) Using the current grid cell location check if the correct grid cell has been found. 
 
Use input (current) mapping grid cell coefficients (ai and bi) to map output line and sample to input: 
 

input line = b0 + b1 * output sample + b2 * output line + b3 * output line * output sample 
input sample = a0 + a1 * output sample + a2 * output line + a3 * output line * output sample 
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Calculate the grid cell location for this input line and sample location: 
 

cellper    samples  ofnumber  

sampleinput  
column new

cellper    lines  ofnumber  

lineinput   
row new





 

 
If the new grid cell (new row and new column) is the same as the current grid cell (current row and 
current column): 

The correct grid cell has been found, inverse grid mapping coefficients for this grid cell are used to 

calculate the input line/sample for the current output line/sample. 

 
If the new grid cell (new row and new column) is not the same the current grid cell (current row and 
current column): 

The new grid cell is chosen as current grid cell and the 3rd step is repeated until the correct 
grid cell is found. 

 
This routine or function listed above, of mapping output pixel locations to input pixel locations without 
taking into account elevation, will be referred to as ols2ils (output space line-sample to input space 
line-sample mapping). The ols2ils sub-algorithm takes a given output line and sample location and 
calculates the grid cell column and row location along with the corresponding input line and sample 
location for that output location. 
 
To find an input line/sample location for an output line/sample location given that the elevation is not 
zero:   
 
1) Find the z planes that the elevation associated with the output pixel falls between. 
 

  0elevz
increment elevation 
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floorintplane  z 








   

  Where: 
 elevation = elevation associated with current output location (from DEM) 

 elevation increment = elevation increment between z planes stored in grid 
 zelev=0 = zero z plane, the index of the zero elevation z-plane 

 
    The output line/sample falls between z plane and z plane+1. 
 
2) Call ols2ils for z plane and z plane+1. This yields (input sample0, input line0), and (input sample1, 
input line1).  

 
3) Interpolate between z plane and z plane + 1 to find input line and sample location for elevation. 
 
Calculate elevations for z plane and z plane + 1: 
elev0 = elevation increment * ( z plane - zero z plane ) 
elev1 = elev0 + elevation increment 
 
Calculate weights for ols2ils results: 
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input sample = input sample0 * w0 + input sample1 * w1 
input line = input line0 * w0 + input line1 * w1 
Where: 
input sample0 = input sample for z plane 
input sample1 = input sample for z plane + 1 
input line0 = input line for z plane 
input line1 = input line for z plane + 1 
 
This routine or function listed above, which performs the three-dimensional output space line-sample 
to input space line-sample mapping, is referred to as 3d_ols2ils.   
 

7.2.4.6.2 Resampling Methodology 

 
The along and cross track detector offsets are applied during resampling.  These include both the 
dynamic odd and even terrain-dependent relief and parallax effects that were calculated during the 
resampling grid generation, and the individual detector selection shift that are stored in the OLI 
geometric model.  The nature of these geometric effects due to the individual detector characteristics 
is such that, in input space, they are evenly spaced in the line direction but unevenly spaced in the 
sample direction.  This is due to the fact that as you move along raw imagery in the line direction, the 
detector number does not change.  Since the detector number does not change along the line 
direction in raw input space, the along track detector offset, stored within the geometric model, does 
not change.  These geometric effects, due to these detector offsets, are slowly varying in time staying 
essentially constant within the area that resampling is performed.  Therefore the along track 
geometric effect, and essentially spacing in the line direction, can be treated as a constant over this 
area.   The same logic helps explain why the across track detector offset is not constant in the sample 
direction, since each sample comes from a different detector. This creates unevenly spaced samples 
in raw input space.   An example of a detector layout and its’ associated offset can be seen in figure 
2.  The squares in figure 2 represent a location of an input pixel, taking into account the detector 
offsets.  The circle with the cross hairs in figure 2 represents the true input location for the current 
output pixel.  It is at this point that an interpolated value is needed to represent the current output 
pixel. 
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Figure 2. Example detector layout 

Detector offsets are handled in the resampler by first applying a resampling kernel in the line direction 
that assumes evenly spaced detectors.  Cubic convolution interpolation is used in the line direction; 
this will align a set of pixels in the sample direction.  Once the pixels are aligned in the sample 
direction, at uneven spacing, the Akima A interpolation is used to find the final output pixel value. 
 
Cubic convolution interpolation uses a set of piecewise cubic spline interpolating polynomials.  The 
polynomials have this form: 
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Four points, centered on the point to be interpolated, are used in interpolation.  The weights for each 
point are generated from f(x).  The α in the cubic convolution function is a variable parameter that 
effects the edge slope of the function.  For standard processing, a value of -0.5 is used.  An example 
of what the cubic convolution function looks like, and the corresponding weights for a phase shift of 
zero (marked as x's), is shown in figure 3. 
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Figure 3.  Cubic Convolution Function 

 
As stated previously; for the OLI resampler the cubic convolution resampling process produces a set 
of hybrid points that are aligned in the line direction.  This is done by resampling several sets of L1R 
pixels in the line direction using the cubic convolution kernel; each time cubic convolution is 
performed one hybrid pixel is produced.  The set of hybrid points produced from the cubic convolution 
process are not evenly spaced in the sample direction.  Figure 4 illustrates a set of hybrid samples 
that have been aligned in the line direction using the cubic convolution process.   
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Figure 4. Hybrid pixels for detector offsets 

The Akima A method for interpolation is used for interpolating the hybrid pixels created from the cubic 
convolution process.  This method of interpolation does not require the samples used to be evenly 
spaced.  The Akima A method uses a third order polynomial for interpolation.  The interpolating 
polynomial is defined by the coordinates and the slopes of the two points that are on either side of the 
point to be interpolated.  The slopes of the adjacent points are determined as follows: 
 
If five points are defined as 1, 2, 3, 4, and 5 then the slope at point 3, t, is defined as: 
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   Where: 

m1 = slope of line segment defined by points 1 and 2 
m2 = slope of line segment defined by points 2 and 3 
m3 = slope of line segment defined by points 3 and 4 
m4 = slope of line segment defined by points 4 and 5 

 
The Akima A method of interpolation is based upon the values (y) and slopes (t) on either side of the 
point that is to be interpolated. The interpolating polynomial for a point x between xi and xi+1 is then 
defined as: 
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   Where: 

x    = sample location of point to be interpolated 
xi   = location of point to the left of x 
xi+1 = location of point to the right of x 
yi    = DN value for the input point at xi 
y    = interpolated DN value for an output line and sample location 

 
This methodology must be adjusted somewhat to account for higher frequency image distortion 
effects than those that can be captured by the conventional resampling grid. To model such effects, 
the LDCM attitude data stream is separated in to low-frequency and high-frequency segments with 
the low-frequency portion being used for the OLI line-of-sight projection operations that build the 
resampling grid. The high-frequency data are interpolated to match the OLI panchromatic band line 
sampling times and stored in the OLI LOS model in a jitter table for application as an extra correction 
at image resampling time. The process of separating the attitude data stream by frequency is 
described in the OLI Line-of-Sight Model Creation Algorithm Description Document. 
 
Sensitivity coefficients that relate these high-frequency roll-pitch-yaw jitter terms to the equivalent 
input image space line and sample offset effects are stored in the OLI LOS grid. This makes it 
possible to look up the roll-pitch-yaw jitter for each image line being resampled, and convert the jitter 
values to compensating input line/sample corrections that are used to refine the image interpolation 
location coordinates. The generation of these sensitivity coefficients is described in the OLI Line-of-
Sight Projection/Grid Generation Algorithm Description Document. The process by which the jitter 
table from the OLI model and jitter sensitivity coefficients from the OLI grid are used during image 
resampling is shown schematically in Figure 5 below. The items in green in the figure are new 
structures added to support jitter correction. 
 
Since the jitter effects vary by image line, the time delay between even and odd (or deselected) 
detectors will lead to slightly different jitter effects in adjacent image samples. This is depicted below 
in Figure 6. Six time samples (t0 through t5) for six adjacent detectors are shown in the figure. Note 
that the input line location returned by the grid is adjusted differently for the even and odd detectors 
due to their timing offset. Including the effects of detector deselect, the interpolated line location for 
the hybrid pixels could be different for each detector. The current approach does not account for 
sample-to-sample variations in jitter for each detector, applying the jitter correction only at the output 
location. This preserves the uniform along-track sampling assumption required to apply the cubic 
convolution kernel. Also note that while it is the interpolation location that is adjusted relative to the 
input pixel locations in the line direction, it is the detector sample locations that are adjusted relative 
to the interpolation location in the sample direction. The jitter-adjusted resampling procedure is 
explained in more detail below. 
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Figure 5:  OLI LOS Model and OLI LOS Grid Jitter Correction Data Flow 

 

  

Figure 6:  Jitter Effects in Image Resampling 

 

7.2.4.6.3 Building The SCA-trimmed Look Up Table (LUT). 

Allocate SCA-trim LUT.  There is a starting and ending sample location of active or valid imagery 
stored for each line of output in the SCA-trimming look up table. 
 LUT = malloc( 2 * nl ) 
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 Where nl = number of lines in output imagery 
Given the set of geographic corner coordinates, read from the input grid file, that represent valid 
imagery for a given band: 

1. Map four corners to output projection coordinates. 
2. Map four output projection coordinates to line and sample coordinates. 
3. Set up polygon definition from four coordinates: 

<px0,py0> = <sample upper left, line upper left> 
<px1,py1> = <sample upper right, line upper right> 
<px2,py2> = <sample lower right, line lower right> 
<px3,py3> = <sample lower left, line lower left> 
<px4,py4> = <sample upper left, line upper left> 

4. Set up sample locations for each line that is outside active imagery: 
osamp1 = -1.0 
osamp2 =   output number of samples 
for nn = 0 to 3 
 if px[nn] < osamp1 then osamp1 = px[nn] – 1.0 
 if px[nn] > osamp2 then osamp2 = px[nn] + 1.0 

5. Initialize LUT values to fill for all output lines: 
For nn = 0 to (2 * number of output lines) 
 LUT[nn] = 0 

6. For nn = 0 to number of output lines (nn and current line are synonymous). 
6.1. Define line by sample locations calculated from 4 and current line 
 <x0,y0> = <osamp1, nn> 
 <x1,y1> = <osamp2, nn> 
6.2. Determine intersection between sides of polygon defined in 3 and line defined in 6.1 
 Initialize number of intersections for current line: 

intersections = 0 
 For nn = 0 to 3 
  (Simple line intersection routine) 
  xlk = x0 – x1 
  ylk = y0 – y1 
  xnm = px[nn] – px[nn+1] 
  ynm = py[nn] – py[nn+1] 
  xmk = px[nn+1] – x1 
  ymk = py[nn -1] – y1 
  det = xnm * ylk – ynm * xlk 
  if ( | det | <= TOL ) lines are parallel, no intersection found. 
  s = ( xnm * ymk - ynm * xmk ) / det 
             t = ( xlk * ymk - ylk * xmk ) / det 
              if( s<0.0 || s>1.0 || t<0.0 || t>1.0 )  

no intersection found 
  else  

intersection found, calculate point: 
xp[ intersections ]  = x1 + xlk * s 
yp[ intersections ] = y1 + ylk * s 
intersections++ 

6.3. If number of intersections from 6.2. is two then the current line has valid active imagery 
and the look up table values are these intersections and represent the start and stop of valid 
imagery.  Store values in SCA-trim lookup table.   
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 if   xp[0] > xp[1] 
  LUT[ 2 * nn ]      = xp[1] 
  LUT[ 2 * nn + 1] = xp[0] 
 else 
  LUT[ 2 * nn ]      = xp[0] 
  LUT[ 2 * nn + 1] = xp[1] 

(Note: If number of intersections is not two then current line has no valid active imagery and 
SCA-trim lookup table will contain points outside of imagery, fill will be used). 

 

7.2.4.6.4 Load/Build Information 

To resample a Level 1R data set, the image file, grid file, geometric model, and, if the effects terrain 
are to be removed, a DEM must be opened.  See note #3  

7.2.4.6.5 Resample Level1R Imagery 

 
Loop on each band of each SCA for resampling. 
 
1. Get resampling grid for the band and SCA to be processed. 
2.  Build SCA-trimming table. 
3. Read one band of imagery for one SCA.  Note #7. 

3.1. Initialize jitter correction parameters 
If current band is panchromatic then jitter_scale = 1 
Otherwise jitter_scale = 2 

4. Loop on output line/samples 
4.1. Check to see if output line/sample is within SCA-trimming bounds. 

if  output sample > LUT[ 2 * output line ] &&  
output sample < LUT[ 2 * output line + 1 ]  then proceed 

else  output pixel = fill 
4.2. If image is terrain corrected, calculate elevation dependent input line/sample location. 

4.2.1)  Get elevation for output pixel location X/Y location from DEM (elevation).  See note #3. 
4.2.2) Map the output line/sample back into input space using the grid and the function 

3d_ols2ils. 
4.3. If image is not terrain corrected calculate zero elevation (ellipsoid surface) input  
line/sample location. 
 4.3.1) Set elevation to zero 
 4.3.2) Map the output line/sample back into input space using the grid and the function ols2ils. 
4.4. Calculate actual input sample location; for sample location (int)input sample calculated from 

either 4.2 or 4.3: 
4.4.1) Calculate detector offset parallax scale. 
Scale = (int) floor(detector along track offset + 0.5) (in geometric model).  See note #4. 
4.4.2) Calculate sample odd/even parallax offset   

 Δsample_oe = (d0 + elevation * d1 ) * scale 
 Note that (d0 + elevation * d1 ) is the  parallax (in pixels) per pixel of along track  offset 
from the nominal detector location. 
 Where:  
 d0,1 = odd/even sample parallax coefficients stored in the grid 
 4.4.3) Get sample fractional offset 
 fractional sample offset =  
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  detector across track offset (in geometric model) 
 

4.4.4) Calculate sample jitter adjustment 
 4.4.4.1) Calculate the index into the jitter table for the current image line 
jit_index = (int)(jitter_scale*(input line – pixel column fill (defined below))) 
Make sure jitter index is within the range of the jitter table. Set to the min or max value 
(whichever is closest) if it is outside the range. 
 
4.4.4.2) Calculate the fractional jitter table index 

jit_index = jitter_scale * input line – floor( jitter_scale * input line) 
 
4.4.4.3) Calculate simple sample jitter adjustment 
samp_jitter0 = samp_sens[0] * jitter_table[jit_index].roll 
                     + samp_sens[1] * jitter_table[jit_index].pitch 
                     + samp_sens[2] * jitter_table[jit_index].yaw 
samp_jitter1 = samp_sens[0] * jitter_table[jit_index+1].roll 
                     + samp_sens[1] * jitter_table[jit_index+1].pitch 
                     + samp_sens[2] * jitter_table[jit_index+1].yaw 

samp_jitter = samp_jitter0 * (1-jit_index) + samp_jitter1*jit_index 
Where: 

samp_sens[0] is the sample direction jitter roll sensitivity, 
samp_sens[1] is the sample direction jitter pitch sensitivity, 
samp_sens[2] is the sample direction jitter yaw sensitivity, 
for the current grid cell, from the OLI grid. 
jitter_table[n] is the jitter table roll-pitch-yaw vector for row n, 
from the OLI model. 

 
4.4.4.4) Refine the sample jitter to compensate for line jitter 
line_jitter0 = line_sens[0] * jitter_table[jit_index].roll 
                   + line_sens[1] * jitter_table[jit_index].pitch 
                   + line_sens[2] * jitter_table[jit_index].yaw 
line_jitter1 = line_sens[0] * jitter_table[jit_index+1].roll 
                   + line_sens[1] * jitter_table[jit_index+1].pitch 
                   + line_sens[2] * jitter_table[jit_index+1].yaw 

line_jitter = line_jitter0 * (1-jit_index) + line_jitter1*jit_index 
Where: 

line_sens[0] is the line direction jitter roll sensitivity, 
line_sens[1] is the line direction jitter pitch sensitivity, 
line_sens[2] is the line direction jitter yaw sensitivity, 
for the current grid cell, from the OLI grid. 

This is the error in the line coordinate used above, due to line jitter. 
samp_rate =  
    samp_sens[0]*(jitter_table[jit_index+1].roll-jitter_table[jit_index].roll) 
+  samp_sens[1]*(jitter_table[jit_index+1].pitch-jitter_table[jit_index].pitch) 
+  samp_sens[2]*(jitter_table[jit_index+1].yaw-jitter_table[jit_index].yaw) 
This is the rate of change of sample jitter with line coordinate. 
samp_jitter += line_jitter*samp_rate 
This is the sample jitter correction adjusted for the effects of line jitter. 
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4.4.5) actual input sample = input sample - Δsample_oe - samp_jitter - fractional sample offset 
(See note #5). These corrections are subtracted rather than added because what we are 
doing here is, rather than adjusting the input space interpolation location, computing the 
apparent location of the detector to the left of the interpolation location to make sure we 
have the correct range of samples to feed the interpolation logic. If the above adjustments 
lead to the “actual input sample” being greater than (to the right of) the original input 
sample location, then we move our sample range one more sample to the left. We 
perform a similar calculation on the detector to the right of the input space interpolation 
location to make sure that we don’t have to shift one more sample in that direction. See 
also the note in section 4.6.2 below. 

4.5. Create fractional pixel shift for current input location: 
 Δline      = input line       - (int) input line 
 Δsample = input sample - (int) input sample 
4.6. Create aligned samples for Akima resampling by applying cubic convolution weights in line 

direction. 
4.6.1. Loop on actual input sample location: 
For hybrid sample = (int) actual input sample - 2 to (int) actual input sample +3 (Note #5.  One 
extra hybrid sample created to left and right of minimum number of samples needed for Akima 
interpolation) 
In the case of NN resampling, the loop limits are reduced to: 
For hybrid sample = (int) actual input sample to (int) actual input sample +1 

4.6.1.1.  Calculate line and hybrid sample detector offset parallax scale 
scale = (int) floor(detector along track offset + 0.5) (in geometric model).  See note #4. 
4.6.1.2.  Calculate odd/even detector offset, parallax correction, and jitter correction for 
hybrid detector. 

4.6.1.2.1. Odd/even detector offset and parallax corrections. 
Δline_oe      = (c0  + elevation * c1 ) * scale + pixel column fill - nominal detector fill - 
at_offset[hybrid sample] 
Δsample_oe = (d0 + elevation * d1 ) * scale  
Where: 
c0,1 = odd/even line parallax coefficients stored in the grid  
d0,1 = odd/even sample parallax coefficients stored in the grid.  Note that (c0  + elevation 
* c1 ) is the along-track parallax (in pixels) per pixel of along-track offset from the 
nominal detector location and (d0 + elevation * d1 ) is the across-track parallax (in pixels) 
per pixel of along-track offset from the nominal detector location. 
 
4.6.1.2.2. Jitter correction 
The sample jitter correction is calculated as described in section 4.4.4 above. The line 
jitter correction is calculated as follows: 

jit_index = (int)(jitter_scale*(input line – pixel column fill)) 

jit_index = jitter_scale * input line – floor( jitter_scale * input line) 
line_jitter0 = line_sens[0] * jitter_table[jit_index].roll 
                   + line_sens[1] * jitter_table[jit_index].pitch 
                   + line_sens[2] * jitter_table[jit_index].yaw 
line_jitter1 = line_sens[0] * jitter_table[jit_index+1].roll 
                   + line_sens[1] * jitter_table[jit_index+1].pitch 
                   + line_sens[2] * jitter_table[jit_index+1].yaw 

line_jitter = line_jitter0 * (1-jit_index) + line_jitter1*jit_index 
Where: 
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line_sens[0] is the line direction jitter roll sensitivity, 
line_sens[1] is the line direction jitter pitch sensitivity, 
line_sens[2] is the line direction jitter yaw sensitivity, 
for the current grid cell, from the OLI grid. 

This is the error in the line coordinate due to jitter. 
line_rate =  
    line_sens[0]*(jitter_table[jit_index+1].roll-jitter_table[jit_index].roll) 
+  line_sens[1]*(jitter_table[jit_index+1].pitch-jitter_table[jit_index].pitch) 
+  line_sens[2]*(jitter_table[jit_index+1].yaw-jitter_table[jit_index].yaw) 
This is the rate of change of line jitter with line coordinate. 
line_jitter += line_jitter*line_rate 
This is the line jitter correction adjusted for the second order effects of line jitter. Note the 
similarity to the sample correction described in 4.4.4.4. 
 

4.6.1.3.   Calculate new hybrid line location.  
4.6.1.3.1. hybrid line = (int)floor(input line + ∆line_oe + line_jitter) . 

Note that in this case we add the corrections since we are adjusting the interpolation 
location. 
4.6.1.4. Calculate new fractional hybrid line location.  
Δhybrid line = input line + Δline_oe +line_jitter – hybrid line 
If |Δhybrid line| > 1 then the integer line index must be adjusted and Δhybrid line brought 
back into the -1 < Δhybrid line < 1 range (see note #5). 
4.6.1.5. Apply cubic convolution in line direction to hybrid sample line DNs.  

4.6.1.5.1.  Calculate cubic convolution weights.  See note #2 




 
2

1

2 )line hybrid(
n

n nfw  

Where f  is equal to cubic convolution function. 
4.6.1.5.2.  Apply cubic convolution weights to L1R DNs. 

 hybrid line DN = w0 * h0 + w1 * h1 + w2 * h2 + w3 * h3 
 Where 
 w0,w1,w2,w3 = Cubic convolution weights for Δhybrid line. 
 h0 = DN from L1R for hybrid sample, input line location  - 1 
 h1 = DN from L1R for hybrid sample, input line location 
 h2 = DN from L1R for hybrid sample, input line location + 1 
 h3 = DN from L1R for hybrid sample, input line location + 2 

In the case of NN resampling, the values of hybrid line and Δhybrid line are used to select 
the closest line for the current detector/sample column, instead of being used to compute 
weights. The hybrid line DN is then the L1R DN value for the closest line location. 

4.6.2. Calculate the apparent Akima pixel location for the current hybrid sample. 
Akima pixel location xi =  
 hybrid sample location - Δsample_oe  
 - across track detector offset (in geometric model) 
 - samp_jitter (computed per section 4.6.1.2.2 above) 
Note that in this case the across-track terrain parallax and sample jitter effects are subtracted 
instead of added. This is because we are adjusting the apparent detector location relative to 
the output pixel interpolation point instead of adjusting the output pixel interpolation location 
itself. We must do it this way in the sample direction because the adjustments are different for 
each detector. As for the across-track offset term, which is also unique for each detector, the 
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detector offset corrections are designed to be applied as line-of-sight corrections in the 
instrument coordinate system. As such, the along-track offset is a +X LOS correction and the 
across-track offset is a +Y LOS correction. The instrument +X axis is in the +line direction but 
the +Y axis is in the –sample direction, so this correction is also subtracted from the apparent 
detector location.   

4.7. Calculate output DN using Akima interpolation and hybrid line/sample information from 4.6.1 
and 4.6.2. 

4.7.1. Calculate Akima weights according to pixel locations from 4.6.2. 
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Where: 
DNn = hybrid DNs calculated from cubic convolution, step 4.6.1. 
xn = Akima locations calculated in step 4.6.2.   
akn = Akima weights 
mn = Akima slopes 
4.7.2. Calculate output pixel DN using Akima A method. 

)sample(
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The output sample point is located between hybrid samples x2 and x3 where xn is from n=0…5. 
In the case of NN resampling, the Akima pixel locations for the two closest detectors are 
examined to see which is closest to the output location. The hybrid line DN value for the 
closest detector is selected as the output DN value. 

4.8. Write output DN to image file.  See note #9. 
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5. Write out data descriptor record for image file. The baseline contents of the data descriptor record 
are shown in table 1.  All fields present in the table refer to the imagery associated with the DDR 
unless otherwise specified. Note that the scene roll angle is a new field added for off-nadir 
acquisitions. It would be computed from the LOS model by interpolating the roll angle from the 
"original" attitude data sequence at the time corresponding to the precision model reference time 
t_ref. This would be done using the logic described in the Find Attitude sub-algorithm in the LOS 
Projection ADD, except operating on the "original" rather than the "corrected" attitude data 
sequence. The logic for using the "original" data is so that this scene roll value will not change due 
to LOS model correction.  The sign convention on the roll angle is such that a positive roll angle 
would correspond to a positive orbital Y coordinate which is looking to starboard (See note 11). 

 

7.2.4.6.6 Combining SCAs into one output file. 

For an SCA combined output image the overlap region between SCAs can be handled by averaging 
the pixels between SCAs (See Note 12).  
 

7.2.4.7 Prototype Code 

Input to the executable is an ODL file, output is a HDF5 file containing the image data and 
corresponding metadata.  The output format follows the format of the L1G DFCB version 1. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall -march=nocona -m32 
 
 
 
Main driver for resampler (oliresample) 
Main driver for OLI resampler.  Performs the following steps or calls the following modules. 
 1) Read input ODL parameters (getpar). 
 2) Read OLI input file (oli_get_model). 
 3) Read OLI grid headers (oli_get_grid_headers). 
 If terrain correction read DEM file (oli_get_dem). 
 4) Open L1G image file (open_l1g_resamp_image). 
 5) Get fill pixel value (get_fill_pixel). 
 For each band to process 
  6) Read grid band pointers (oli_get_grid_pointers). 
  7) Open/initialize L1G band file (start_l1g_resamp_band). 
  8) Setup resampling kernel (Kernal_Setup). 
  9) Read resampling kernal information for resampling (get_kernal_info). 
  For each SCA 
   10) Read one SCAs worth of data from L0ra       
 (get_input_image_data_l0ra). 
   11) Resample SCA worth of data (resample_image). 
   if not SCA combined image file write SCAs worth of data     
  (write_l1g_resamp_band). 
  If SCA combined image file write full SCA file (write_l1g_resamp_band). 
  12) Close band in L1G output file (stop_l1g_resamp_writing_band). 
  13) Free grid band pointer (oli_free_grid). 
 14) Close L1G image file (close_l1g_resamp_image). 
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 15) Update L1G metadata (update_l1g_metadata). 
    
Get resampling processing parameters (getpar). 
This function reads the OLI resampling parameters from the ODL file.  Also contains two functions, 
get_combine_sca and get_fill_pixel, that will return input flags as to whether 1) combine the SCAs in 
the output image and 2) what DN value should be used for fill.   
 
Resample a given set of DN value using the Akima method (akima). 
Function takes a given set of X locations with corresponding Y values and finds the Y value for the 
given input X location (xp).  Function returns interpolated Y value associated with coordinate xp. 
 
Calculate cubic convolution weight for a given location (cubic_convolution). 
Given a cubic convolution alpha parameter and X value return the Y value associated with the cubic 
convolution function. 
 
For a given band read one SCAs worth of L0R imagery (get_input_image_data_l0ra). 
Given a L0rp file name, band number, and SCA number read an SCAs worth of data from L0rp file.  
Number of lines to read is taken from number of lines stored in models image data structure. 
 
 
Set up resampling kernel (module kernal.c). 
Using a set of functions, create a set of resampling weights.    The resampling kernel is created and 
managed though several steps within the kernal.c file. 
 Kernal_Setup sets up kernal table or pointer.  Allocates pointer and calls 
Create_Resampling_Kernal_1D to create a set of cubic convolution weights.  Set is a look-up table of 
1D cubic weights representing 1/64 of a shift in pixel locations. 
 Cleanup_Kernal frees up cubic convolution pointer. 
 Create_Resampling_Kernal_1D creates a set of one dimensional cubic convolution based on 
the input alpha parameter. 
 Get_Resample_Weight_Table_Ptr returns a pointer containing a set of 1D cubic convolution 
weights. 
 get_lines_in_kernal returns number of lines in resampling kernal. 
 get_samples_in_kernal returns number of samples in resampling kernal. 
 num_left_kernal_samples returns number of resampling weights to the "left" of the point that 
is to be interpolated. 
 num_right_kernal_sample returns number of resampling weights to the "right" of the point 
that is to be interpolated. 
 num_top_kernal_lines returns the number of lines "above" the point to be interpolated. 
 num_bottom_kernal_lines returns the number of lines "below" the point to be interpolated. 
 get_kernal_step_size returns the offset size in pixels between two sets of resampling 
weights. 
 get_kernal_info returns the number of steps (or number of sets of weights) within the 
resampling kernal, total number of sets of weights within the resampling table, width of resampling 
kernal, and height of resampling kernal. 
 
Read DEM file (oli_get_dem). 
Reads (Image Processing Element) IPE L1G file contain DEM data. 
 
Open, close, write to L1G output image file (file output_image_data.c) 
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The file output_image_data.c contains several routines used for managing the output L1G file.  Calls 
and functions are listed below. 
open_l1g_resamp_image opens a L1G file. 
start_l1g_resamp_band opens one band within an L1G file. 
write_l1g_resamp_band writes image data to L1G file. 
stop_l1g_resamp_writing_band closes band within L1G file. 
close_l1g_resamp_image closed L1G file. 
 
Resample one SCA for one band of L0Rp imagery (file resample_image.c) 
The file resample.c contains several functions used in resampling imagery. 
 setup_trim_lut builds a lookup table that contains the starting and ending output pixel of valid 
imagery.  Everything outside of this bounds will be set as fill 
 cleanup_trim_lut frees static buffer that contains SCA-trimming lookup table array. 
 get_kernal_info retrieves resampling weight table and corresponding characteristics.  
 setup_detector_offsets stores the detector offsets, along and across, level-0R fill, and 
nominal detector fill within arrays.  Used by resample_image for applying detector offsets when 
resampling imagery. 
 resample_image is the main guts of the resampler.  Takes the image data, DEM data if terrain 
corrected, grid band pointer, and OLI model structure to resample one SCA or one band of imagery.  
Loops on output pixels mapping each output pixel location to a input location and resamples L0Rp (or 
L1R when it becomes available) using algorithm described in procedure section. 
 calc_jitter computes the sample and line direction jitter corrections for the current input 
line/sample location. This corrections are the adjustments to the input space interpolation location 
required to compensate for the high frequency jitter present at the time of observation. 
 calc_jitter_samp is a simplified version of calc_jitter that computes only the sample direction 
jitter correction. It is implemented as a separate function for processing efficiency because it is 
invoked more frequently than calc_jitter. 
 
Update L1G metadata information (update_l1g_metadata). 
Update L1G metadata according to projection information stored within resampling grid. 
 
Write out ENVI header file (write_envi_hdr). 
Writes out ENVI header file for image flat file that is written to disk.  Only used for testing purposes. 
 
 
Input and Output File Details 
 
Output is a L1G image file formatted according to the L1G DFCB.  The output is a HDF5 file .  The 
metadata associated with the output file is listed below.  These tables follow the meta data fields in 
version 1 of the LDCM Level-1 G DFCB.  The metadata is split up into a file metadata and band 
metadata.  For further information on this format see the L1G DFCB. Not all fields within the prototype 
metadata fields are filled in with valid data.  Fields in which data is not correctly filled are indicated in 
italics (see notes #9 and #10). 
 
File Metadata 

Field Description Type 

  Projection Code GCTP projection code integer 

  Zone Code Map projection zone code integer 

  Datum Projection datum code char[16] 
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  Spheroid Code Projection spheroid code integer 

  Projection Units Map projection units char[12] 

  Projection Parameters GCTP projection parameters double[15] 

  WRS Path WRS-2 Path  integer 

  WRS Row WRS-2 Row integer 

  Roll Angle Off nadir pointing angle double 

  Spacecraft Spacecraft name char[32] 

 Collection Type Acquisition type char[32] 

  Capture Direction Ascending or descending char[32] 

  Capture Date Acquisition date char[11] 

  Capture Time Acquisition Time char[9] 

  Correction Type Product type char[5] 

  Resample Type Resampling method char[4] 

  Software Version Software version char[11] 

  Ingest Software Version Ingest software version char[11] 

   

 
Table 1 L1G File Metadata Fields 

 
Band Metadata 

Field Description Type 

  Band Number Band Number integer 

  Band Name LDCM Band designation char[30] 

  Upper Left Y Upper left Y map coordinate double 

  Upper Left X Upper left X map coordinate double 

  Upper Right Y Upper left Y map coordinate double 

  Upper Right X Upper left X map coordinate double 

  Lower Left Y Lower left Y map coordinate double 

  Lower Left X Lower left X map coordinate double 

  Lower Right Y Lower right Y map coordinate double 

  Lower Right X Lower right X map coordinate double 

  Projection Distance Y Y map projection distance double 

  Projection Distance X X map projection distance double 

  Maximum Pixel Value Maximum DN double 

  Minimum Pixel Value Minimum DN double 

  Pixel Range Valid Flag indicating valid pixel max/min integer 

  Maximum Radiance Maximum radiance double 

  Minimum Radiance Minimum radiance double 

  Spectral Radiance 
Scaling     Offset 

Offset to convert to spectral radiance double 

  Spectral Radiance 
Scaling Gain 

Gain to convert to spectral radiance double 

  Radiance valid Flag to indicate radiance values are 
valid 

integer 

  Reflectance Scaling 
Offset 

Offset to convert to reflectance double 

  Reflectance Scaling Gain to convert to reflectance double 
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Gain 

  Reflectance valid Flag to indicate radiance values are 
valid 

integer 

  Instrument Source Instrument associated with band 
imagery 

char[32] 

   

 
Table 2 L1G Band Metadata Fields 

 

7.2.4.8 Maturity 

1. Since the OLI 3D grid approach is adopted, the ALIAS code was reused with limited 
modifications. 

2. Due to the detector select option aboard OLI, the detector offset approach has been changed.  
Under the new methodology the along track detector offsets are stored with the whole pixel 
adjustment needed due to the detector selected and the small sub-pixel adjustment that was 
present in the ALI CPF detector offset field.  This leads to a need to separate out the fractional 
detector offset from the detector select offset at times during processing. 

3. The problem of multiple terrain intersections needs to be addressed, particularly for off-nadir 
acquisitions. A terrain occlusion mask will be generated to identify these obstructed pixels (see 
note #1 below for additional details), but the current thinking is that it would not alter the 
behavior of the resampler, as sprinkling fill pixels throughout a product image can wreak havoc 
with some applications. Generating a separate terrain occlusion mask will allow users to 
evaluate the extent of the problem and apply the mask if appropriate to a particular application.  
This is being addressed in the Terrain Occlusion ADD. 

 
All items in maturity section have been addressed.  The OLI 3D grid approach was adopted.  The 
IPE L1G and L0R libraries were used within the prototype code.  The detector delay logic was 
changed to handle the OLI detector select characteristics.  The terrain occlusion ADD addresses 
the terrain issues associated with the OLI instrument. 
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7.2.5 Terrain Occlusion Mask Generation Algorithm 

7.2.5.1 Background/Introduction 

The heritage Landsat and ALI/EO-1 image resampling procedures ignored the possibility of multiple 
terrain intersections due to off-nadir viewing toward the edges of the imaging swath. This was a 
reasonable simplification for Landsat with its fixed nadir viewing geometry. Although the ALI was 
capable of off-nadir pointing, this capability was mostly used to acquire different portions of the 
nominal Landsat swath, given that the ALI’s focal plane was only 20 percent populated. Furthermore, 
EO-1 was a technology demonstration project with a minimal budget for ground processing algorithm 
development, so Landsat capabilities were reused as is wherever possible.  
 
Ignoring the multiple terrain intersection effect is less defensible for the pointable OLI which will be 
acquiring off-nadir scenes from adjacent WRS paths in small, but significant numbers, for product 
generation. The approach to this problem adopted here is to compute the ground locations where the 
OLI line of sight is obstructed by terrain, and provide this information in a mask. The image 
resampling logic will be permitted to populate all output image pixels with apparent values according 
to the heritage algorithm. Some of these will be erroneous data that actually represent terrain 
intersection points closer to the imaging sensor. These can be subsequently identified and, if 
appropriate, replaced with fill by the user based on the contents of the terrain occlusion mask 
generated by this algorithm. This approach was felt to be preferable to inserting fill in the product 
image as some image exploitation algorithms (e.g., control point mensuration) are sensitive to the 
presence of fill. 
 
Generating the terrain occlusion mask can also be performed without reference to the output image 
itself, requiring only the digital elevation model (registered to the product image output space) and the 
LOS projection grid as inputs. For each pixel in the output image, the algorithm uses the grid file to 
locate the corresponding pixel in input (L1R) space. It then uses the grid to compute the output space 
line/sample location corresponding to the same input line/sample at the maximum elevation plane. 
The line connecting the original output pixel location with the maximum elevation location 
corresponds to the projection of that pixel’s line-of-sight into output space. By interpolating elevation 
model heights for points along this line and comparing them to the computed LOS height, terrain 
intersection points that are closer to the imager can be detected. Each point in the output terrain 
occlusion mask will be flagged as visible or terrain occlusion. 
 
This is a new algorithm with no ALIAS or Landsat heritage though it will make extensive use of the 
library functions that access the grid file. 

7.2.5.2 Dependencies 

The terrain occlusion algorithm assumes that the LOS Projection and Gridding algorithm has created 
the output product LOS projection grid and that the digital elevation model has been resampled to 
match the output product frame. The elevation planes in the LOS projection grid must span the range 
of elevations in the elevation model. 

7.2.5.3 Inputs 

The terrain occlusion algorithm and its component sub-algorithms use the inputs listed in the following 
table. Note that some of these “inputs” are implementation conveniences (e.g., using an ODL 
parameter file to convey the values of and pointers to the input data). 
 
Algorithm Inputs 
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ODL file (implementation) 

OLI Grid file 

DEM Grid file 

Original Unresampled DEM file 

Terrain Occlusion Mask file name 

Terrain Occlusion band 

 

7.2.5.4 Outputs 

 TO (terrain occlusion) mask file 

  TO mask data descriptor record (DDR) (see 
note 4) 

  TO mask image 

7.2.5.5 Options 

None. 

7.2.5.6 Procedure 

Read unresampled  DEM to determine maximum elevation within file (maximum_elevation).  

Initialize terrain mask to 0. 

For each SCA: 

For each output pixel: 

1) Retrieve the elevation for the current output pixel location (current elevation)  from the 
DEM. 

a. Using DEM resampling grid map L1T output pixel location to geographic 
unresampled DEM line/sample location. 

i) Calculate grid cell row and column index. 

 grid row = output line / number grid cell lines 

 grid col = output sample / number grid cell samples 

ii) Determine grid cell number. 

    grid cell number = grid row * number grid cell samples +    
  grid col 

iii) Look up grid mapping coefficients based on grid cell.  

coeff = grid cell coefficient reverse[grid cell number]. 

iv) Calculate DEM line/sample location.  

 DEM line = coeff.line[0] + 

  output sample * coeff.line[1] + 

  output line * coeff.line[2] + 

  output sample * output line * coeff[3].line 

 DEM sample = coeff.sample[0] + 

  output sample * coeff.sample[1] + 
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  output line * coeff.sample[2] + 

  output sample * output line * coeff[3].sample 

b. Perform bilinear interpolation at location in DEM from step 1a) to determine elevation 
of current L1T output location. 

i) Determine subpixel location 

Integer line = (int)DEM line 

Integer sample = (int) DEM sample 

ds = DEM sample – Integer sample 

dl = DEM line – Integer line 

ii) Determine location in DEM image buffer. 

dem_ns = number samples in DEM 

dem_nl = number lines in DEM 

loc = Integer line * dem_ns +  Integer Sample 

iii) Interpolate elevation for floating point location. 

elevation =  

     (1.0 - ds) * (1.0 - dl) * dem.data[loc] + 

     ds  * (1.0 - dl) *dem.data[loc+1] + 

     (1.0 - ds) *dl  * dem.data[loc+dem_ns] + 
        ds  *  dl  * dem->data[loc+dem_ns + 1] 

Note: 
For off-nadir images, pixel line-of-sight ground projections can extend outside the product 
image area. Using the unresampled DEM as the source of elevation data should prevent 
elevations from being needed outside the available data range as the terrain occlusion 
calculation performs its “stepping process”.   However a check to make sure that the elevation 
being retrieved is greater than 0 in line and sample while less than dem_nl-1 and dem_ns-1 
should be implemented.  The process should issue a warning that the data to be retrieved is 
outside of the DEM, and return the DEM elevation value for the closest edge line/sample 
position (i.e., clip the DEM line/sample values at the DEM edges). 

 2) Run ols2ils to find input location for corresponding output location.  This will  be based on 
elevation for current output pixels (lc,sc). 

 3) Run get_output_ls for the input location calculated in 2) to find the  corresponding 
output location for the maximum elevation (lm,sm). 

 4) Define the parametric equation for a line that connects (lc,sc) to (lm,sm). 

 sp = s0 + t * f 

 lp = l0 + t * g 

where:  10  t  

At t=0:  lp=lc and sp=sc.   

At t=1:  lp=lm and sp=sm 
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 Therefore 

l0 = lc,  

s0=sc,  

g=(lm-lc),  

f=(sm-sc) 

 5) Compute the length of the line in output space: 

22 )()(,1( cmcm llssMAXd   

 6) Compute the increment of t to use to walk along the line: 

2

)1,,(
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llssMAX
t

cmcm 
  

 7) Walk along the line in increments of t, testing each point for terrain  occlusion: 

For j = 0 to (int)ceil(1/Δt) 

    t = j * t 

 8) Calculate the point of intersection: 

lp = l0 + t * g 

sp = s0 + t * f 

9) Round (lp,sp) to get (lp',sp').  Find the elevation for (lp',sp') (pixel elevation) using the DEM 
resampling grid as described in steps 1a) and 1b) above. 

 10) The value of t represents the ratio used to measure whether the elevation of  (lp',sp') is 
large enough to obscure the current pixel of interest (lc,sc).  

 if( (t * maximum elevation + (1.0-t) * current elevation) < pixel elevation ) 

            Current pixel location (lc,sc) is occluded.  Set terrain mask to 1 and exit loop. 

 else 

             Current pixel location (lc,sc) is not occluded. Continue to loop. 

 

Determining Elevation (change from using co-registered DEM) 

Due to the “walk-a-line” process of step 7) of the previous procedure the location of an elevation 
requested could reside outside of the co-registered DEM used in creating the L1T.  To account for 
this the unresampled DEM and DEM geomgrid used to resample the DEM can be used to map points 
from these points outside the L1T geographic extent to that within the unresampled DEM.  Since the 
unresampled DEM should extend outside the boundary of the L1T, this will allow the retrieval of 
elevations outside the product image extent. 

7.2.5.7 Prototype Code 

 
The following is a list of the routines files associated with the prototype code and brief explanation of 
the purpose of each. 
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calc_dem_bounds 
Takes an image data structure and returns the minimum and maximum values of the data values 
present.  This process defines the boundaries of the searching, or equations, to determine if a pixel 
has been occluded by another pixel. 
 
getpar 
Reads input parameters from an ODL file.  Input includes the LOS projection grid, coregistered DEM 
and the band (or number of bands) to be inspected for pixel occlusion. 
 
occ_get_elevation 
Calculates pixel, or elevation, DN from an image data buffer using bilinear interpolation.  Input is an 
IMAGE data structure and floating point location for DN calculation. 
 
occlusion_get_geo 
Uses the generic resampling grid to map points from the L1T output location to the unresampled DEM 
location.  Mapping is done through bilinear mapping coefficients stored within the generic grid. 
 
occlusion 
Main driver for calculating terrain occlusion mask.  Calls getpar to retrieve input parameters, read 
LOS projection grid, reads DEM file, calls calc_dem_bounds to determine bounds on DEM file, calls 
terrain_occlusion_mask to calculate mask, frees LOS projection grid from memory, writes occlusion 
mask to a flat file, and calls write_envi_hdr to create an ENVI header file for occlusion mask. 
 
oli_get_dem 
Reads DEM file storing elevation and geographic information into image data structure.  Calls several 
IPE L1G HDF5 routines for reading DEM file. 
 
terrain_occlusion_mask 
Module that calculates the terrain occlusion mask.  The equations and steps present within this 
module are listed in the procedure section above.  Occlusion mask is calculated using several 
subroutines present within the terrain_occlusion_mask file: 
 terrain_occlusion_mask: Main driver for all functions in the     
 terrain_occlusion_mask file.  Takes an input of the LOS projection grid,    SCA 
number, elevation data structure, maximum elevation present within  coregistered DEM and 
creates a terrain occlusion mask. 
 calc_occ_line_eq: Calculates the parametric equations for a line joining two   
 points. 
 occlusion_build_params:  Calculates the length of the line in output space and   
 increment of t parameters. 
 map_to_input_occlusion: Maps an output space location to an input space    
 location. 
 calc_occ_scale:  Calculates the scale needed to determine if a current pixel is   
 occluded. 
 
write_envi_hdr 
Writes out an ENVI header for the occlusion mask. 
 
Prototype dependencies: 
1) Input is a HDF4 heritage grid file.   
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2) DEM file is HDF5 L1G image file. 

7.2.5.8 Maturity 

4. The problem of multiple terrain intersections needs to be addressed, particularly for off-nadir 
acquisitions. A terrain occlusion mask will be generated to identify these obstructed pixels (see 
note #1 below for additional details), but the current thinking is that it would not alter the 
behavior of the resampler, as sprinkling fill pixels throughout a product image can wreak havoc 
with some applications. Generating a separate terrain occlusion mask will allow users to 
evaluate the extent of the problem and apply the mask if appropriate to a particular application. 

5. The algorithm does not account for detector specific even/odd and deselect offsets. It 
generates the mask based on nominal detector locations. 

6. The need to have the L1R image available to detect within-image fill conditions (due to nominal 
detector/band shifting) is overtaken by events, since nominal detector/band alignment fill is not 
used. 

7. Current prototype/test version has only been run on ALI imagery.  The processing of 
generating the mask is currently integrated within the ALIAS resampler code. 

8. Early testing with OLI simulated data showed difficulty in defining what portion of a pixel is 
obstructed, or what portion of another pixel is leading to the obstruction.  This may lead to 
further tweaking of defining the search areas and variables involved in calculating masked 
pixels, however the under lying principles of the algorithm should remain the same. 

7.2.5.9 Notes 

Some additional background assumptions and notes include: 
1. The new logic required to calculate the terrain occlusion mask (particularly for off-nadir scenes) 

is documented here, in a separate ADD, but may be implemented as part of the resampling 
software for processing efficiency. The terrain occlusion (TO) mask output by this algorithm, is 
also included as a possible (to be resolved) output in the resampling algorithm. 

2. The current concept is to allow the user to specify the band(s) to use in testing for occlusion. 
However for the terrain mask that is to accompany the L1T LDCM product, generation of the 
mask for the SWIR1 band should be sufficient. 

3. Early testing with ALI data showed few pixels being marked as masked.  This, along with off-
nadir imaging not being a standard product, may lead to changes in how this algorithm will be 
used during processing and product generation. 

4. The DDR will be a component of the output TO mask image file, capturing the metadata 
necessary to relate mask image pixels to ground positions. This structure is addressed in more 
detail in the Resampling ADD. 
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7.2.6 OLI Geometric Accuracy Assessment (L1T) 

7.2.6.1 Background/Introduction 

The OLI geometric accuracy assessment, or geometric characterization, algorithm analyzes the 
results of the ground control point (GCP) measurements derived through correlation of the GCP 
image chips with a precision and terrain corrected OLI L1T image. Unlike the similar geodetic 
accuracy assessment algorithm, there is no precision LOS model correction step invoked to analyze 
the GCP results and detect outliers. Instead, the geometric accuracy assessment is applied directly to 
the results of control point mensuration in the L1T image. Statistics are computed for the GCP 
measurements, with outliers detected and rejected based upon a t-distribution test. The GCP results 
provide a measure of the accuracy of the output L1T product through direct comparison to an 
absolute ground control source. Ideally, a different set of GCPs would be used for geometric accuracy 
assessment than were used in the L1T LOS model correction process. This will require flagging some 
GCPs in the GCP library as validation points to be withheld from the original GCP mensuration and 
LOS model correction process and used only for geometric characterization. Setting these 
control/validation flags is a Cal/Val Team responsibility. 
 
The OLI geometric accuracy assessment algorithm has no direct ALIAS equivalent, but will be 
derived from the OLI geodetic accuracy assessment algorithm.  

7.2.6.2 Dependencies 

The OLI geometric accuracy assessment algorithm assumes that the L1T product generation flow 
has been executed to create an L1T image, and that this image has been correlated with a set of 
validation GCP image chips (see note 3) using the GCP correlation algorithm, to produce a set of 
GCP measurements. Normally this L1T image will be a standard SCA-combined L1T product, but the 
GCP correlation algorithm may also be run on SCA-separated images in testing and anomaly 
resolution scenarios. 

7.2.6.3 Inputs 

The geometric accuracy characterization algorithm uses the inputs listed in the following table. Note 
that some of these “inputs” are implementation conveniences (e.g., using an ODL parameter file to 
convey the values of and pointers to the input data). 
Algorithm Inputs 

ODL file 

   Measured GCP File Name 

   Band to process (See note 6) 

   L1T Image File Name (for access to metadata) 

   T-distribution outlier threshold 

   Output geometric report file name 

   L0Rp ID (for trending) 

   Work Order ID (for trending) 

   Characterization Database Output (Trending) Flag (on/off) 

   GCP residual output (on/off) 

Measured GCP File Contents (see GCP Correlation ADD for full details) 

   GCP point ID 

   GCP latitude and longitude (in degrees) and height (in meters) 

   Correlation success/failure flag 

   Predicted GCP image line and sample location 
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   Line and sample offsets in pixels 

   Measured band number 

   GCP source (GLS or DOQ) 

L1T Image File Metadata Contents (see Image Resampling ADD for full 
details) 

   WRS Path/Row (for trending) 

   Image pixel size (for measured band) in meters 

   Acquisition date (for trending) 

   Acquisition type (for standard report file header) 

   Scene roll angle (for trending and report file) 

 

7.2.6.4 Outputs 

Geometric Accuracy Report (output file and trending) (see Table 1 below for 
additional details) 

  Processing Information 

    Processing Date and Time 

    Processing Center/Location 

    Processing Software Version 

    Processed L1T Image File Name 

  Data Set Information 

    Spacecraft and Instrument Source (LDCM/OLI) 

    Work Order ID  

    WRS Path/Row 

    Off-Nadir Angle 

    Acquisition Type (Earth, Lunar, Stellar) (will always be Earth) 

    L0Rp ID 

    Acquisition Date 

  GCP Information 

    GCP Source 

    Pixel Size (meters) 

    Number of valid GCPs 

    Mean latitude and longitude of GCPs 

  GCP Statistics 

    Mean, RMSE, Standard Deviation, Correlation Coefficient 

GCP Residual Output Fields (written to report file only if option is selected) 

  For each valid GCP: 

   GCP point ID 

   GCP latitude and longitude (in degrees) and height (in meters) 

   Line and sample offsets scaled to meters 

   Measured band number 

   Measured SCA number (usually 0) (see note #4) 

7.2.6.5 Options 

Characterization database output on or off. 
GCP residual output on or off. 

7.2.6.6 Procedure 

Geometric characterization is performed on the measured GCP file output created by the GCP 
correlation algorithm. See the GCP Correlation Algorithm Description Document (ADD) for further 
details on the GCP mensuration process and its results.  Geometric characterization reads the entire 
set of GCP measurements, removes those flagged as correlation failures, performs a Student t-
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distribution test to detect and eliminate outliers, and calculates statistics for the remaining valid 
residuals. The resulting statistics reflect the accuracy of the measured L1T image product relative to 
the set of validation GCPs used in the correlation process, providing a measure of L1T product 
accuracy that is independent of the control used to create the product. 
 
The geometric accuracy assessment algorithm computes the same summary statistics as the 
geodetic accuracy assessment algorithm. It differs from that algorithm in that it must read the raw 
GCP measurement file produced by the GCP correlation algorithm instead of the precision correction 
residuals file produced by the LOS model correction algorithm and therefore must filter its input for 
outliers prior to computing the statistics. Also unlike geodetic characterization, geometric 
characterization includes an option to write out the measured offsets for those GCP declared as valid 
by the outlier test. This makes it possible to capture the outlier test results for individual GCPs for 
further analysis. 
 
Figure 1 shows the architecture for the Geometric Characterization algorithm. 

 

Retrieve Parameters   

 Get Measured GCPs 

Remove Outliers 

Calculate 

Statistics 

Write  Residual  

Statistics 

ODL   

Measured  
GCPs 

  Residual  
Statistics   Write GCP Residuals  

(if requested)  

 

Figure 1:  Geometric Characterization Algorithm Architecture 

 
The geometric accuracy assessment algorithm consists of three stages: 

Stage 1 - read processing parameters and load GCP data. 
Stage 2 - use the Student t-distribution test to perform outlier filtering on the GCPs. 
Stage 3 - compute the mean, standard deviation, RMSE, and correlation coefficient statistics for 
the valid GCPs, and generate the report file and characterization database outputs. 

In practice, stages 2 and 3 are somewhat overlapped as it is necessary to compute mean and 
standard deviation statistics on the GCP set as part of the t-distribution outlier test. 
 
Stage 1 - Load Processing Parameters and GCP Measurements 
Stage 1 processing reads the processing parameters from the input ODL file and loads the GCP data 
from the measured GCP file. 
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Get Geometric Characterization Parameters Sub-Algorithm (new) 
Read the parameters for geometric characterization from the input ODL parameter file. Also read the 
Level 1T image metadata to retrieve the WRS path/row, acquisition date, and pixel size for all bands 
in the image. 
 

Get GCP Measurements Sub-Algorithm  
This function reads the latitude, longitude, band number, GCP source, and correlation status flags as 
well as the along- and across-track offset measurements for each GCP from the measurement file 
created by the GCP correlation algorithm. It retrieves all of the measured GCPs for subsequent 
correlation flag and outlier filtering. Each GCP record is loaded into a data structure containing the 
fields listed in Table 1 of the prototype section.: 
 
The measured GCP line and sample offsets are scaled to units of meters using the pixel size read 
from the L1T metadata for the measured band. The fields required for stage 2 and 3 processing are: 

1. Point ID 
2. GCP Latitude 
3. GCP Longitude 
4. GCP Height 
5. Line Offset Scaled to Meters 
6. Sample Offset Scaled to Meters 
7. Valid GCP (Correlation and Outlier) Flag 
8. L1T Band Number 
9. L1T SCA Number (usually 0 for SCA-combined images) (see note #4) 
10. GCP Source 

 
Stage 2 - Filter GCP Outliers 
Stage 2 processing identifies those GCP measurements classified as outliers. The outlier set is 
initially identified as those GCPs flagged as image correlation failures. A statistical t-distribution outlier 
test is applied iteratively to the remaining valid GCPs, removing any newly identified outliers at the 
end of each iteration, until no new outliers are found. 
  
Remove GCP Outliers Sub-Algorithm (new) 
This function removes the GCP records flagged as outliers from the valid GCP set. Records with the 
correlation flag field set to 0 are outliers. The initial valid GCP set are those GCPs that were flagged 
as successful correlations. The Student t-distribution outlier test is then performed to identify 
additional outlier GCPs based on the magnitude of their offsets relative to the mean offsets for the 
entire valid set. 
 
Student-T Outlier Test Sub-Algorithm  
Given a tolerance value, outliers are removed within the data set until all values deemed as “non-
outliers” or “valid” fall inside the confidence interval of a T-distribution.  The tolerance, or probability 
threshold for the associated confidence interval, is specified per run and usually lies between 0.9-
0.99.  The default value is 0.95.  The number of degrees of freedom of the data set is equal to the 
number of valid data points minus one.  The steps involved in this outlier procedure are as follows: 
 

1) Calculate mean and standard deviation of valid GCP data set for both the line and sample 
directions. 
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2) Find largest offset and compare it to outlier threshold. 
 

a) Find two tailed T-distribution (T) value for current degree of freedom and confidence 
level specified α. See the T-Distribution Confidence Interval Computation discussion 
below for details on how the T-distribution confidence interval limit value (T) is 

computed based on the specified probability threshold (). Note that this must be 
recomputed for each iteration since the number of degrees of freedom changes as 
outliers are removed. 
 
b) Calculate largest deviation from the mean allowable for the specified degree of 
freedom and α: 

Δline = σline* T 
Δsample = σsample* T 

Where: 
σline = standard deviation of valid line offsets 
σsample = standard deviation of valid sample offsets 

 
c) Find valid data point that is farthest from the mean. 

max linei = MAX{ line offset - mean line offset} 
max samplej = MAX{ sample offset - mean sample offset} 

Where: 
The maximum is found from all valid offsets 
i is the tie-point number of max line 
j is the tie-point number of max sample 

 
d) If valid data point that is farthest from the mean is greater than the allowable Δ then 
the valid point is flagged as outlier. 

if max linei > Δline or max samplej > Δsample then 
if( max samplej / σsample > max linei / σline ) 

tie-point j is marked as an outlier 
else 

tie-point i is marked as an outlier 
else no outliers found 

 
3) Repeat 1 and 2 above until no outliers are found. 

 
T-Distribution Confidence Interval Computation 
The probability density function (pdf) for the t-distribution is: 
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where: r = the number of degrees of freedom (n-1) 

  = the gamma function 
 
As pointed out in "Numerical Recipes in C", it is often more convenient (and safer) to compute the 
logarithm of the gamma function as the gamma function values can get quite large and it is often 
ratios of gamma functions (as here) that are of interest. The t-distribution pdf can be reformulated as: 
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where:  ln = the logarithm of the gamma function 
 

"Numerical Recipes in C" provides a routine for computing ln called gammln (ref. page 214 of the 
2nd edition). The gammln function is used in the reformulated t-distribution pdf shown above to 
compute the value of the pdf for a given t and degrees of freedom (r). 
 
Using the t-distribution pdf we compute the confidence level by numerical integration: 

1. Initialize the integration, setting the integration step size to 0.001: 
a. step = 0.001 
b. sum = 0 

c. target = /2 (half the probability threshold since we're only integrating the positive half of 
the distribution) 

d. t = 0 
e. delta = step*(t_pdf(t,dof) + t_pdf(t+step,dof))/2 

2. Iterate the integration steps until the sum reaches the target: 
while( sum+delta < target ) 
a. sum = sum + delta 
b. t = t + step 
c. delta = step*(t_pdf(t,dof) + t_pdf(t+step,dof))/2 

3. Solve for the t value to exactly reach target, assuming the pdf is linear over the step size: 
a. a = (t_pdf(t+step,dof) - t_pdf(t,dof))/2/step 
b. b = t_pdf(t,dof) 
c. c = sum - target 

d. if ( |a| > 0 ) t = (-b + sqrt( b2 - 4ac ))/2/a    (the quadratic formula) 

else if ( |b| > 0 ) t = -c/b 

else t = 0 

4. Compute the final T value:  T = t + t 
 
Stage 3 - Calculate GCP Statistics and Create Output 
The third stage of processing calculates the summary statistics for the final valid GCP set and 
generates the output geometric accuracy report and characterization database outputs. 
 
Analyze GCP Residuals Sub-Algorithm 
This function calculates the mean, root mean square error (RMSE), and standard deviation of the 
along- and across-track GCP residuals as well as the correlation coefficient between the across- and 
along-track residuals. The statistics are computed in the following process: 
 

a) Calculate GCP statistics 
  a1) Calculate total number of GCPs used (count of valid GCPs) 
  a2) Calculate mean latitude of GCPs used 
  a3) Calculate mean longitude of GCPs used 
 

b) Calculate offset statistics 
  b1) Calculate mean of line offsets 
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  b2) Calculate mean of sample offsets 
  b3) Calculate RMSE of line offsets 
  b4) Calculate RMSE of sample offsets 
  b5) Calculate standard deviation of line offsets 
  b6) Calculate standard deviation of sample offsets 

b7) Calculate correlation coefficient between line and sample offsets 
 
The following equations are used to perform these calculations, with X being the parameter for which 
statistics are calculated: 
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Correlation Coefficient: 
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Output Geometric Statistics Sub-Algorithm 
This function creates the output geometric report file and writes the statistics computed from the GCP 
offsets to the output file. Note that the output of trending data to the characterization database is 
performed by the geometric characterization main procedure. 
 

Write Geometric Statistics Sub-Algorithm 
This function writes the standard report file header and then writes the GCP offset statistics to the 
ASCII output file. 

 
Write GCP Residuals Sub-Algorithm 
If the option to write the valid GCP measurements to the output report file is selected, this sub-
algorithm is invoked to loop through the GCP list, writing those with the outlier/valid flag set to 1 to the 
output report file. The individual GCP measurements are not written to the characterization database. 
The following fields are written: 

1. Point ID 
2. GCP Latitude (in degrees) 
3. GCP Longitude (in degrees) 
4. GCP Height (in meters) 
5. Line Offset (scaled to meters) 



LDCM-ADEF-001 
Version 3 

 

6. Sample Offset (scaled to meters) 
7. L1T Band Number 
8. L1T SCA Number (will be 0 for SCA-combined images) (see note #4) 

 
Algorithm Output Details 
The geometric accuracy assessment algorithm outputs are summarized in Table 5 below.  All fields 
are written to the output report file (subject to the GCP residual output flag setting) but only those with 
"Yes" in the "Database Output" column are written to the characterization database. Note that the first 
eleven fields listed constitute the standard report header. 
 

Field Description Database 
Output 

Date and time Date (day of week, month, day of month, year) 
and time of file creation. 

Yes 

Spacecraft and 
instrument 
source 

LDCM and OLI Yes 

Processing 
Center 

EROS Data Center SVT (see note #5) Yes 

Work order ID Work order ID associated with processing (blank if 
not applicable) 

Yes 

WRS path WRS path number Yes 

WRS row WRS row number Yes 

Software version Software version used to create report Yes 

Off-nadir angle Scene off-nadir roll angle (in degrees) Yes 

Acquisition type Earth, Lunar, or Stellar (only Earth-viewing 
scenes are used for geometric characterization) 

Yes 

L0Rp ID Input L0Rp image ID Yes 

L1T image file Name of L1T used to measure GCPs No 

Acquisition date Date of L1T image acquisition Yes 

GCP source Source of GCPs (GLS or DOQ) Yes 

Pixel size L1T image pixel size (for measured band) in 
meters 

Yes 

Number of valid 
points 

Number of GCPs accepted as valid Yes 

Mean GCP 
latitude 

Mean latitude of valid GCPs (degrees) Yes 

Mean GCP 
longitude 

Mean longitude of valid GCPs (degrees) Yes 

Line offset mean Mean of line offsets scaled to meters Yes 

Sample offset 
mean 

Mean of sample offsets scaled to meters Yes 

Line offset RMSE RMSE of line offsets scaled to meters Yes 

Sample offset 
RMSE 

RMSE of sample offsets scaled to meters Yes 

Line offset 
standard 
deviation 

Standard deviation of line offsets scaled to meters Yes 
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Sample offset 
standard 
deviation 

Standard deviation of sample offsets scaled to 
meters 

Yes 

Correlation 
coefficient 

Correlation coefficient between line and sample 
offsets (dimensionless) 

Yes 

If the residual 
output option is 
selected: 

For each valid GCP:  

Point ID GCP ID (see GCP Correlation ADD for format) No 

GCP Latitude GCP WGS84 latitude in degrees No 

GCP Longitude GCP WGS84 longitude in degrees No 

GCP Height GCP WGS84 ellipsoid height in meters No 

Line Offset Measured line offset scaled to meters No 

Sample Offset Measured sample offset scaled to meters No 

L1T Band 
Number 

Band in which GCP was measured No 

L1T SCA Number SCA in which GCP was measured (0 for SCA-
combined images) (see note #4) 

No 

Table 5:  Geometric Accuracy Assessment Output Details 
 
Accessing the Geometric Accuracy Characterization Database 
Though not part of the formal geometric accuracy assessment algorithm, some comments regarding 
the anticipated methods of accessing and analyzing the geometric accuracy results stored in the 
characterization database may assist with the design of the characterization database. 
 
The database output from the geometric accuracy assessment algorithm will be accessed by a 
statistical summary analysis tool that queries the characterization database to retrieve geometric 
accuracy results from multiple scenes. Summary mean and RMSE statistics for the scene results will 
be calculated and output in a report containing a comma-delimited table of the retrieved trending 
results as well as the summary statistics.  
 
The geometric results would typically be queried by acquisition date, scene off-nadir angle, WRS 
path/row, and/or GCP source. The most common query would be a combination of GCP source, 
scene off-nadir angle, and acquisition date range, for example, selecting all of the GLS-derived 
results, from nadir scenes, for a given calendar quarter: 
 
 GCP_Source = "GLS" 
 Off_Nadir_Angle is between -0.5 and 0.5 
 Acquisition_Date is between 01APR2012 and 30JUN2012 
 
The summary mean and RMSE statistics would be calculated from the mean and RMSE results for 
the individual scenes returned as: 
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The query results would be formatted in a set of comma-delimited records (for ease of ingest into 
Microsoft Excel), one record per scene. Each record would contain all of the fields written to the 
characterization database (items with "Yes" in the rightmost column of Table 5 above). A header row 
containing the field names should precede the database records. Two trailer rows, one containing the 
summary statistic names (Net Line Offset Mean, Net Sample Offset Mean, Net Line Offset RMSE, 
Net Sample Offset RMSE) and the second containing the comma-delimited summary statistic values, 
should follow the database records. 

7.2.6.7 Prototype Code 

The correlation or mensuration process for the Geometric Accuracy Assessment ADD is the same as 
that listed in the GCP Correlate ADD.  The GCP Correlate ADD should be referenced for both the 
procedure and prototype for that portion of the Geometric Accuracy Assessment algorithm.  The 
outlier rejection prototype is the only portion of the Geometric Accuracy Assessment ADD that is 
discussed in this document. 
 
Input to the correlation and outlier rejection executables are ODL files.  These ODL files, called 
geometric.odl and tdist.odl, are listed in the test data directory.  Output from the correlation process 
(gcpcorrelate) is an ASCII file containing measured offsets between the search and reference data 
files.  Output from the outlier rejection process (tdist) is several files; one is a reformatted version of 
the input file, a second is a file containing the correlation points flagged as outliers, a third is a set of 
statistics calculated on the valid correlation points, a fourth is a set matching the output listed in table 
5 of this ADD.  Also under the test directory is a perl script that will reformat the output created from 
gcpcorrelate into the expected format of tdist.  The tdist function is also used by the Image Accuracy 
Assessment and Band Accuracy Assessment ADDs.  These processes have a slightly different 
output file format than the gcpcorrelate process, thus the need to reformat the gcpcorrelate output file 
using the perl script. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall -march=nocona -m32 
 
Main driver (tdist) 
Driver for outlier rejection process.  Calls functions to read ODL parameters (getpar), read unfiltered, 
and reformatted,  gcpcorrelate output (get_gcpdata), loops on SCAs and band combinations filtering 
outliers, writes output files (put_gcpdata, put_resdata, put_gcpstats).  These output files include a 
reformatted gcpcorrelate output file, a reformatted gcpcorrelate output file with outliers flagged, and a 
statistics file of the final filtered results. 
 
Get input parameters (getpar) 
Parses ODL file for the following input parameters; t-student outlier tolerance, residuals output file 
name, input file name (reformatted output from gcpcorrelate),  the output statistics file name, a switch 
for combining statistics of a SCA separated image file, and a switch for printing valid individual points 
within one of the requested output files. 
 
Read input data file (get_gcpdata) 
Reads either an Image Accuracy Assessment or Band Accuracy Assessment formatted file.  These 
files contain the correlation results between a given set of source or image files.  All relevant 
information needed for assessment of the correlation results is stored within the GCPDATA structure. 
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Filter outlier (filter_outliers) 
Performs a student-t outlier rejection on a given set of correlation points.   
 
Calculate the confidence level for a two-tailed t-distribution (xx_t_conf) 
Calculates and returns the threshold value corresponding to the confidence level of a two-tailed t-
distribution with a specified number of degrees of freedom.  Note that this function replaced  the 
historical t_conf module that was present in the ALIAS tdist code. 
 
Calculate the value of a t-distribution probability density function (PDF) at a given point (t_pdf- 
contained within file xxx_t_conf) 
Needed for calculating the confidence level of the student-t test.   
 
Calculate the natural log the gamma function (gammln - contained within file xxx_t_conf) 
Needed for calculating the confidence level of the student-t test.  Specifically, used for estimating the 
PDF of the t-distribution. 
 
Write out reformatted input file (put_gcpdata) 
Creates file of original gcpcorrelate results only in a reformatted output context.  Outliers are not 
flagged. 
 
Write out reformatted input file with outliers’ flagged (put_resdata) 
Creates file of original gcpcorrelate results only in a reformatted output context.  Outliers are flagged. 
 
Write out statistics file (put_gcpstats) 
Creates a statistics file of filtered correlation results.  Results are calculated for both the line and 
sample directions; mean, maximum, minimum, average, median, standard deviation, and root mean 
square (RMS) error.  Median is calculated through compute_median, all other statistics are calculated 
within put_gcpstats.  Statistics are split by both band combination and SCA if necessary. 
 
Write out accuracy assessment file (put_geostats) 
Creates a geometric accuracy assessment file.  Calls library functions to calculate mean, standard 
deviation, root mean error, and correlation coefficient.  Will also print out individual valid GCPs, or 
correlation locations, if requested. 
 
Compute median of filtered correlation results (compute_median) 
Computes median of filtered correlation results.  Values are sorted using a heap sort method, the 
middle element of heap sort is chosen as the median value.  A value for both the line and sample 
direction is calculated. 
 
Create LDCM “like” output header (output_header.c) 
Creates basic LDCM output header information within a file.  
 
Sort correlation results (heapsort) 
Sort a given set of values using a heap sort methodology. 
 
Discussion on prototype, and final, report file formats 
As discussed above, the prototype for Geometric Accuracy Assessment creates five output files 
during processing.  This level of reporting is not necessary for final implementation.  The file created 
from tdist that contains the same information as the input and contains the .out extension is not 
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necessary for processing. The final statistics listed in the Algorithm Output sections below (Table 1) 
shows the reporting and trending that is needed for the Geometric Accuracy Assessment.   
 
The following tables lists the output file formats from the Geometric Accuracy Assessment prototype: 
 
The output from gcpcorrelate processing, containing original unfiltered correlation results, is listed 
below.  This file is called measured.gcp in the test data directory. 
 

Field Description 

GCP Record Fields: One set per GCP 

Point ID GCP ID 

GCP chip line location Line location of GCP within chip 

GCP chip sample location Sample location of GCP within chip 

GCP latitude GCP WGS84 latitude in degrees 

GCP longitude GCP WGS84 longitude in degrees 

GCP height GCP WGS84 ellipsoid height in meters 

Predicted GCP image line Predicted line location of GCP in L1G image 

Predicted GCP image 
sample 

Predicted sample location of GCP in L1G image 

GCP image line offset Measured line offset from predicted location 

GCP image sample offset Measured sample offset from predicted location 

Correlation success flag Flag 0 = correlation failure, 1 = success 

Correlation coefficient Measured correlation coefficient (new) 

Search band number L1G band number used 

Search SCA number L1G SCA where GCP was found 

Chip source GCP source (DOQ or GLS or TM6) 

 
Table 1.  Output From GCPCorrelate 

 
The output format created from the perl script meas2char2.pl is listed below.  This file is a 
reformatting of the gcpcorrelate output file, reformatted to match the output from the Image Accuracy 
Assessment ADD.  This format is one of the two acceptable formats to the tdist function.  This file has 
been referenced as the Data File (.dat extension) in the Image Accuracy Assessment ADD and is 
called geometric.dat in the test data directory. 
 

Field Description 

Date and time Date (day of week, month, day of month, year) and time 
of file creation. 

Spacecraft and 
instrument source 

LDCM 

Processing System IAS 

Work order ID Work order ID associated with processing (blank if not 
applicable) 

WRS path/row WRS path and row 

Software version Software version used to create report 

L0R image file L0R image file name used to create L1T 

Processed image file 
name 

Name of L1T used to create report 
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Reference bands Reference bands used in image assessment 

Search bands Search  bands used in image assessment 

Heading for individual  
tie-points 

One line of ASCII text defining individual tie-point fields. 

For each tie-point:  

    Tie point number Tie-point index/number in total tie-point list 

    Reference line Tie-point line location in reference image (band) 

    Reference sample Tie-point sample location in reference image (band) 

    Reference latitude Tie-point latitude location 

    Reference longitude Tie-point longitude location 

    Reference elevation Elevation of tie-point location 

    Search line Tie-point line location in search image 

    Search sample Tie-point sample location in search image 

    Delta line Measured offset in line direction 

    Delta sample Measured offset in sample direction 

    Outlier flag 1=Valid, 0=Outlier 

    Correlation 
Coefficient 

Correlation peak coefficient from correlation process 

    Reference band Reference band number 

    Search band Search band number 

    Reference SCA SCA number that reference window was extracted from 

    Search SCA SCA number that search window was extracted from 

    Search image Name of search image 

    Reference image  Name of reference image 

 
Table 2.  Data File Output from TDIST 

The file format for the correlation results with outliers flagged is listed in the table below.  This file has 
been referenced as the Residuals File (.res extension) in the Image Accuracy Assessment ADD.  
This file is created from the tdist executable.  There is also a file with the same name as this 
Residuals File with an .out extension which is also created from the tdist process.  This file has the 
same format as the Residuals File but does not have the outliers flagged.  These files are called 
geometric.res and geometric.out respectively in the test data directory.  These files will have the 
format as that listed below. 
 

Field Description 

Date and time Date (day of week, month, day of month, year) and time of 
file creation. 

Spacecraft and 
instrument source 

LDCM 

Processing System IAS 

Work order ID Work order ID associated with processing (blank if not 
applicable) 

WRS path/row WRS path and row 

Software version Software version used to create report 

L0R image file L0R image file name used to create L1T 

Processed image file 
name 

Name of L1T used to create report 

Number of records Total number of tie-points stored in file 
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Heading for individual  
tie-points 

One line of ASCII text defining individual tie-point fields. 

For each band 
combination 

 

    Combination header Number of points in combination, reference band number, 
search band number. 

    For each tie-point:  

       Tie point number Tie-point index/number in total tie-point list 

       Reference line Tie-point line location in reference image (band) 

       Reference sample Tie-point sample location in reference image (band) 

       Reference latitude Tie-point latitude location 

       Reference 
longitude 

Tie-point longitude location 

       Reference 
elevation 

Elevation of tie-point location 

       Search line Tie-point line location in search image 

       Search sample Tie-point sample location in search image 

       Delta line Measured offset in line direction 

       Delta sample Measured offset in sample direction 

       Outlier flag 1=Valid, 0=Outlier 

       Reference band Reference band number 

       Search band Search band number 

       Reference SCA SCA number that reference window was extracted from 

       Search SCA SCA number that search window was extracted from 

       Search image Name of search image 

       Reference image  Name of reference image 

Table 3.  Filtered Data Points From TDIST 
The format of the statistics file for the filtered correlation results are listed below.  This file has been 
referenced as the Statistics File (.stat extension) in the Image Accuracy Assessment ADD.  This file is 
created from the tdist executable and is called geometric.stat in the test directory. 
 

Field Description 

Date and time Date (day of week, month, day of month, year) and time of 
file creation. 

Spacecraft and 
instrument source 

LDCM 

Processing System IAS 

Work order ID Work order ID associated with processing (blank if not 
applicable) 

WRS path/row  WRS path and row 

Software version Software version used to create report 

L0R image file L0R image file name used to create L1T 

Processed image file 
name 

Name of L1T used to create report 

t-distribution threshold Threshold used in t-distribution outlier rejection 

For each band 
combination 

 

    Reference band Reference band of statistics  
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    Search band Search band of statistics 

    SCA SCA number of search image 

    Total tie-points Total number of tie-points for band  

    Correlated tie-points Number of tie-points that successfully correlated for band  

    Valid tie-points Total number of valid tie-points for band after all outlier 
rejection has been performed 

    For both line and 
sample direction: 

All statistics are given in terms of pixels 

         Minimum offset Minimum offset within all valid offsets 

         Mean offset Mean offset of all valid offsets 

        Maximum offset Maximum offset within all valid offsets 

        Median offset Median offset within all valid offsets 

        Standard 
deviation 

Standard deviation of all valid offsets 

        Root-mean-
squared 

Root mean squared offset of all valid offsets 

 
Table 4.  Statistics File From TDIST 

 
The final output is the Geometric Accuracy Assessment file and follows the format for the Geometric 
Accuracy Assessment Algorithm shown in table 5 of the Algorithm Output Details section.  Most of 
these fields are drawn from items also stored with table 1-4 above and are italicized within the tables 
themselves.  This redundancy is from historical aspects of the original code that the prototype code 
was drawn from.    

7.2.6.8 Maturity 

The main differences between the geodetic characterization and geometric characterization 
algorithms are: 

1. Different input data formats (precision residual file vs. GCP measurement file). 
2. Only one set of GCP measurements to analyze for geometric assessment. 
3. Need to detect and reject outliers for geometric assessment.  

As with the geodetic characterization algorithm, a field to capture the GCP source (GLS vs. DOQ) has been 

added. 

7.2.6.9 Notes 

Some additional background assumptions and notes include: 
1. The RMSE GCP statistics capture the absolute geometric accuracy performance of the LDCM 

output L1T product. 
2. The trending output from this algorithm will be accessed by a statistical summary analysis tool 

that queries the trending database to retrieve geometric accuracy results from multiple scenes. 
Summary statistics (mean, standard deviation, and RMSE) for the individual scene results will 
be calculated and output in a report containing a comma-delimited table of the retrieved 
trending results as well as the summary statistics. 

3. The GCPs in the GCP repository (part of the Infrastructure Element) will be flagged as either 
“control” points, to be used for LOS model correction, or “validation” points, to be used for 
geometric accuracy assessment. Either the utility that extracts control points from this 
repository or the GCP correlation algorithm will extract the desired GCP set. In either case, 
geometric accuracy assessment would operate on the resulting output from GCP correlation. 
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The “control” set would contain the majority of the points. The “validation” flag would only be 
used in areas where more than some minimum threshold number of GCPs are available. 
These flags would be set by the CalVal Team at the time the GCP repository was loaded and 
could be adjusted, if necessary, thereafter. 

4. The GCP residual output option includes writing the GCP SCA number to the output report file. 
Under normal conditions this field will always be zero, indicating that GCP mensuration was 
performed on an SCA-combined image. For anomaly investigation and testing purposes it may 
be desirable to perform GCP mensuration on an SCA-separated image. For example, to use 
geometric accuracy assessment to analyze the GCP correlation output for a scene that failed 
LOS model creation for no immediately obvious reason. Thus, support for tracking the SCA 
where GCPs were measured is retained in this algorithm. 

5. A configuration table (system table) should be provided for each installation of the algorithm 
implementation to convey site-specific information such as the processing center name (used 
in the standard report header), the number of processors available (for parallel processing 
implementations), etc. This takes the place of the heritage system table which also contained 
certain algorithm-related parameters. Anything related to the algorithms has been moved to 
the CPF for LDCM. 

6. It is worth noting that the band to process was added to the input table of Geometric Accuracy 
Assessment v3.0 ADD.  The comment was made during discussions of the GCP Correlate 
v3.0 ADD to add this as an option to the input parameters.  The prototype, for GCP Correlate 
and Geometric Accuracy Assessment, will default to the first band present within the image file 
as the band to process if the PAN band is not present.  Adding the band number as an input 
makes the application more robust and can be added during the implementation phase of the 
algorithm.  
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7.2.7 OLI Geodetic Accuracy Assessment (L1Gs) 

7.2.7.1 Background/Introduction 

The OLI geodetic accuracy assessment, or geodetic characterization, algorithm analyzes the results 
of the ground control point (GCP) measurements created by the LOS model correction algorithm to 
assess the geolocation accuracy of the systematically terrain corrected OLI L1G image used for GCP 
mensuration. Statistics are computed for the original (unadjusted) GCP measurements and for the 
final (best fit) adjusted GCP locations. In both cases, GCPs identified as outliers by the LOS model 
correction algorithm are excluded. The “pre-fit” results, based upon the unadjusted GCP 
measurements, provide a measure of LDCM pointing, position, and alignment knowledge as reflected 
in the measured geolocation accuracy. The “post-fit” results, based on the control point residuals after 
the precision LOS model corrections are applied, provides a measure of how well the precision 
correction process is working and an indication of the quality of the derived model corrections. This is 
particularly important in the LDCM environment in which precision correction using GCPs will be 
attempted on all scenes, even those with cloud cover, and it will be necessary to identify those cases 
where the control point matching and precision correction process has failed. The LOS model 
correction algorithm will perform these tests operationally and the geodetic accuracy assessment 
algorithm will not be executed for scenes where the precision correction process is known to have 
failed. The geodetic accuracy assessment results will help identify cases where a substandard 
precision correction solution has been accepted, thereby assisting in tuning the parameters used to 
detect precision correction failures. 
 
Geodetic accuracy assessment will be performed as part of the processing flow for the standard L1T 
scenes, processed using GCPs extracted from the Landsat Global Land Survey (GLS) data. It will 
also be performed during calibration site processing, using the more accurate GCPs derived from 
digital orthophoto quad (DOQ) control. Though the geodetic accuracy assessment process is the 
same for both of these uses, the results will be trended separately as the GLS results will be used to 
assess the quality of the GLS global control as well as the accuracy of the LDCM products (see note 
#2), whereas the high-accuracy DOQ control will be used to assess the performance of the 
operational LDCM navigation and geometric calibration (see note #1). 
 
The OLI geodetic accuracy assessment algorithm is derived from the ALI geodetic characterization 
algorithm which was, in turn, derived from the corresponding Landsat 7 algorithm. Since this 
algorithm primarily involves computing statistics on control point measurements, the logic is 
somewhat sensor independent. 

7.2.7.2 Dependencies 

The OLI geodetic accuracy assessment algorithm assumes that the LOS model correction algorithm, 
and its predecessors, has been executed to create an output GCP residuals file. This file is parsed by 
the geodetic accuracy algorithm to extract the residuals for all non-outlier GCPs for both the first 
(unadjusted) and last (final) iterations of the LOS model correction process. Note that these residuals 
are recorded as along- and across-track offsets by the LOS model correction algorithm. 

7.2.7.3 Inputs 

The geodetic characterization algorithm uses the inputs listed in the following table. Note that some of 
these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the 
values of and pointers to the input data). 
Algorithm Inputs 

ODL file 
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  Input residual file name 

  Output geodetic report file name 

  Level 1G mensuration image file name 

  L0R ID (for trending) 

  Work Order ID (for trending) 

  Trending flag (on/off) 

Level 1G Image File Contents (see note #5 and Resampling ADD for 
details) 

  WRS Path/Row (for trending) from image metadata/DDR 

  Scene acquisition date (for trending) from image metadata/DDR 

  Scene acquisition type (for trending) from image metadata/DDR 

  Scene roll angle (for trending/report file) from image metadata/DDR 

Residual File Contents (see LOS Model Correction ADD for details) 

  GCP Latitude/longitude/height 

  GCP outlier/valid flag 

  Cross-track and along-track pre-fit residuals 

  Cross-track and along-track post-fit residuals 

  GCP source (GLS or DOQ) (new) 

7.2.7.4 Outputs 

Geodetic Accuracy Report (output file and trending) (see Table 1 
below for additional details) 

  Processing Information 

    Processing Date and Time 

    Processing Center/Location 

    Processing Software Version 

    Processed L1G Image File Name 

  Data Set Information 

    Spacecraft and Instrument Source (LDCM/OLI) 

    Work Order ID  

    WRS Path/Row 

    Roll Angle (new) 

    Acquisition Type (Earth, Lunar, Stellar) (will always be Earth) 

    L0Rp ID 

    Acquisition Date (new) 

  GCP Information 

    GCP Source (new) 

    Number of valid GCPs 

    Mean latitude and longitude of GCPs 

  Pre-Fit Statistics 

    Mean, RMSE, Standard Deviation, Correlation Coefficient 

  Post-Fit Statistics 

    Mean, RMSE, Standard Deviation, Correlation Coefficient 

7.2.7.5 Options 

Trending on or off. 

7.2.7.6 Procedure 

Geodetic characterization is performed on the precision residual file.  See the LOS Model Correction 
Algorithm Description Document (ADD) for further details on the correction process and its results.  
Geodetic characterization calculates statistics for the post and pre-fit residuals of the precision 
correction process.  This process allows analysis of the accuracy of LOS model and its performance 
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when processing image data using only the spacecraft ancillary data, as compared to applying 
ground control. 
 
Since the LOS model correction algorithm detects and flags outlier GCPs, the work of the geodetic 
accuracy assessment algorithm is limited to reading and parsing the output residual file created by 
LOS mode correction, and computing summary statistics for the results of the first and last solution 
iterations. These results are written to a report file along with standard header fields, some of which 
are extracted from the L1G image metadata. Figure 1 shows the architecture for the geodetic 
characterization algorithm. 

 

  
Retrieve Parameters   

Get Residuals   

Remove Outliers   

Calculate Pre - fit  
Statistics   

Calculate Post - fit  
Statistics   

Write  Residual  
Statistics   

ODL   

Precision  
Residuals 

  

  Residual  
Statistics   

L1G  
Image 

 

Figure 1:  Geodetic Characterization Algorithm Architecture 

7.2.7.7 Prototype Code 

Inputs to the executable are an ODL parameter file, an ASCII residual file generated by the LOS 
correction algorithm, and the L1G image used to measure the GCPs. Note that the L1G image is only 
used to provide metadata for inclusion in the output report. The output is an ASCII report file 
containing a standard header that identifies the data set analyzed, and the pre-fit and post-fit GCP 
residual summary statistics for the GCPs used in the precision correction solution. The prototype 
code also accesses two environment variables to populate fields used in the standard report header. 
These are IAS_REL which contains the IAS software version number, and IAS_SITE which contains 
a text string identifying the processing center. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall -march=nocona -m32 
 
Get Geodetic Characterization Parameters Sub-Algorithm (get_geod_char_parms) 
This function gets the parameters for geodetic characterization from the input ODL parameter file. It 
also reads the Level 1G image metadata to retrieve the WRS path/row, acquisition date, acquisition 
type, and scene roll angle. 
 

Read Grid Parameters Sub-Algorithm (read_grid_parm) 
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This function reads the standard parameters common to all applications from the input ODL 
parameter file. These include the script name, Level 0R ID, work order ID, and trending on/off flag. 

 
Get Residual Sub-Algorithm (xxx_get_residual) 
This function reads the along and across-track residual components for each GCP from the residual 
file created by the LOS model correction algorithm. It retrieves all of the residuals for a specified 
iteration. If a negative iteration number is provided it retrieves the data for the final iteration. This sub-
algorithm is invoked twice, once to retrieve the residuals for iteration 0 (pre-fit) and once to retrieve 
the final iteration residuals (post-fit). For each invocation the entire input residual file is scanned until 
the selected iteration header line is found (e.g., "Iteration 0" or "Final Iteration"). Then each GCP 
record for that iteration is loaded into a residual data structure containing the fields: 

1. Point Id 
2. Predicted L1G Line 
3. Predicted L1G Sample 
4. GCP Observation Time (seconds) 
5. GCP Latitude (degrees) 
6. GCP Longitude (degrees) 
7. GCP Height (meters) 
8. Across-Track View Angle (degrees) 
9. Across-Track Residual (meters) 
10. Along-Track Residual (meters) 
11. Image Y Residual (meters) 
12. Image X Residual (meters) 
13. Outlier/Valid Flag (0 = outlier, 1 = valid) 
14. GCP Source (DOQ or GLS) 

Note that the inclusion of GCP source in the precision residual file and in the input residual structure 
is new for LDCM. 
 
Remove Outliers Sub-Algorithm (remove_outliers) 
This function removes the residual records flagged as outliers from the GCP residual information and 
places the data in buffers to be accessed by later routines. Records with the outlier/valid flag field set 
to 0 are outliers. 
 

Analyze GCP Residuals Sub-Algorithm (analyze_GCP_res) 
This function calculates the mean, root mean square error (RMSE), and standard deviation of the 
along- and across-track GCP residuals as well as the correlation coefficient between the across- and 
along-track residuals. The statistics are computed in the following process: 
 

a) Calculate GCP statistics 
  a1) Calculate total number of GCPs used (count of valid GCPs) 
  a2) Calculate mean latitude of GCPs used 
  a3) Calculate mean longitude of GCPs used 
 

b) Calculate pre-fit statistics 
  b1) Calculate mean of cross-track residuals 
  b2) Calculate mean of along-track residuals 
  b3) Calculate RMSE of cross-track residuals 
  b4) Calculate RMSE of along-track residuals 
  b5) Calculate standard deviation of cross-track residuals 
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  b6) Calculate standard deviation of along-track residuals 
b7) Calculate correlation coefficient between along- and cross-track residuals 

 
 

c) Calculate post-fit statistics 
  c1) Calculate mean of cross-track residuals 
  c2) Calculate mean of along-track residuals 
  c3) Calculate RMSE of cross-track residuals 
  c4) Calculate RMSE of along-track residuals 
  c5) Calculate standard deviation of cross-track residuals 
  c6) Calculate standard deviation of along-track residuals 

c7) Calculate correlation coefficient between along- and cross-track residuals 
  
The following equations are used to perform these calculations, with X being the parameter for which 
statistics are calculated: 
 

Mean (ALIAS xxx_mean): 
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Standard Deviation (ALIAS xxx_std_dev): 
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Correlation Coefficient (ALIAS xxx_corr_coeff): 
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Output Residual Statistics Sub-Algorithm (output_resid_stats) 
This function creates the output geodetic report file and writes the statistics computed from the GCP 
residuals to the output file. Note that the output of trending data to the characterization database is 
performed by the geodetic characterization main procedure. 
 

Write Residual Statistics Sub-Algorithm (write_resid_stats) 
This function invokes output_header to write the standard report file header and then writes the 
GCP residual statistics to the ASCII output file. 
 
Write Standard Report Header Sub-Algorithm (output_header) 
This function collects the input parameters, image metadata, and environment variable values 
needed to populate the standard IAS report header and writes the header to the ASCII output file. 
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Algorithm Output Details 
The geodetic accuracy assessment algorithm outputs are summarized in Table 1 below.  All fields are 
written to the output report file. Only those with "Yes" in the "Database Output" column are written to 
the characterization database. Note that the first eleven fields listed constitute the standard report 
header. Also note that the DEM Source field present in the heritage ALIAS implementation is no 
longer required. 
 

Field Description Databas
e 

Output 

Date and time Date (day of week, month, day of month, year) 
and time of file creation. 

Yes 

Spacecraft and 
instrument 
source 

LDCM and OLI Yes 

Processing 
Center 

Processing center where the output was 
generated (see note #4). 

Yes 

Work order ID Work order ID associated with processing (blank if 
not applicable). 

Yes 

WRS path WRS path number Yes 

WRS row WRS row number Yes 

Software version Software version used to create report Yes 

Roll angle Scene off-nadir roll angle (in degrees) Yes 

Acquisition Type Earth viewing, Lunar, or Stellar (only Earth-
viewing scenes are used for geodetic 
characterization) 

Yes 

L0Rp ID Input L0Rp image ID Yes 

L1G image file Name of L1G used to measure GCPs No 

Acquisition date Date of L1G image acquisition Yes 

GCP source Source of GCPs (GLS or DOQ) Yes 

Number of valid 
points 

Number of GCPs accepted as valid Yes 

Mean GCP 
latitude 

Mean latitude of valid GCPs (degrees) Yes 

Mean GCP 
longitude 

Mean longitude of valid GCPs (degrees) Yes 

Pre-fit along-
track mean 

Mean of along-track iteration 0 residuals (meters) Yes 

Pre-fit across-
track mean 

Mean of across-track iteration 0 residuals (meters) Yes 

Pre-fit along-
track RMSE 

RMSE of along-track iteration 0 residuals (meters) Yes 

Pre-fit across-
track RMSE 

RMSE of across-track iteration 0 residuals 
(meters) 

Yes 

Pre-fit along-
track standard 
deviation 

Standard deviation of along-track iteration 0 
residuals (meters) 

Yes 
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Pre-fit across-
track standard 
deviation 

Standard deviation of across-track iteration 0 
residuals (meters) 

Yes 

Pre-fit correlation 
coefficient 

Correlation coefficient between along- and across-
track iteration 0 residuals (dimensionless) 

Yes 

Post-fit along-
track mean 

Mean of along-track final iteration residuals 
(meters) 

Yes 

Post-fit across-
track mean 

Mean of across-track final iteration residuals 
(meters) 

Yes 

Post-fit along-
track RMSE 

RMSE of along-track final iteration residuals 
(meters) 

Yes 

Post-fit across-
track RMSE 

RMSE of across-track final iteration residuals 
(meters) 

Yes 

Post-fit along-
track standard 
deviation 

Standard deviation of along-track final iteration 
residuals (meters) 

Yes 

Post-fit across-
track standard 
deviation 

Standard deviation of across-track final iteration 
residuals (meters) 

Yes 

Post-fit 
correlation 
coefficient 

Correlation coefficient between along- and across-
track final iteration residuals (dimensionless) 

Yes 

Table 1:  Geodetic Accuracy Assessment Output Details 
 
 

Accessing the Geodetic Accuracy Characterization Database 
Though not part of the formal geodetic accuracy assessment algorithm, some comments regarding 
the anticipated methods of accessing and analyzing the geodetic accuracy results stored in the 
characterization database may assist with the design of the characterization database. 
 
The database output from the geodetic accuracy assessment algorithm will be accessed by a 
statistical summary analysis tool that queries the characterization database to retrieve geodetic 
accuracy results from multiple scenes. Summary mean and RMSE statistics for the pre-fit scene 
results will be calculated and output in a report containing a comma-delimited table of the retrieved 
trending results as well as the summary statistics.  
 
The geodetic results would typically be queried by acquisition date, roll angle, WRS path/row, and/or 
GCP source. The most common query would be a combination of GCP source, roll angle, and 
acquisition date range, for example, selecting all of the GLS-derived results, from nadir scenes, for a 
given calendar quarter: 
 
 GCP_Source = "GLS" 
 Roll_Angle is between -0.5 and 0.5 
 Acquisition_Date is between 01APR2012 and 30JUN2012 
 
Since we will be using the roll angle field to detect off-nadir acquisitions, it would be convenient if the 
associated query could be specified as a maximum (absolute) number (e.g., 0.5 degrees) rather than 
having to specify a plus/minus range. 
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The summary mean and RMSE statistics would be calculated from the pre-fit and post-fitmean and 
RMSE results for the individual scenes returned as: 
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The query results would be formatted in a set of comma-delimited records (for ease of ingest into 
Microsoft Excel), one record per scene. Each record would contain all of the fields written to the 
characterization database (items with "Yes" in the rightmost column of Table 1 above). A header row 
containing the field names should precede the database records. Two trailer rows, one containing the 
summary statistic names (Net Pre-fit Along-Track Mean, Net Pre-fit Across-Track Mean, Net Pre-Fit 
Along-Track RMSE, Net Pre-Fit Across-Track RMSE, Net Post-Fit Along-Track Mean, Net Post-Fit 
Across-Track Mean, Net Post-Fit Along-Track RMSE, and Net Post-Fit Across-Track RMSE) and the 
second containing the comma-delimited summary statistic values, should follow the database 
records. 

7.2.7.8 Maturity 

1. The computation of GCP statistics is essentially the same as what is currently used in the ALIAS 

heritage code, and was used in the Landsat 7 IAS implementation. 

2. A field to capture the GCP source (GLS vs. DOQ) has been added to the GCP residual record. 

7.2.7.9 Notes 

Some additional background assumptions and notes include: 
7. The pre-fit mean and RMSE statistics derived from DOQ control capture the absolute geodetic 

accuracy performance of the LDCM system whereas the standard deviation statistics reflect 
the relative geodetic accuracy. 

8. The post-fit RMSE statistics provide an indication of the absolute accuracy of the output L1T 
product but this must be combined with an assessment of the accuracy of the GCP source to 
obtain a more realistic estimate of L1T accuracy. L1T accuracy is measured directly by the 
geometric accuracy assessment algorithm, which is a variant of the geodetic accuracy 
assessment process but is documented as a separate algorithm (see Geometric Accuracy 
Assessment ADD). 

9. The per-scene post-fit along-track RMSE and post-fit across-track RMSE statistics, derived 
from the GLS control used for L1T product generation, would be good candidates for use as 
geometric quality metrics. The post-fit RMSE statistics could be extracted from either the 
geodetic accuracy assessment report file or the characterization database. In the case of a 
LOS model correction failure, fill values would be inserted into these quality fields to indicate 
that the registration to the GLS control failed, for example, due to cloud cover. 

10. A configuration table (system table) and/or environment variables should be provided for each 
installation of the algorithm implementation to convey site-specific information such as the 
processing center name (used in the standard report header), the number of processors 
available (for parallel processing implementations), etc. This takes the place of the heritage 
system table which also contained certain algorithm-related parameters. Anything related to 
the algorithms has been moved to the CPF for LDCM. 
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11. The input L1G image is only used to extract selected metadata (noted in the input table) for 
inclusion in the output report and trending data. If the required fields are all available in the 
L0Rp data set, it could be used as an input instead of the L1G. Since, unlike the L1G, the 
geometry team has no control over the contents of the L0Rp, we leave this as a design trade 
for the operational software. 
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7.2.8 OLI Image Registration Accuracy Assessment Algorithm 

7.2.8.1 Background/Introduction 

The OLI Image Registration Accuracy Assessment, or image-to-image (I2I) characterization, 
algorithm has two purposes; it can be used to determine the geometric registration of an image to a 
particular source image or it can be used to verify the multi-temporal capabilities of the OLI product 
generation system. 
 
The I2I characterization process works by choosing locations within the reference and search images, 
extracting windows of imagery from each image and performing grey scale correlation on the image 
windows.  Several criteria are used in determining whether the correlation processing was successful.  
These criteria include measured displacement and strength of the correlation peak.  The subpixel 
location of the measured offset is calculated by fitting a 2nd order polynomial around the correlation 
surface and solving for the fractional peak location of the fitted polynomial.  Once the total offset has 
been measured, adding the calculated integer offset to the calculated subpixel offset, for all 
successfully correlated tie-points a final t-distribution outlier rejection is performed to produce the set 
of all valid measured offsets. 
 
There are two options available for determining tie-point locations in the I2I characterization 
algorithm.   These options include choosing evenly spaced points in the output space of the imagery 
or choosing points based on pre-chosen locations.   
 
The OLI Image Accuracy Assessment algorithm is derived from the corresponding Advanced Land 
Imagery (ALI) I2I characterization algorithm used in ALI Image Assessment System (ALIAS). Its 
implementation should be very similar to the ALI I2I characterization application. The algorithm will 
have to be modified to accommodate LDCM data formats. 

7.2.8.2 Dependencies 

The OLI I2I algorithm assumes a cloud free L1T has been generated and that a suitable reference 
image (OLI or other source) exists for comparison purposes.  The L1T needs to be in the SCA 
combined format.   

7.2.8.3 Inputs 

The Image Accuracy Assessment algorithm and its component sub-algorithms use the inputs listed in 
the following table. Note that some of these “inputs” are implementation conveniences (e.g., using an 
ODL parameter file to convey the values of and pointers to the input data). 
 
Algorithm Inputs Source 

Reference image ODL 

Search image ODL 

Bands to process ODL 

Tie point type ODL 

Number points in line direction (if tie-point type 
is evenly spaced) 

ODL 

Number points in sample direction (if tie-point 
type is evenly spaced) 

ODL 

GCP File Name (if tie-point type is file based) ODL 

Correlation window size lines CPF/ODL 

Correlation window size samples  CPF/ODL 
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Fill range maximum CPF/ODL 

Fill range minimum CPF/ODL 

Fill percentage CPF/ODL 

T-distribution outlier threshold ODL 

Output file names  

    I2I residuals file (see Table #2 below for 
details) 

ODL 

    I2I output data file (see Table #1 below for 
details) 

ODL 

    I2I statistics file (see Table #3 below for 
details) 

ODL 

Trend flag ODL 

L0R/L1R ID  

Work Order ID   

WRS Path/Row  

Trending thresholds (RMS for each line,sample 
per band – See note #5) 

CPF 

Minimum correlation peak CPF/ODL 

Maximum displacement CPF/ODL 

Correlation fit method (See note #2) CPF 

 

7.2.8.4 Outputs 

I2I residuals file (See table #2) 

I2I data file (See table #1) 

I2I statistics file (See table #3) 

I2I characterization trending (if trending flag set to yes) 

  L0R/L1R ID 

  Work Order ID  

  WRS Path/Row 

   Reference source 

   I2I statistics (Min, Mean, Max, Median, RMS, Std. Dev.) 

 

The following processing parameters that are listed in the table above can be overridden if they are 
given as fields within the input ODL file; correlation window size, maximum offset, minimum 
correlation strength, fill threshold, maximum and minimum file values. 

7.2.8.5 Options 

Trending on/off switch 
Correlation fit method (placeholder, see note #2) 
Normalized grey scale or least squares correlation (see note #2) 

7.2.8.6 Prototype Code 

Input to the executable is an ODL file; output is an ASCII file containing measured offsets between 
the input image file and GCP library.  The prototype output/input directory contains the input ODL files 
needed, the HDF5 input image files, the GCPLib look-up file, and the CPF.   
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall -march=nocona -m32 
 
The following are brief descriptions of the main set of modules used within the prototype.  It should be 
noted that almost all library modules are not referenced in the explanations below.   Only those 
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modules within the main i2ichar directory for the prototype and any library modules that were 
determined to be important to the explanation of the results, input parameters, or output parameters, 
are discussed. 
 
i2i_char 
Main driver for the image registration assessment.  Calls modules to read input parameters 
(get_parms), check image characteristics (compare_metadata),  create tie-point locations 
(create_tiepts and read_gcps), and perform image registration mensuration (i2i_corr). 
 
get_parms  
Reads the parameters from the input ODL parameter file and retrieves the I2I default processing 
parameters from the CPF; correlation fit method, minimum correlation peak, maximum allowable 
displacement.   
 
i2i_corr 
Main driver for image correlation, or image mensuration, process.  Driver opens image, calls module 
to perform correlation at tie-point locations (process_gcp), and writes out image registration residuals 
file (table 1).   
 
process_gcp 
Process to perform correlation between one band of the search and reference images.  Initializes and 
calls correlation libraries, extracts image data from files, calls module ias_math_check_pixels_range 
to determine if a given window of imagery contains enough "valid-range" pixels so that mensuration 
can be performed. 
 
ias_math_check_pixels_range 
Checks to see if percent of pixels within a given buffer is within a set range of values.  Range and 
percentage is a user defined parameter.   
 
compare_metadata 
Checks image file metadata for validity of data with regards to image registration assessment. 
Checks include; bands requested for assessment being present, same pixel size between images, 
same map projection, projection parameters, projection spheroid, and datum.   Messaging is also 
present to warn users when the two images to be assessed do not have the appropriate correction 
type.  Image and band metadata structures are passed back so so that it can be used by other 
modules. 
 
create_tiepts 
Main driver for generating tie-points based on evenly space tie-point option.  Calls module 
i2i_det_tiepts. 
 
i2i_det_tiepts 
Calculates tie-point locations for evenly spaced tie-point option.    Calls module math_calc_poly 
(twice) to determine mapping polynomials between map coordinates and line/sample locations for 
search and reference images.  Calls module xxx_eval to map corner coordinates to line and sample 
locations. 
 
math_calc_poly 
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Uses image metadata information to determine mapping polynomial between map coordinates and 
line/sample locations for an image file. 
 
read_gcps 
Opens GCP ASCII, or within the prototype code the GCPLib, file.  Calls module io_get_gcplib to read 
ASCII GCP (GCPLib) information.   Calls module misc_gcp_ls to map ASCII GCP (GCPLib) 
geographic locations to search and reference line and sample locations. 
 
io_get_gcplib 
Reads GCPLib file storing GCP information according to requested criteria; absolute, relative, begin 
and end date, season, chip source. 
 
misc_gcp_ls 
Converts geographic location of GCPs to line and sample location within search image. 
 
read_metadata 
Reads file and band metadata for imagery. 
 

7.2.8.7 Procedure 

Image-to-image (I2I) characterization is used to assess the ability to register an OLI data set to 
another image data set.   I2I characterization performs image correlation between OLI imagery, the 
search data set, and a reference image data set.  Landsat, reduced resolution DOQ data, or OLI 
imagery can be used as a reference data set.  When OLI imagery is measured against another OLI 
data set acquired at a different date over the same geographic area, I2I measures the ability to 
register multi-temporal OLI imagery.  Correlation points are chosen either as evenly distributed points 
throughout the imagery or at predefined GCP locations.  Outliers are first rejected by removing all 
measured displacements that lie above a user set threshold or those whose correlation peak is below 
a given minimum value.  A final outlier rejection is performed on the measured offsets using a 
Student-t distribution test.  Final statistics, which are reported in the output statistics file and stored in 
the database, are calculated based on the valid displacements after the Student-t outlier rejection.  
Statistics are calculated for both the line and sample direction independently. An overview of the 
algorithm procedure is shown in figure 1. 
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Figure 1:  Image Registration Accuracy Assessment Algorithm Flow Diagram 

 
The OLI Image Registration Accuracy Assessment algorithm has heritage in the Landsat 7 (L7) and 
Advanced Land Imagery (ALI) Image Assessment Systems (IAS) Image-to-Image Characterization 
(I2I Char) algorithm/process.  The prototype code for OLI Image Registration Accuracy Assessment 
will contain many of the same modules that are present in the L7 and ALI IAS I2I Characterization.  
The correlation and mensuration modules however are not described within this ADD as they are 
already presented in the Ground Control Correlation and Band Registration Accuracy Assessment 
ADDs. Those ADDs should be reviewed for any information pertaining to these processes.  
Explanations of the methodology of the mensuration and t-distribution outlier rejection processes are 
presented in the Band Registration Accuracy Assessment ADD. That ADD should be reviewed for 
any information pertaining to these methodologies.   

7.2.8.7.1 Stage 1 - Data Input 

The data input stage involves loading the information required to perform the image registration 
assessment.  This includes reading the image files, retrieving the output I2I file names: data, 
residuals and statistic files; retrieving or initializing processing parameters: maximum displacement, 
fill range, fill threshold, minimum correlation peak, t-distribution threshold, bands to process, 
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correlation window size, trendingthresholds, tie-point method; and if tie-point method is set to file-
based the GCP file name.  Once the input file, and if need be the GCP name, has been retrieved the 
files and the information stored within them can be opened and read. 

7.2.8.7.2 Stage 2 - Create Tie-point Locations 

Tie point locations may be determined in an evenly spaced pattern in output space or they may be 
read from a GCP file. 
 
Determine Evenly Spaced Tie-points 
This tie-point selection process is similar to the Band Registration Accuracy Assessment ADD, Stage 
3 - Create Tie-point Locations section Determine Evenly Spaced Tie-points.  The difference between 
the two processes is that the Image Accuracy Assessment algorithm computes and uses the 
bounding area between the search and references for tie-point selection.   
 
Creating Evenly Space Tie-Points Processing Steps 
 
1. Map search corners to reference space 

1samplesearch  

1linesearch  











x

ULrefi

i

y

iULref

i

P

XX

P

YY

 

Where 
i = 0,1,2,3 for the search upper left, upper right, lower right, lower left coordinates 
YULref = Reference upper left Y coordinate 
XULref = Reference upper left X coordinate 
Px = pixel size sample direction 
Py = pixel size line direction 
 
2. Determine bounding overlapping area. 
minimum sample = min(search samplei, reference samplei) 
maximum sample = max(search samplei, reference samplei) 
minimum line = min(search linei, reference linei) 
maximum line = max(search linei, reference linei) 
 
3. Calculate step sizes 

1N

lines  n  windowcorrelatioline  minimumline  maximum
y  spacing

1M

samples  n  windowcorrelatiosample  minimumsample  maximum
  xspacing











 

Where 
M = Number of tie-points in sample direction 
N = Number of tie-points in line direction 
 
4. Set evenly spaced tie-point locations  

4.1 For j = 0 to N-2 

  y spacingj
2

lines  n windowcorrelatio
jylocation point -tie   
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4.2  
2

lines n windowcorrelatio
line  maximum1Nylocation point -tie   

4.3 For i = 0 to M-2 

   xspacing i
2

samples n windowcorrelatio
ilocation xpoint - tie   

     4.4  
2

samples n windowcorrelatio
sample  maximum1-Mlocation xpoint - tie   

 
Determine File-Based Tie-points 
This tie-point selection is based on an input ASCII file containing latitude and longitude locations for 
each individual tie-point.  These individual locations are converted to line and sample locations within 
the search and reference images.  These locations then have windows of imagery extracted from the 
search and reference images after which displacement between the two windowed images can be 
calculated.  This file called the GCPLib within prototype and referred to as the ASCII GCP file within 
the text of this document. 
 
Create Tie-Point from GCP ASCII (GCPLib) file Processing Steps. 
 
1. Open GCP ASCII (GCPLib) file. 
 
2.  For each GCP  
 
 2.1 read GCP (note #1). 
  Chip ID and name 
  Latitude and longitude 
  Projection X, Y, Z 
 
 2.2 Convert GCP geographic/projection location to line and sample locations  within image 
files. 
 
  2.2.1 Convert GCP geographic location to search/reference map    
 projection.  Map projection conversions can be done through General   
 Cartographic Transformation Package (GCTP). 
 
  2.2.2 Convert map projection X and Y locations to line and sample   
 locations. 
   Equations: 

   

1

1











x

GCPUL

y

ULGCP

P

XX
sample

P

YY
line

 

   Where 
   YUL = Upper left Y coordinate of image 
   XUL = Upper left X coordinate of image 
   YGCP = Y coordinate of GCP 
   XGCP = X coordinate of GCP 
   Px = Image pixel size in sample direction 
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   Py = Image pixel in size in line direction 
 
   2.2.2.a Convert to line and sample location in search image. 
   2.2.2.b Convert to line and sample location in reference image. 
 
 2.3 Store line and sample locations for search and reference. 
 
3 Close GCP ASCII (GCPLib) file 
 

7.2.8.7.3 Stage 3. Calculate Individual Point-by-Point Image Displacements 

Normalized cross correlation is used to measure spatial differences between the reference and 
search windows extracted from the imagery to be compared.  The normalized cross correlation 
process helps to reduce any correlation artifacts that may arise from radiometric differences between 
the two image sources.  The correlation process will only measure linear distortions over the 
windowed areas. By choosing appropriate correlation windows that are well distributed throughout the 
imagery, nonlinear differences between the image sources can be found.  This methodology is 
explained in the Band Registration Accuracy Assessment ADD.  The processes and modules 
associated with these calculations are explained in the GCP Correlation and Band Registration 
Accuracy Assessment ADDs.   
 

7.2.8.7.4 Stage 4.  Removing Outliers Using the t-distribution  

Once all the line and sample offsets have been measured and the first level of outlier rejection has 
been performed, a check against the maximum allowable offset and the minimum allowable 
correlation peak, the measurements are further filtered for outliers using a Student-t outlier rejection.  
This methodology, along with the processes and modules that are present within ALIAS, are 
explained in the Band Registration Accuracy Assessment ADD.  That ADD should be used as a 
reference for these items. 
 
Image Accuracy Assessment Processing Steps. 
 
1.  For band = Number of OLI bands to process 

 
1.1.  For index = Number of tie-points to process 
 

1.1.1.  Read current tie-point chip and tie-point location  
        Set tie-point flag to unsuccessful 
 

1.1.2.  Extract search window (of imagery) at tie-point location 
 
1.1.3.  Extract reference window (of imagery) at tie-point location  
 
1.1.4. Count number of pixels in reference window that is within fill range. 

 count = 0 
 For i=0 to number of pixels in correlation window 
  If reference pixel is > fill min and reference pixel is < fill max 
   count++ 
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1.1.5. Check number of reference pixels counted against fill threshold/percentage. 

   thresholdfill
size n windowcorrelatio

count
 if   

   increment index to next tie-point location 
  else  
   continue 
 

1.1.6.  Count number of pixels in search window that is within fill range. 
 count = 0 
 For i=0 to number of pixels in correlation window 
  If search pixel is > fill min and search pixel is < fill max 
   count++ 
 

1.1.7. Check number of search pixels counted against fill threshold/precentage. 

   thresholdfill
size n windowcorrelatio

count
 if   

   increment index to next tie-point location 
  else 
   continue 
 

1.1.8. Perform normalized grey scaled correlation between reference and search windowed 
images, calculating correlation surface R (See Band Registration Accuracy Assessment ADD- 
Stage 4 Calculate Individual Point-by-Point Band Displacements). 
 
1.1.9. Find peak within correlation surface 

 Max = R(0,0) 
 For i=0 to correlation window number of lines -1 
  For j=0 to correlation window number of samples -1 
   If R(i,j) > max then  
    Max = R(i,j)  
    line offset = i 
    sample offset = j 
 

1.1.10. Check correlation peak against threshold 
 if max > peak threshold  
  continue 
 else  
  set tie-point flag to outlier and choose next tie-point 
 

1.1.11 Measure sub-pixel peak location (See Band Registration Accuracy Assessment ADD - 
Stage 4 Calculate Individual Point-by-Point Band Displacements) 
 Δsub-line 
 Δsub-sample 
 
1.1.12.  Calculate total pixel offset 
total line offset = line offset + Δsub-line 
total sample offset = sample offset + Δsub-sample 
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1.1.13.  Check offset against maximum displacement offset 
22 )offset sample total()offset line total(ntdisplaceme total   

if ( total displacement > maximum displacement ) 
 Set tie-point flag to outlier and choose next tie-point 
else 
 Set tie-point flag to valid 
 

1.2 Store band tie-point mensuration information, correlation success, and offsets measured.  See 
table #1. 
 

3. For band = 1 to Number of bands to process 
 
3.1 Perform t-distribution outlier rejection (See Band Registration Accuracy Assessment - Stage 5 
Removing Outliers Using the t-distribution). 

 
3.2. Store band combination final individual tie-point information and outlier flag.  See table #2. 

 
4.  For band combination = 1 to Number of band combinations 
 

4.1. Calculate mean, minimum, maximum, median, standard deviation, and root mean squared 
offset. 
 
4.2. Store band combination statistics.  See table #3. 
 

5. Perform trending if trending flag is set to yes 
 

5.1  Check results against trending thresholds 
For each band 
 if measured RMSE > trending thresholds 
             exit trending 
If there are no RMSE > trending thresholdsperform trending 

 

7.2.8.7.5 Output files 

The output files listed below for the Image Registration Accuracy Assessment follow the philosophy of 
the Advanced Land Imager Assessment System (ALIAS) Image-to-Image  (I2I) Characterization 
output files in that they are made generic so that the same format can be used elsewhere.   
 
All output files contain a standard header.  This standard header is at the beginning of the file and 
contains the following: 
 
1) Date and time file was created. 
2) Spacecraft and instrument pertaining to measurements. 
3) Off nadir (roll) angle of spacecraft/instrument. 
4) Acquisition type 
5) Report type (Image-to-Image) 
6) Work order ID of process (left blank if not applicable) 
7) WRS path/row 
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8) Software version that produced report. 
9) L0R image file name 
 
The data shown within Table 3 listed below is stored in the database.  The statistics stored per band 
will be used for trending analysis of the image registration accuracy of the OLI instrument.  Results 
produced through a time-series analysis of this data stored, over a set time interval or multiple image 
files, will be used for a temporal assessment of the registration quality of the OLI products.  The SCA 
number fields are listed in the tables for Image Accuracy Assessment for consistency with the tables 
listed in the Band Accuracy Assessment ADD. 
 
 

99. Field 100. Description 

101. Date and time 102. Date (day of week, month, day of month, year) 
and time of file creation. 

103. Spacecraft and 
instrument source 

104. LDCM and OLI (TIRS if applicable) 

105. Processing 
Center 

106. EROS Data Center SVT 

107. Work order ID 108. Work order ID associated with processing (blank if 
not applicable) 

109. WRS path/row 110. WRS path and row 

111. Software version 112. Software version used to create report 

113. Off-nadir angle 114. Off-nadir roll angle of processed image file 

115. Acquisition Type 116. Earth viewing or Lunar 

117. L0R image file 118. L0R image file name used to create L1T 

119. Processed image 
file name 

120. Name of L1T used to create report 

121. Reference bands 122. Reference bands used in image assessment 

123. Search bands 124. Search  bands used in image assessment 

125. Heading for 
individual  tie-points 

126. One line of ASCII text defining individual tie-point 
fields. 

127. For each tie-
point: 

128.  

129.     Tie point 
number 

130. Tie-point index/number in total tie-point list 

131.     Reference line 132. Tie-point line location in reference image (band) 

133.     Reference 
sample 

134. Tie-point sample location in reference image 
(band) 

135.     Reference 
latitude 

136. Tie-point latitude location 

137.     Reference 
longitude 

138. Tie-point longitude location 

139.     Reference 
elevation 

140. Elevation of tie-point location 

141.     Search line 142. Tie-point line location in search image 

143.     Search sample 144. Tie-point sample location in search image 

145.     Delta line 146. Measured offset in line direction 

147.     Delta sample 148. Measured offset in sample direction 
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149.     Outlier flag 150. 1=Valid, 0=Outlier 

151.     Reference 
band 

152. Reference band number 

153.     Search band 154. Search band number 

155.     Reference 
SCA 

156. SCA number that reference window was extracted 
from 

157.     Search SCA 158. SCA number that search window was extracted 
from 

159.     Search image 160. Name of search image 

161.     Reference 
image  

162. Name of reference image 

 

Table 3.   Image Registration Accuracy Assessment Data File 

 
 
 

163. Field 164. Description 

165. Date and time 166. Date (day of week, month, day of month, year) and 
time of file creation. 

167. Spacecraft and 
instrument source 

168. LDCM and OLI (TIRS if applicable) 

169. Processing 
Center 

170. EROS Data Center SVT 

171. Work order ID 172. Work order ID associated with processing (blank if 
not applicable) 

173. WRS path/row 174. WRS path and row 

175. Software 
version 

176. Software version used to create report 

177. Off-nadir angle 178. Off-nadir pointing angle of processed image file 

179. Acquisition 
Type 

180. Earth viewing or Lunar 

181. L0R image file 182. L0R image file name used to create L1T 

183. Processed 
image file name 

184. Name of L1T used to create report 

185. Number of 
records 

186. Total number of tie-points stored in file 

187. Heading for 
individual  tie-points 

188. One line of ASCII text defining individual tie-point 
fields. 

189. For each band 
combination 

190.  

191.     Combination 
header 

192. Number of points in combination, reference band 
number, search band number. 

193.     For each tie-
point: 

194.  

195.        Tie point 
number 

196. Tie-point index/number in total tie-point list 



LDCM-ADEF-001 
Version 3 

 

197.        Reference 
line 

198. Tie-point line location in reference image (band) 

199.        Reference 
sample 

200. Tie-point sample location in reference image (band) 

201.        Reference 
latitude 

202. Tie-point latitude location 

203.        Reference 
longitude 

204. Tie-point longitude location 

205.        Reference 
elevation 

206. Elevation of tie-point location 

207.        Search line 208. Tie-point line location in search image 

209.        Search 
sample 

210. Tie-point sample location in search image 

211.        Delta line 212. Measured offset in line direction 

213.        Delta 
sample 

214. Measured offset in sample direction 

215.        Outlier flag 216. 1=Valid, 0=Outlier 

217.        Reference 
band 

218. Reference band number 

219.        Search 
band 

220. Search band number 

221.        Reference 
SCA 

222. SCA number that reference window was extracted 
from 

223.        Search 
SCA 

224. SCA number that search window was extracted 
from 

225.        Search 
image 

226. Name of search image 

227.        Reference 
image  

228. Name of reference image 

 
Table 4.  Image Registration Accuracy Assessment Residuals File 
 
 
 

229. Field 230. Description 

231. Date and time 232. Date (day of week, month, day of month, year) and 
time of file creation. 

233. Spacecraft and 
instrument source 

234. LDCM and OLI (TIRS if applicable) 

235. Processing 
Center 

236. EROS Data Center SVT 

237. Work order ID 238. Work order ID associated with processing (blank if 
not applicable) 

239. WRS path/row 240.  WRS path and row 

241. Software 
version 

242. Software version used to create report 

243. Off-nadir angle 244. Off-nadir pointing angle of processed image file 

245. Acquisition 246. Earth viewing or Lunar 
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Type 

247. L0R image file 248. L0R image file name used to create L1T 

249. Processed 
image file name 

250. Name of L1T used to create report 

251. t-distribution 
threshold 

252. Threshold used in t-distribution outlier rejection 

253. For each band  254.  

255.     Reference 
band 

256. Reference band of statistics  

257.     Search band 258. Search band of statistics 

259.     SCA 260. SCA number of search image 

261.     Total tie-
points 

262. Total number of tie-points for band  

263.     Correlated 
tie-points 

264. Number of tie-points that successfully correlated for 
band  

265.     Valid tie-
points 

266. Total number of valid tie-points for band after all 
outlier rejection has been performed 

267.     For both line 
and sample direction: 

268. All statistics are given in terms of pixels 

269.      Minimum 
offset 

270. Minimum offset within all valid offsets 

271.      Mean offset 272. Mean offset of all valid offsets 

273.      Maximum 
offset 

274. Maximum offset within all valid offsets 

275.      Median 
offset 

276. Median offset within all valid offsets 

277.      Standard 
deviation 

278. Standard deviation of all valid offsets 

279.      Root-mean-
squared 

280. Root mean squared offset of all valid offsets 

 

Table 5.  Image Registration Accuracy Assessment Statistics Output File 

 

7.2.8.8 Maturity 

3. Currently the t-distribution outlier rejection happens as a completely separate process.  This is due only 

to Landsat heritage where outlier rejection was done through the Analyst User Interface (AUI). 

7.2.8.9 Notes 

Some additional background assumptions and notes include: 
 

12. The GCP structure and retrieval modules are setup to be generic.  This structure contains the following 

for each GCP: 

1.  a) Point ID 

2.  b) Chip name 

3.  c) Reference line and sample 
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4.  d) Latitude, Longitude 

5.  e) Projection X, Y, Z 

6.  f) Pixel size Y, X 

7.  g) Image chip size line, sample 

8.  h) Source of GCP 

9.  i) Date of GCP  

10.  j) Relative/absolute flag 

11. This type of generic GCP structure and management will work for OLI processing also.  

13. The correlation result fit method defines the algorithm used to estimate the correlation peak 
location to sub-pixel accuracy. Only the quadratic surface fitting method described in this ADD 
is supported in the baseline algorithm. Note that the fine least-squares correlation method, 
invoked by selecting correlation windows with an odd number of lines or samples, does not 
use a separate peak finding method. 

14. Image Registration Accuracy statistics stored within the database will be accessed for 
analysis. 

a. Accessed according to a specific date range. 
b. Accessed according to a specific band. 
c. Accessed according to a specific geographic location. 
d. Accessed according to acquisition type (nadir, off-nadir, lunar).  

This data accessed can be retrieved and stored within a comma delimited file.  The methodology 
used to access the database could be an SQL script. 
15. Data stored within the database will be accessed for time series analysis.  

a. Data would be pulled for a user-specified time period. 
b. Statistics over multiple scenes would be calculated and combined into band or scene 

based statistics.  
These calculations could be performed within the methodology used to access the data from the 
database (SQL script).  
16. There will need to be a set of criteria, based on calculated statistics, as to whether trending should be 

performed or not.  These criteria would be provided to avoid having garbage stored in the database.  Any 

values needed in determining whether the criteria have been met for trending would be stored and 

retrieved from the CPF.  There would be one threshold per band.  The criteria to check for trending are 

shown in section 5.1 of the Image Accuracy Assessment Processing steps section. 

17.   

7.2.9 OLI Band Registration Accuracy Algorithm 

7.2.9.1 Background/Introduction 

The OLI Band Registration Accuracy Assessment Algorithm (BRAA), or the Band-to-Band (B2B) 
Characterization process, measures the relative band alignment between all bands of each Sensor 
Chip Assembly (SCA) for the OLI instrument.  The displacement for every pair-wise combination of all 
bands of each SCA requested for assessment is measured; creating an over determined data set of 
band-to-band measurements for each SCA.  The residuals measured from the B2B characterization 
process will be used to assess the accuracy of the band-to-band registration of the OLI instrument, 
and if need be, used as input to the band calibration algorithm in order to calculate new line-of-sight 
(LOS) parameters for the Calibration Parameter File (CPF).   
 
The B2B characterization process works by choosing tie point locations within band pairs of each 
SCA, extracting windows of imagery from each band and performing grey scale correlation on the 
image windows.  Several criteria are used in determining whether the correlation processing was 
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successful.  These criteria include measured displacement and strength of the correlation peak.  The 
sub-pixel location of the measured offset is calculated by fitting a 2nd order polynomial around the 
discrete correlation surface and solving for the fractional peak location of the fitted polynomial.  The 
total offset measured is then the integer location of the correlation peak plus the sub-pixel location 
calculated. A new fine-resolution least squares correlation method has been added to the heritage 
algorithm to provide more accurate measurement of sub-pixel offsets. This method is described 
below. 
 
There are several options available for processing data through the Band Registration Accuracy 
Assessment algorithm.   These include choosing evenly spaced points for location of the windows 
extracted, choosing to use the geometric grid for determining window locations in order to avoid fill 
within the image files, specifying the bands and/or the SCA to process, and specifying the valid pixel 
range to use during correlation. The least squares correlation method is invoked by requesting image 
windows with at least one odd dimension , since the heritage algorithm only works with images with 
even dimensions (e.g., 32x32 image windows will use normalized grey scale correlation but 31x31 
image windows will use least squares correlation). 
 
An Earth based acquisition will be used to characterize all bands except the cirrus.  A lunar 
acquisition will be used to characterize the cirrus band.  Both types of acquisitions will be passed 
through BRAA.  In terms of the BRAA it does not matter which type of acquisition is being passed into 
the algorithm, some of the processing parameters and options may change due to the acquisition 
type but both types will use the same mensuration process to create an assessment of the band 
registration. 

7.2.9.2 Dependencies 

The OLI BRAA assumes that a cloud free Earth viewing L1T or Lunar L1G image has been generated 
and depending on the tie point selection type chosen, that the LOS Model Correction and the LOS 
Projection and Gridding algorithms have been executed to create a geometric grid file.  The L1T/L1G 
image needs to be in the SCA-separated format and either in a SOM or UTM path-oriented projection 
for Earth acquisitions.  The digital orthophoto quadrangle (DOQ) control and best available digital 
elevation model (DEM) needs to be used in generating the L1T. 

7.2.9.3 Inputs 

The BRAA and its component sub-algorithms use the inputs listed in the following table. Note that 
some of these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey 
the values of and pointers to the input data). 
 
Algorithm Inputs Source 

ODL file (implementation)  

   Calibration Parameter File (baseline) ODL 

      Correlation Fit Method (see note #14) CPF 

      Correlation Window Size CPF or ODL 

      Correlation Maximum Displacement CPF or ODL 

   Correlation Fill Threshold CPF or ODL 

   Correlation Minimum Fill Value CPF or ODL 

   Correlation Maximum Fill Value CPF or ODL 

   L1T/L1G image ODL 

   OLI resampling grid (optional) ODL 

   Outlier (t-distribution) threshold ODL 

   B2B characterization output file ODL 
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  Output residuals file name ODL 

  Output statistics file name ODL 

  SCAs to process ODL 

  Bands to process ODL 

  Fill range maximum ODL 

  Fill range minimum ODL 

  Fill threshold or percentage ODL 

  Correlation window size lines ODL 

  Correlation window size samples ODL 

  Tie-point spacing in line direction ODL 

  Tie-point spacing in sample direction ODL 

  Trending flag ODL 

  L0R ID (for trending) ODL 

  Work Order ID (for trending) ODL 

  Calibration Parameter File (baseline, if 
trending is requested) 

ODL 

      Trending thresholds (Standard deviation 
line, sample per band per SCA - see note 
#3). 

CPF 

 

7.2.9.4 Outputs 

Pan downsampled image 

B2B residuals file (see Table 2 below for details) 

B2B output data file (see Table 1 below for details) 

B2B statistics file (see Table 3 below for details) 

B2B characterization trending (if trend flag set to yes) 

  L0R/L1R ID 

  Work Order ID  

  WRS Path/Row 

   B2B statistics for all band combinations and SCAs 

 
The following processing parameters that are listed in the table above can be overridden if they are 
given as fields within the input ODL file; correlation window size, maximum offset, minimum 
correlation strength, fill threshold, maximum and minimum file values. 

7.2.9.5 Options 

Trending on/off switch 
Grid-based tie-point generation 
Normalized grey scale or least squares correlation 

7.2.9.6 Prototype Code 

 
Input to the executable is an ODL file; output is a set of ASCII files containing measured offsets 
between band locations with and SCA.  
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall -march=nocona -m32 
 
The following text is a brief description of the main set of modules used within the prototype with each 
module listed along with a very short description.  It should be noted that almost all library modules 
are not referenced in the explanations below.   The modules within the main b2bchar directory of the 
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prototype are discussed and any library modules that were determined to be important to the 
explanation of either results, input parameters, or output parameters. 
 
b2b_char 
Main driver for application.  Calls routines to retrieve ODL input and CPF parameters, read and verify 
image metadata, reduce resolution of PAN band, create a set of tiepoints, and calls module that will 
perform correlation on image tiepoint locations.  Separate calls are made for creating tiepoints 
depending on whether points are to be evenly spaced or based upon a resampling grid. 
 
get_parms 
Reads input ODL parameters.  Checks validity of input band combinations listed in ODL file.  Reads 
CPF BRAA processing parameters. 
 
verify_band_combos 
Verifies search and reference band combinations given as input.  Verification is done by matching 
reference and search band list, if bands given do match an error is returned. 
 
create_tiepoints 
Driver for creating evenly spaced tiepoints.  Calls det_tiepoints for each band combination storing 
tiepoint locations in GCPLIB data structure. 
 
det_tiepoints 
Calculates a set of evenly spaced tiepoint locations based on image size.  Tie points are based on 
number of points given as an input ODL parameter and the size of the image file. 
 
create_tiepoints_grid 
Driver for creating tie points based on the resampling grid.  
 
downsample 
Main driver for reducing the resolution of the PAN band.  Driver calls modules to initialize reduce 
image file (setup_reduce_img), calculates cubic convolution weights (cubic_convolution_weights), 
and applies cubic convolution weights to the PAN band (reduce).   
 
setup_reduce_img 
Initializes PAN reduced image file creation.   
 
cubic_convolution_weight 
Determines cubic convolution weights.   
 
reduce 
Applies cubic weights to PAN band.  Output is written to file created/initialized in setup_reduce_img. 
 
b2b_corr 
Main driver for band correlation, or band mensuration, process.  Driver opens image, calls module to 
perform correlation at tie-point locations (process_gcp), and writes out band registration residuals file 
(table 1).  process_gcp is called on for each SCA and band combination given in the input ODL file.   
 
process_gcp 
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Process to perform correlation between two bands for one SCA.  See Ground Control Point 
Correlation ADD for information on the LDCM correlation modules and process.  Calls module 
xxx_check_fill to determine if a given window of imagery contains enough "non-fill" pixels so that 
mensuration can be performed. 
 
ias_math_check_pixels_in_range 
Checks to see if percent of pixels within a given buffer contains fill.  Fill is passed in as a parameter.  
Module has been modified so that fill is a range rather than a single value. 
 
math_fine_corr 
Math library routine that implements the new (see below) least squares correlation algorithm 
developed for fine sub-pixel offset measurement. Takes same-size reference and search image 
windows as input and returns measured offsets. 

7.2.9.7 Procedure 

Band Registration Accuracy Assessment measures the misalignment between spectral bands after all 
known geometric effects have been taken into account.  The results from the band registration 
assessment are used by the band alignment calibration routine (See Band Alignment Calibration 
ADD) to estimate new Legendre LOSs (See Line-of-Sight Model Creation ADD) for each band of 
each SCA.  Due to the different viewing angles for each band of each SCA, geometric displacement 
due to relief must be removed from the imagery for band-to-band characterization of Earth 
acquisitions, i.e. input imagery for band registration assessment must be precision and terrain 
corrected (See Resampling ADD).  The steps involved in band registration assessment are depicted 
in Figure 1 and include creating data sets with common pixel resolutions; choosing locations (tie-point 
locations) for measurement; performing mensuration; removing outliers from calculated residuals; and 
calculating statistics from the remaining residuals.  Residuals are measured for each band 
combination of each SCA that is requested through the input parameters.  
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7.2.9.7.1  
 

Figure 1.  Band Registration Accuracy Assessment Block Diagram 
 
The OLI Band Registration Accuracy Assessment algorithm has heritage in the Landsat 7 (L7) and 
Advanced Land Imagery (ALI) Image Assessments Systems (IAS) Band-to-Band Characterization 
(B2B Char) algorithm/process.  The prototype code for OLI BRAA will contain many of the same 
modules that are present in the L7 and ALI IAS B2B Char.  The core functions taken from ALIAS for 
the band-to-band assessment processes that will be needed for OLI processing are specified where 
applicable.  Changes that may be necessary within these modules are briefly discussed.  The 
correlation and mensuration modules however are not described within this ADD as they are already 
present within the Ground Control Correlation ADD, this ADD should reviewed for any information 
pertaining to these processes.  Also it should be noted that changes due to items such as file format, 
which are not either instrument specific or due to changes to the algorithm, are not discussed. 

7.2.9.7.2 Stage 1 - Data Input 

The data input stage involves loading the information required to perform the band registration 
assessment.  This includes reading the image file, retrieving the output B2B file names: output, 
residuals and statistic files; retrieving or initializing processing parameters: maximum displacement, 
fill range, fill threshold, minimum correlation peak, t-distribution threshold, SCAs to process, bands to 
process, correlation window size, trending thresholds, tie-point method; and if tie-point method is set 
to grid-based the geometric grid file name will be read.  Once the input file, and if need be the 
geometric grid name, has been retrieved the files and the information stored within them can be 
opened and read. 
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7.2.9.7.3 Stage 2 - Creating a Reduced Resolution PAN band 

Before displacement between the PAN band and the other multispectral bands can be measured the 
PAN band must be reduced in resolution to match that of the multispectral bands.  An oversampled 
cubic convolution function is used to reduce the resolution of the PAN band.  Cubic convolution 
interpolation uses a set of piecewise cubic spline interpolating polynomials.  The polynomials have 
the following form: 
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Since the cubic convolution function is a separable function, a two dimensional representation of the 
function is given by multiplying two one-dimension cubic convolution functions, one function 
representing the x-direction the other function representing the y-direction.  For an offset of zero, or x 
= 0, and α = -1.0 the discrete cubic function has the following values; f(0) = 1 and f(n) = 0 elsewhere.  
Thus convolving the cubic convolution function of x = 0 with a data set leaves the data set 
unchanged.   
 

operatorn convolutio  theiswhere

][][ gives

0for x

][][][









nxny

nxnfny

 

 
Figure 2 shows what the cubic function f(t) (dashed line) and the corresponding discrete weights for 
an offset, or phase, of zero (crossed-dots). 
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Figure 2.  Cubic Convolution Function and Weights for phase of zero. 

 
To spatially scale an input data stream an oversampled cubic convolution function with a offset of x 
=0 can be used.  This can best be understood by looking at the Fourier Transform scaling property of 
a function that is convolved with a given input data set: 
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Where: 

nconvolutio is   
● is multiplication 
F is the Fourier transform of f 
X is the Fourier transform of x 
t is time 
ω is frequency 

 
Applying the cubic function and scaling properties to an image data file shows that densifying the 
points applied with the cubic convolution function will in turn inversely scale the function in the 
frequency domain, thus reducing the resolution of the imagery.  By setting the cubic convolution offset 
to zero, densifying the number of weights of the cubic function, and convolving these weights to an 
image file a reduction in resolution will be the resultant output image file.  Figure 3 shows the cubic 
function with corresponding weights densified by a factor of two and a phase shift of zero.  To ensure 
that the cubic weights do not scale the DNs of the output imagery during convolution the cubic 
weights are divided by the scale factor. 
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fs[n] = scaled cubic convolution weights 
f(n) = cubic convolution function 

 
 

 
Figure 3.  Cubic Convolution Densifyied by a factor of 2 
 

Scaling the cubic convolution function by a factor of 2 gives the following 1-dimensional set of 
weights: 
 

 0.00625.00.03125.05.03125.00.00625.00.0][ nccw  

 
To determine the 2-dimensional cubic convolution weights two 1-dimensional sets of cubic weights 
are multiplied together (note only 7 values are needed for ccw, outside of this extent the weights are 
zero): 
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Where: 

ccw[n] is a 8x1 1-dimensional set of cubic weights 
ccw[m] is a 1x8 1-dimensional set of cubic weights 

 

7.2.9.7.3.1 Procedure for Reducing PAN band 

To reduce the resolution of the PAN band apply the ccw[n,m] weights to the PAN image data: 
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bandpan ],[pan reduced  mnccw  

 
Note: number of lines and number of samples listed below pertain to the size of the PAN band 
imagery. 
 
Reduce PAN Band Resolution Processing Steps 
 
1. Set line =0 then for every other PAN line 
 

1.1. Set sample = 0 then for every other PAN sample 
 
1.2. initialize summing variable sum = 0.0 
 
1.3. For m = -4 to 4 
 

1.3.1. For n = -4 to 4 
 
1.3.2. Check to see if current image index is within valid imagery 
 
1.3.3. if m + line < 0 then line index = -m - line 

  else if m + line >= number of lines then line index =  
   2 * number of lines - m - line - 1 
  else line index = m + line 
 

1.3.4. if  n + sample < 0 then sample index = -n - sample 
  else if n + sample >= number of sample then sample index =     
 2 * number of samples - n - sample - 1 
  else sample index = n + sample 
 

1.3.5. sum = sum + ccw[n+4,m+4] • pan[line index, sample index] 
 

1.4. Store  output DN for reduced PAN 
output line = line / 2 
output sample = sample / 2 
reduce pan[output line, output sample] = sum 

7.2.9.7.4 Stage 3 - Create Tie-point Locations 

Tie point locations may be determined in an evenly spaced pattern in output space or they may be 
established in an evenly spaced pattern in input space, using the OLI geometric grid. 

7.2.9.7.4.1 Determine Evenly Spaced Tie-points (See notes #6 and #7) 

To determine evenly spaced tie-point locations a tie-point location is defined by stepping through the 
output space of the imagery by the user defined steps N,M. 
 
Create Evenly Spaced Tie-Points Processing Steps 
 
1. Determine number of tie-points in sample and line direction: 
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1-N

lines n windowcorrelatioONL
y spacingpoint -tie

1-M

samples n windowcorrelatioONS
 xspacingpoint -tie







 

 
Where: 

M = user entered number of tie-points in sample direction 
N = user entered number of tie-points in line direction 
ONS = number of samples in output space of multispectral band 
ONL = number of lines in output space of multispectral band 
Correlation window samples = user entered correlation window size in samples 
Correlation window lines = user entered correlation window size in lines 

 
2. Set evenly spaced tie-point locations  

2.1. For j = 0 to N-2 

  y spacingpoint -tiej
2

lines n windowcorrelatio
jylocation point -tie   

2.2.  
2

lines n windowcorrelatio
1Nylocation point -tie  ONL  

2.3. For i = 0 to M-2 

   xspacingpoint -tiei
2

samples n windowcorrelatio
ilocation xpoint - tie   

2.4.  
2

samples n windowcorrelatio
1-Mlocation xpoint - tie  ONS   

7.2.9.7.4.2 Determine Geometric Grid Spaced Tie-points (See notes #6 and 
#7) 

For descriptions of the format and data stored within the geometric grid see the Line of Sight 
Projection to Ellipsoid and Terrain ADD. 
 
Geometric Space Tie-points Processing steps. 
 
1. Read image extent parameters from geometric grid 

 INS = input (raw) space number of samples 
 INL = input (raw) space number of lines 

 
2. Determine number of tie-points in sample and line direction: 

 

1-N

lines n windowcorrelatioINL
y spacing

1-M

samples n windowcorrelatioINS
 xspacing







 

3.  Establish input (raw) space tie-point locations 
 

3.1 For j = 0 to N-2 

  y spacingj
2

lines n windowcorrelatio
jy   
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3.2  
2

lines n windowcorrelatio
1Ny  INL  

 
3.3  For i = 0 to M-2 

   xspacingi
2

samples n windowcorrelatio
i x   

 

3.4  
2

samples n windowcorrelatio
1-M x  INS   

 
4. Project inputs space tie-points locations to output space 
 

4.1 For j=N-1 
 

4.1.1 For i=M-1 
Map input space tie-point location to output space using grid mapping coeffcients.  

   tie-point location y  = b0 + b1 * x[i] + b2 * y[j] + b3 * x[i] * y[j] 
   tie-point location x = a0 + a1 * x[i] + a2 * y[j] + a3 * x[i] * y[j] 
  Where (See note #7): 
  an = geometric grid forward sample mapping coefficients for zero elevation   

 plane retrieved from the resampling grid 
  bn = geometric grid forward line mapping coefficients for zero elevation plane   

 retrieved from the resampling grid 

7.2.9.7.5 Stage 4. Calculate Individual Point-by-Point Band Displacements 

Normalized cross correlation is the standard method used to measure spatial differences between the 
reference and search windows extracted from the two bands being compared.  The normalized cross 
correlation process helps to reduce any correlation artifacts that may arise from radiometric 
differences between the two image sources.  The correlation process will only measure linear 
distortions over the windowed areas. By choosing appropriate correlation windows that are well 
distributed throughout the imagery, nonlinear differences between the image sources can be found.  
Normalized grey scale correlation has the following formula: 
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Where: 

N = M = Correlation window size in lines and samples 
R = correlation surface (N,M) (See note# 10) 
F = reference window (N,M) 
G = search window (N,M) 
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Normalized cross correlation will produce a discrete correlation surface (i.e., correlation values at 
integer x,y locations).  A sub pixel location associated with the displacement is found by fitting a 
polynomial around a 3x3 area centered on the correlation peak.  The polynomial coefficients can be 
used to solve for the peak or sub pixel location.  Once the discrete correlation has been calculated 
and the peak value within these discrete values has been found the sub-pixel location can be 
calculated: 
 

2

5

2

43210),( yaxaxyayaxaaxyP   

Where 
P(x,y) is polynomial peak fit 
x = sample direction 
y = line direction 
 
Set up matrices for least squares fit of discrete R(x,y) to x/y locations.  
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or:  [Y] = [X] [a] 
 
Note that R(x,y) is relative to the peak, the total offset will need to have the integer line offset and 
sample offset added to the sub-pixel location to have the total measured offset.  Solving for the peak 
polynomial using least squares: 
 

          YXXXa
TT 1

  

 
Calculating the partial derivative of P(x,y) in both the x and y directions, setting the partial equations 
to zero, and solving the partials for x and y, gives the sub-pixel location within the sub-pixel 3x3 
window. 
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Set partial equations equal to zero and solve for x and y: 
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The steps for mensuration, calculating the total offset measured, and how they fit in the overall 
procedure is given in the processing steps section.  
 
See the Ground Control Point Correlation ADD for prototype specifications of the normalized grey 
scale correlation processes. 
 
Least Squares Fine Correlation Method 
The band-to-band and image-to-image accuracy characterization algorithms also provide a second, 
least-squares based correlation method that can be used to measure sub-pixel image displacements 
somewhat more reliably than the cross-correlation/peak finding method used for general purpose 
correlation. This is useful for band registration measurements where the displacements should 
always be much less than a pixel, and where the quadratic peak finding method can introduce small 
offset-dependent biases in the measurements. This method requires that the reference and search 
image windows be the same size and that the offsets to be determined be less than 1 pixel. Since the 
normalized grey scale correlation algorithm does not work on image windows whose dimensions are 
not even numbers, this least squares correlation method is invoked if either window dimension is an 
odd number. 
 
The least squares correlation method uses the reference and search image window pixels to estimate 

the sample offset (sample), line offset (line), gain, and bias adjustments that best match the 

(sample, line) shifted and bilinearly interpolated search image to the radiometrically adjusted 

(1+gain, bias) reference image. The 3x3 pixel image sub-window surrounding each interior (non-
edge) image pixel in the reference and search windows provides one observation for purposes of 
estimating the four adjustment parameters, using the following model: 
 

S0 + Sx * sample + Sy * line + Sxy * sample * line = R0 * (1+gain) - bias 
 
Where: 
 S0 = Si,j = the central pixel in the 3x3 search sub-window centered at (i,j) 
 Sx = (Si+1,j – Si-1,j)/2 = slope estimate in the sample direction 
 Sy = (Si,j+1 – Si,j-1)/2 = slope estimate in the line direction 
 Sxy = (Si+1,j+1 + Si-1,j-1 – Si+1,j-1 - Si-1,j+1)/4 = rate of slope change  
  R0 = Ri,j = the reference image pixel corresponding to Si,j 

 
This can be reorganized into an observation model for the 4 fit parameters: 
 

 Sx*sample + Sy*line - R0*gain + bias  =  R0 -  S0 - Sxy*sample*line 
 
Or: 
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Note that this equation is not linear (since sample and line appear on the right hand side) and must 
be solved iteratively.  
 
Each non-edge pixel generates an observation of this form: 
 
 [Xi,j]

T [coef] = [Yi,j] 
 
 Where:  
  [Xi,j]

T = [ Sx  Sy  -R0  1 ]   (1x4 matrix) 

  [coef] = [ sample  line  gain  bias ]T (4x1 matrix) 

  [Yi,j] = [ R0 – S0 – Sxy sample line ] (1x1 matrix) 
 
Taken together, these observations can be used to compute the best fit, in the least squares sense, 
values for the four fit parameters: 
 

 [N] =  [Xi,j] [Xi,j]
T  (4x4 matrix) 

 [C] =  [Xi,j] [Yi,j]
T  (4x1 matrix) 

 [coef] = [N]-1 [C]  (4x1 matrix) 
 
The computed values of the fit parameters in [coef] are used to update the [Yi,j] values for each 
iteration. 
 
The solution procedure is as follows: 

1. Verify that the input reference and search windows are the same size and that the window 
dimensions are both at least 3 pixels. 

2. Initialize the least squares solution normal equations: 
a. Set all 4 elements of the 4x1 constants vector C to zero. 
b. Set all 16 elements of the 4x4 normal equation matrix N to zero. 
c. Set the normal equation diagonal term corresponding to the gain parameter, N[2][2], 

to 1/g
2, where g is the apriori standard deviation of the gain parameter, set to 0.05 

(5%) to limit the magnitude of the gain adjustment. 
d. Set the normal equation diagonal term corresponding to the bias parameter, N[3][3], 

to 1/b
2, where b is the apriori standard deviation of the bias parameter, set to 5 DN 

to limit the magnitude of the bias adjustment. 
e. Initialize the four adjustment parameter values to zero. 

3. Iterate the solution 3 times. For each iteration: 
a. Loop through the non-edge image pixels, Si,j, Ri,j, in the Nsamp by Nline image 

windows, where 0 < i < Nsamp-1 and 0 < j < Nline-1. For each pixel: 
i. Compute S0, Sx, Sy, and Sxy from the 3x3 search sub-window surrounding the 

current pixel using the equations above. 
ii.   Compute the right hand side of the observation equation using R0 and the 

current estimates of sample and line: 

RHS = R0 – S0 – Sxy * sample * line 
iii. Add this observation to the normal equations: 

N[0][0] += Sx * Sx 
N[0][1] += Sx * Sy 
N[0][2] -= Sx * R0 
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N[0][3] += Sx 
C[0] += Sx * RHS 
N[1][1] += Sy * Sy 
N[1][2] -= Sy * R0 
N[1][3] += Sy 
C[1] += Sy * RHS 
N[2][2] += R0 * R0 
N[2][3] -= R0 
C[2] -= R0 * RHS 
N[3][3] += 1 
C[3] += RHS 

b. Complete the symmetric normal equation matrix: 
N[1][0] = N[0][1] 
N[2][0] = N[0][2] 
N[2][1] = N[1][2] 
N[3][0] = N[0][3] 
N[3][1] = N[1][3] 
N[3][2] = N[2][3] 

c. Solve the normal equations: 

X = [ sample  line  gain  bias ]T = N-1 C 
4. Return the results of the final iteration: 

Fit_offset[0] = sample 

Fit_offset[1] = line 

Diag_Displacement = sqrt( sample * sample + line * line ) 

7.2.9.7.6 Stage 5.  Removing Outliers Using the t-distribution  

Once all the line and sample offsets have been measured and the first level of outlier rejection has 
been performed, a check against the maximum allowable offset and the minimum allowable 
correlation peak, the measurements are further reduced of outliers using a Student-t outlier rejection. 
 
Given a t-distribution tolerance value, outliers are removed within the data set until all values deemed 
as “non-outliers” or “valid” fall inside the confidence interval of a t-distribution.  The tolerance, or 
associated confidence interval, is specified per run (or processing flow) and usually lies between 0.9-
0.99.  The default value is 0.95.  The number of degrees of freedom of the data set is equal to the 
number of valid data points minus one.  The steps involved in this outlier procedure are given below.  
The process listed works on lines and samples simultaneously, calculating statistics independently for 
each.  
 
Student-t Outlier Rejection Processing steps. 
 
1. Calculate mean and standard deviation of data for lines and samples (see stage #6). 
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Where: 
N = number of valid offsets measured (above peak threshold and below maximum offset) 
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Two means and standard deviations are calculated, one for the line direction and one for the sample 
direction. 
 
2. Find largest offset and compare it to outlier threshold. 
 

2.1. Calculate two tailed t-distribution (T) value for current degree of freedom (N-1) and confidence 
level α. 

 
2.2. Calculate largest deviation from the mean allowable for the specified degree of freedom and 

α: 
 Δline = σline* T 
 Δsample = σsample* T 
 Where: 

 σline = standard deviation of valid line offsets 
 σsample = standard deviation of valid sample offsets 

 
2.3. Find valid data point that is farthest from the mean. 
 max linei = MAX{ line offset - mean line offset} 
 max samplej = MAX{ sample offset - mean sample offset} 
 Where: 
 The maximum is found from all valid offsets 
 i is the tie-point number of max line 
 j is the tie-point number of max sample 
 
2.4. If valid data point that is farthest from the mean is greater than the allowable Δ then the valid 

point is flagged as outlier. 
 if max linei > Δline or max samplej > Δsample then 
  if( max samplej / σsample > max linei / σline ) 
   tie-point j is marked as an outlier 
  else 
   tie-point i is marked as an outlier 
 else no outliers found 
 

3. Repeat 1 and 2 above until no outliers are found. 
 
 

7.2.9.7.7 Stage 6.  Calculating Measured Statistics 

The mean, standard deviation, minimum, maximum, median, and root-mean squared offset (RMS) 
are calculated from the tie-points that pass all outlier criteria; below maximum offset, above peak 
threshold, and student t-distribution test.  The calculation for mean, standard deviation, and RMS are 
shown below where xi is the measured offset. 
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standard deviation: 
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7.2.9.7.7.1 Band Accuracy Assessment Processing steps 

Windows extracted from imagery have the user entered dimensions; correlation window lines and 
correlation window samples.  Correlation parameters have been read or set as default values; 
maximum offset, fit method, correlation peak, fill data range, fill threshold. The bands should be 
indexed so that the PAN band is always used as a reference to all other bands. 
 
1. For SCA = Number of SCAs to process 
 

1.1. For rband = Number of OLI bands to process 
 

if rband  is equal to PAN use reduced PAN image file 
 
1.2. For sband = rband + 1 to Number of OLI bands to process 
 
1.3. For index = Number of tie-points to process 
 

1.3.1. Read current tie-point chip and tie-point location x,y 
        Set tie-point flag to unsuccessful 
 

1.3.2. Extract sband window (of imagery) at tie-point location x,y 
 
1.3.3. Extract rband window (of imagery) at tie-point location x,y  
 
1.3.4. Count number of pixels in rband window that is within fill range. 

 count = 0 
 For i=0 to number of pixels in correlation window 
  If rband pixel is > fill min and rband pixel is < fill max 
   count++ 
 

1.3.5. Check number of rband pixels counted against fill threshold/percentage. 

   thresholdfill
size n windowcorrelatio

count
 if   

   increment index to next tie-point location 
  else  
   continue 
 

1.3.6. Count number of pixels in sband window that is within fill range. 
 count = 0 
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 For i=0 to number of pixels in correlation window 
  If sband pixel is > fill min and sand pixel is < fill max 
   count++ 
 

1.3.7. Check number of sbands pixels counted against fill threshold/precentage. 

   thresholdfill
size n windowcorrelatio

count
 if   

   increment index to next tie-point location 
  else 
   continue 
 

1.3.8. Perform normalized grey scaled correlation between rband and sband windowed 
images, calculating correlation surface R (See Stage 4 and notes #9 and #10). 

 
1.3.9. Find peak within correlation surface 

 Max = R(0,0) 
 For i=0 to correlation window number of lines -1 
  For j=0 to correlation window number of samples -1 
   If R(i,j) > max then  
    Max = R(i,j)  
    line offset = i 
    sample offset = j 
 

1.3.10. Check correlation peak against threshold 
 if max > peak threshold  
  continue 
 else  
  set tie-point flag to outlier and choose next tie-point 
 

1.3.11. Measure sub-pixel peak location (see stage #4) 
 Δsub-line 
 Δsub-sample 
 
1.3.12. Calculate total pixel offset 
total line offset = line offset + Δsub-line 
total sample offset = sample offset + Δsub-sample 
 
1.3.13. Check offset against maximum displacement offset 

22 )offset sample total()offset line total(ntdisplaceme total   

if ( total displacement > maximum displacement ) 
 Set tie-point flag to outlier and choose next tie-point 
Else 
 Set tie-point flag to valid 
 

1.4. Store SCA and band combination (rband-to-sband) tie-point mensuration information, 
correlation success, and offsets measured.  See table #1. 

 
2. For SCA = 1 to Number of SCAs to process 
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2.1. For band combination = 1 to Number of band combinations 
 

2.1.1. Perform t-distribution outlier rejection (See stage #5). 
 

2.2. Store SCA and band combination final individual tie-point information and outlier flag.  See 
table #2. 

 
3. For SCA = 1 to Number of SCAs to process 
 
4. For band combination = 1 to Number of band combinations 
 

4.1. Calculate mean, minimum, maximum, median, standard deviation, and root mean squared 
offset. 

 
4.2. Store SCA and band combination statistics.  See table #3. 
 

5. Perform trending if trending flag is set to yes 
 

5.1. Check results against trending thresholds 
For each band of each SCA 
 if measured Standard Deviation > trending threshold 
             exit trending 
If there are no Standard Deviation > trending  thresholds perform trending 

 

7.2.9.8 Output files 

The output files listed below for the BRAA follow the philosophy of the Advanced Land Imagery Image 
Assessment System (ALIAS) Band-to-Band (B2B) Characterization output files in that they are made 
generic so that the same format can be used elsewhere.  Therefore some fields like latitude, 
longitude, and elevation may not apply to the application and would be filled with zeros or nominal 
values.   
 
All output files contain a standard header.  This standard header is at the beginning of the file and 
contains the following: 
 
1) Date and time file was created. 
2) Spacecraft and instrument pertaining to measurements. 
3) Off-nadir (roll) angle of spacecraft/instrument. 
4) Acquisition type 
5) Report type (band-to-band) 
6) Work order ID of process (left blank if not applicable) 
7) WRS path/row 
8) Software version that produced report. 
9) L0R image file name 
 
The data shown within Table 3 listed below is stored in the database.  The statistics stored per band 
per SCA will be used for trending analysis of the band registration accuracy of the OLI instrument.  
Results produced through a time-series analysis of this data stored, over a set time interval or 
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multiple image files, will determine if new Line-of-Sight (LOS) Legendre coefficients will need to be 
generated from the OLI Band-to-Band Calibration Algorithm (See OLI Band-to-Band Calibration ADD 
for details).  These statistics may also be needed for providing feedback to the LDCM user 
community about the band registration of LDCM products generated.  
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281. Field 282. Description 

283. Date and time 284. Date (day of week, month, day of month, year) 
and time of file creation. 

285. Spacecraft and 
instrument source 

286. LDCM and OLI (TIRS if applicable) 

287. Processing 
Center 

288. EROS Data Center SVT 

289. Work order ID 290. Work order ID associated with processing (blank if 
not applicable) 

291. WRS path/row 292. WRS path and row (See note #11) 

293. Software version 294. Software version used to create report 

295. Off-nadir angle 296. Off-nadir roll angle of processed image file (See 
note #12) 

297. Acquisition Type 298. Earth viewing or Lunar 

299. L0R image file 300. L0R image file name used to create L1T 

301. Processed image 
file name 

302. Name of L1T used to create report 

303. Reference bands 304. Reference bands used in band assessment 

305. Search bands 306. Search  bands used in band assessment 

307. Heading for 
individual  tie-points 

308. One line of ASCII text defining individual tie-point 
fields. 

309. For each tie-
point: 

310.  

311.     Tie point 
number 

312. Tie-point index/number in total tie-point list 

313.     Reference line 314. Tie-point line location in reference image (band) 

315.     Reference 
sample 

316. Tie-point sample location in reference image 
(band) 

317.     Reference 
latitude 

318. Tie-point latitude location 

319.     Reference 
longitude 

320. Tie-point longitude location 

321.     Reference 
elevation 

322. Elevation of tie-point location (see note #13) 

323.     Search line 324. Tie-point line location in search image 

325.     Search sample 326. Tie-point sample location in search image 

327.     Delta line 328. Measured offset in line direction 

329.     Delta sample 330. Measured offset in sample direction 

331.     Outlier flag 332. 1=Valid, 0=Outlier 

333.     Reference 
band 

334. Reference band number 

335.     Search band 336. Search band number 

337.     Reference 
SCA 

338. SCA number that reference window was extracted 

339.     Search  SCA 340. SCA number that search window was extracted 

341.     Search image 342. Name of search image 

343.     Reference 
image  

344. Name of reference image 
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Table 6.   Band Registration Accuracy Assessment Data File 
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345. Field 346. Description 

347. Date and time 348. Date (day of week, month, day of month, year) and 
time of file creation. 

349. Spacecraft and 
instrument source 

350. LDCM and OLI (TIRS if applicable) 

351. Processing 
Center 

352. EROS Data Center SVT 

353. Work order ID 354. Work order ID associated with processing (blank if 
not applicable) 

355. WRS path/row 356. WRS path and row (See note #11) 

357. Software 
version 

358. Software version used to create report 

359. Off-nadir angle 360. Off-nadir pointing angle of processed image file 
(See note #12) 

361. Acquisition 
Type 

362. Earth viewing or Lunar 

363. L0R image file 364. L0R image file name used to create L1T 

365. Processed 
image file name 

366. Name of L1T used to create report 

367. Number of 
records 

368. Total number of tie-points stored in file 

369. Heading for 
individual  tie-points 

370. One line of ASCII text defining individual tie-point 
fields. 

371. For each band 
combination 

372.  

373.     Combination 
header 

374. Number of points in combination, reference band 
number, search band number. 

375.     For each tie-
point: 

376.  

377.        Tie point 
number 

378. Tie-point index/number in total tie-point list 

379.        Reference 
line 

380. Tie-point line location in reference image (band) 

381.        Reference 
sample 

382. Tie-point sample location in reference image (band) 

383.        Reference 
latitude 

384. Tie-point latitude location 

385.        Reference 
longitude 

386. Tie-point longitude location 

387.        Reference 
elevation 

388. Elevation of tie-point location 

389.        Search line 390. Tie-point line location in search image 

391.        Search 
sample 

392. Tie-point sample location in search image 

393.        Delta line 394. Measured offset in line direction 

395.        Delta 
sample 

396. Measured offset in sample direction 

397.        Outlier flag 398. 1=Valid, 0=Outlier 
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399.        Correlation 
coef 

400. Correlation coefficient for tie point correlation 

401.        Reference 
band 

402. Reference band number 

403.        Search 
band 

404. Search band number 

405.        Reference 
SCA 

406. SCA number that reference window was extracted 
from 

407.        Search  
SCA 

408. SCA number that search window was extracted 
from 

409.        Search 
image 

410. Name of search image 

411.        Reference 
image  

412. Name of reference image 

 

Table 7.  Band Registration Accuracy Assessment Residuals File 
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413. Field 414. Description 

415. Date and time 416. Date (day of week, month, day of month, year) and 
time of file creation. 

417. Spacecraft and 
instrument source 

418. LDCM and OLI (TIRS if applicable) 

419. Processing 
Center 

420. EROS Data Center SVT 

421. Work order ID 422. Work order ID associated with processing (blank if 
not applicable) 

423. WRS path/row 424.  WRS path and row (See note #12) 

425. Software 
version 

426. Software version used to create report 

427. Off-nadir angle 428. Off-nadir pointing angle of processed image file 
(See note #13) 

429. Acquisition 
Type 

430. Earth viewing or Lunar 

431. L0R image file 432. L0R image file name used to create L1T 

433. Processed 
image file name 

434. Name of L1T used to create report 

435. t-distribution 
threshold 

436. Threshold used in t-distribution outlier rejection 

437. For each band 
combination of each 
SCA processed 

438.  

439.     Reference 
band 

440. Reference band of statistics  

441.     Search band 442. Search band of statistics 

443.     SCA 444. SCA number of statistics 

445.     Total tie-
points 

446. Total number of tie-points for band combination of 
SCA 

447.     Correlated 
tie-points 

448. Number of tie-points that successfully correlated for 
band combination of SCA 

449.     Valid tie-
points 

450. Total number of valid tie-points  for band 
combination of SCA after all outlier rejection has been 
performed 

451.     For both line 
and sample direction: 

452. All statistics are given in terms of pixels 

453.      Minimum 
offset 

454. Minimum offset within all valid offsets 

455.      Mean offset 456. Mean offset of all valid offsets 

457.      Maximum 
offset 

458. Maximum offset within all valid offsets 

459.      Median 
offset 

460. Median offset within all valid offsets 

461.      Standard 
deviation 

462. Standard deviation of all valid offsets 

463.      Root-mean-
squared 

464. Root mean squared offset of all valid offsets 
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Table 8.  Band Registration Accuracy Assessment Statistics Output File 

 

7.2.9.8.1 Assessing Band Registration (Accessing Statistics Stored in 
Database) 

The Band Accuracy Assessment statistics stored in the database will need to be accessed by the 
geometric CalVal team.   Delineation, or essentially data base querying, will be done by the following 
or a combination of the following: 
 
1) Date range of image acquisition or processing date 
2) By SCA number 
3) By band number 
4) By acquisition type (Nadir, off-nadir, Lunar) 
5) By geographic location of image extent. 
 
At a minimum access to the Band Accuracy Assessment statistics is needed.  Simple tools, such as 
an SQL queries, would be beneficial to the geometric CalVal team but are not absolutely necessary 
as they could be developed later through other means. 

7.2.9.9 Maturity 

7.2.9.10 Notes 

Some additional background assumptions and notes include: 
18. Correlation parameters, minimum correlation peak and maximum offset, are stored and retrieved from 

the CPF. 

19. Options need to be available for generating statistics; scene statistics, individual bands per 
SCA, SCA summary, band summary. These statistics would be provided to the user as 
summary statistics to be provided as image quality assessment to the user community. 

20. There will need to be a set of criteria, based on calculated statistics, as to whether trending should be 

performed or not.  These criteria would be provided to avoid having garbage stored in the database.  Any 

values needed in determining whether the criteria have been met for trending would be stored and 

retrieved from the CPF.  There would be one threshold per band per SCA.  The criteria to check for 

trending are shown in section 5.1 of the Band Accuracy Assessment Processing steps section. 

21. Band Accuracy statistics stored within the database will be accessed for analysis. 
a. Accessed according to a specific date range. 
b. Accessed according to a specific band or SCA. 
c. Accessed according to a specific geographic location. 
d. Accessed according to acquisition type (nadir, off-nadir, lunar).  

This data accessed will be retrieved and stored within a comma delimited file.  The 
methodology used to access the database could be an SQL script.  This SQL query code 
could be developed either by the IPE or outside of the IPE. 

22. Data stored within the database will be accessed for time series analysis. 
a. Data would be pulled out by scene/SCA band pairs for a user-specified time period. 
b. Statistics over multiple scenes would be calculated per SCA and/or per band.  Then 

combined them into the SCA and/or band average statistics.   
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c. Results could be compared to the band registration spec.  These results could serve as 
triggers to other events, i.e. new CPF generation and testing. 

d. Results could be used to verify conformance with product specifications. 
These calculations could be performed within the methodology used to access the data from 
the database (SQL script). 

23. Tie-point locations could also be stored and used as projection Y and X coordinates.  The 
appropriate conversions must be done when converting between projection coordinates and 
line and sample locations when extracting image windows between bands.  This 
transformation should also include any rotation due to path orientated projections.  

24. The prototype code uses a library call that maps any input point with a given elevation to 
output space.  For BRAA, the elevation for the mapping point is set to zero.  Since for BRAA 
the reference and search output space are the same, output line/sample in output reference 
space should be line/sample in output search space.   

25. The c and d parallax coefficients are needed for each band or each SCA for every grid cell 
point.  Therefore if the coefficients were stored as arrays stacked by grid column and then grid 
row for a particular input pixel that fell within grid cell column N and grid cell row M the c and d 
coefficients needed for that pixel would be indexed by: index = (M * number of grid columns + 
N) * 2.  The factor of 2 is due to the fact the parallax odd/even effects are mapped as linear 
therefore 2 coefficients are stored for each the odd and even pixels of a grid cell.  

26. The grey scale correlation process, or surface, can be implemented using a Fast Fourier 
Transform (FFT). 

27. The correlation surface could be smaller than the search window depending on the search 
area or maximum offset. 

28. Any kind of "non-WRS" collect; like lunar, should have 000/000 listed as the path/row. 
29. Pointing angle for lunar acquisitions would be 0.0. 
30. This tie point residual file structure is also used for the image registration accuracy 

characterization algorithm so it includes fields that are not required for both algorithms. An 
example is the elevation field which is set to 0 for this algorithm. 

31. The correlation result fit method defines the algorithm used to estimate the correlation peak 
location to sub-pixel accuracy. Only the quadratic surface fitting method described in this ADD 
is supported in the baseline algorithm.  The Least-Squares Correlation technique does not use 
the surface fitting method, for the grey scale correlation technique the peak fitting method still 
applies. 
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7.2.10 OLI Band-to-Band Calibration Algorithm 

7.2.10.1 Background/Introduction 

The Band-to-Band Calibration (B2BCal), or Band Calibration, algorithm estimates improved values for 
band placement within each Sensor Chip Assembly (SCA) of the OLI instrument.  Adjustments are 
made relative to the PAN band, or in other words, the PAN band serves as the reference for all other 
bands. 
 
The B2B calibration takes the Band Accuracy Assessment residuals file, which represents 
displacements with respect to the product output projection space, maps the residuals back into 
displacements with respect to the focal plane and then performs a least squares (LSQ) fit between 
the focal plane residuals to determine updates to the OLI band Legendre line-of-sight (LOS) 
polynomial coefficients.   The least squares fit results represent updates needed to adjust the existing 
Legendre LOS coefficients.  These updates can be used to produce new Legendre LOS coefficients 
for the Calibration Parameter File (CPF). 
 
An Earth based acquisition will be used to calibrate all bands except the cirrus.  A lunar acquisition or 
a high elevation Earth target acquisition will be used to calibrate the cirrus band. 

7.2.10.2 Dependencies 

The OLI B2B calibration algorithm assumes that a cloud free nadir viewing L1T image has been 
generated and the resampled DEM used to create the L1T is available.  The Model Creation and LOS 
Projection/Gridding algorithms for the L1T will be assumed to have been executed and the 
corresponding output files available.  The L1T image needs to be in a SCA separated format and 
either in a SOM or UTM path oriented projection.  The digital orthophoto quadrangle (DOQ) control 
and best available digital elevation model (DEM) needs to be used in generating the L1T.  The 
accuracy of the precision solution should have post-fit residuals below the recommended threshold, 
the solution should have used an adequate number of control points, and the distribution of the 
control should be well distributed throughout the imagery.  The Band Registration Accuracy 
Assessment, or Band Characterization (B2BChar), algorithm will assumed to have been run on the 
L1T image successfully producing a Band Accuracy Assessment residuals file.  This Band Accuracy 
Assessment residuals file, along with the CPF, geometric line of sight model, the co-registered DEM, 
and the geometric line of sight resampling grid, are used as inputs to the Band Calibration algorithm. 

7.2.10.3 Inputs 

The B2B calibration algorithm uses the inputs listed in the following table. Note that some of these 
“inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the values of 
and pointers to the input data). 
 
Algorithm Inputs Algorithm Inputs 

OLI resampling grid ODL 

DEM  ODL 

OLI CPF file name ODL 

Along track IFOV CPF/LOS-model 

Minimum points ODL 

Number of Legendre Coefficients ODL (See note #6) 

OLI Line-of-Sight model ODL 
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B2B residuals file ODL 

Band calibration report file  ODL 

Trend flag ODL 

Flag for CPF group creation (see note #3) ODL 

Flag for individual tie-point listing  ODL 

CPF effective dates (begin and end) ODL 

L0R ID (for trending) ODL 

Work Order ID (for trending) ODL 

 

7.2.10.4 Outputs 

B2B calibration report file (See note #1 and table #1) 

Legendre LOS CPF group 

B2B calibration trending 

  L0R/L1R ID 

  Work Order ID  

  WRS Path/Row 

   B2B calibration post and pre fit residuals 

   New SCA line-of-sight parameters 

7.2.10.5 Options 

Trending on/off switch 
fits LOS group within OLI CPF. 

7.2.10.6 Prototype Code 

 
Input to the executable is an ODL file, output is an ASCII file containing measured offsets between 
band combinations of the L1T image and the corresponding updated line-of-sight (LOS) Legendre 
CPF coefficients.  Under this directory is the ODL input file needed, band accuracy assessment 
residuals file, the input CPF, the output reports file and the output updated Legendre LOS 
coefficients.   
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse –msse2 
 
The following are a set of brief descriptions of the main set of modules used within the prototype.  It 
should be noted that almost all library modules are not referenced in the explanations below.   The 
modules within the main bandcal directory or the prototype are discussed and any library modules 
that were determined to be important to the explanation of either results, input parameters, or output 
parameters. 
 
getpar 
Reads the parameters from the input ODL parameter file.  Input parameters include: co-registered 
DEM, CPF, LOS resampling grid, geometric LOS model file and output band calibration report file 
names, the minimum points, number of coefficients, effective CPF file dates, and output file print 
flags.  The minimum points variable ensures that the normal matrix contains a minimum number 
along its diagonal to zero out any omitted bands. Rather than being removed from the solution, the 
offsets for omitted bands are set to zero with a weight equal to the minimum number of points.  
Omitted bands, for calibration or adjustment, are dependent on the bands present within the band 
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accuracy assessment residuals file.  A similar approach is used to restrict the number of SCAs that 
will be calibrated. 
 
read_b2bchout 
Reads band accuracy assessment residuals file.  Also determines the specific SCAs and bands to 
calibrate by checking the band accuracy assessment residuals for SCAs and bands present. 
 
oli_get_dem 
Reads DEM file into IMAGE data structure. 
 
oli_get_model 
Reads OLI geometric/LOS model.   
 
oli_get_grid 
Reads OLI LOS geometric resampling grid.   
 

12. bandcal 

13. Main driver for determining new Legendre LOS.  Calls module to retrieve ODL parameters (getpar), calls 

module to read band accuracy assessment residuals files (read_b2bchout), reads elevation or DEM data 

(oli_get_dem), reads LOS geometric resampling grid, reads geometric line-of-sight model, and solves for 

new Legendre LOS (solve_focal_plane).   

14. solve_focal_plane 

15. Module to solve for new Legendre LOS.  Loops on each valid tie-point for each SCA and each band 

combination.  Calls module get_los_errors to determine per tie-point adjustment needed for determining 

least squares (LSQ) solution for new Legendre LOS coefficients.  Calculates post and pre-fit statistics 

associated with Legendre LOS coefficients.     

16. get_los_errors 

17. Calculates delta input line and sample LOS needed for LSQ.  Reads elevation for tie-point, maps tie-point to 

input space, finds adjustment needed between search and reference LOS vectors.  

18. write_SCA_parameters_cpf 

Writes out a new set of Legendre LOS.  Format fits LOS group within OLI CPF. 

7.2.10.7 Procedure 

Band calibration uses the residuals measured during the Band Registration Accuracy Assessment 
Algorithm (See the Band Registration Accuracy Assessment ADD) to determine updates to the 
Legendre LOS coefficients (See Line-of-Sight Model Creation ADD).  The band calibration process 
involves taking the residuals from band registration accuracy assessment, measured in output space, 
mapping them into input space angular deltas in terms of along- and across-track LOS angles and 
performing a least squares fit of the input space LOS angle deltas to a set of 2nd order Legendre 
polynomial correction coefficients.  The correction polynomials calculated represent updates to the 
original LOS Legendre polynomial coefficients.  New Legendre LOS coefficients can be found by 
combining the correction coefficients with the original coefficients.  
 
Due to the differences in viewing geometry between bands within a SCA, along with the differences in 
viewing geometry between SCAs, the effects due to relief displacement must be taken into account 
during band calibration.  To account for relief displacement during B2B calibration a DEM is required.  
The resampling grid and LOS model is also required during B2B calibration.  The resampling grid, the 
corresponding detector’s IFOV, and the LOS model's Legendre coefficients are used to map the 
residuals from output space to angular differences in input space. 
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A least squares fit is done on all requested bands and SCAs using the band-to-band tie point 
measurements from all band-pair combinations for a single SCA at a time.   Requested bands and 
SCAs to process are based on the bands and SCAs present within the Band Registration Accuracy 
Assessment residuals file.   
 

7.2.10.7.1 Stage 1- Data input 

The data input stage involves loading the information required to perform the band calibration.  Input 
file names are needed for: geometric LOS resampling grid, LOS model, band registration accuracy 
assessment results (B2B residuals file), output band calibration report file name, and the L1T DEM 
file name.  Further input parameters are the effective begin and end dates of the new Legendre LOSs 
calculated, trending flag, CPF group creation flag, and individual tie-point reporting.  Once the file 
names for the input data needed are retrieved the files can be opened and read. 
 
Get ODL Parameters  
Reads the parameters from the input ODL parameter file.  This process was modified from the ALIAS 
heritage version to handle new inputs:  minimum points, flag for CPF group creation, CPF effective 
dates, and flag for reporting individual tie-point results.  The minimum points variable ensures that the 
normal matrix contains a minimum number along its diagonal to zero out any omitted bands. Rather 
than being removed from the solution, the offsets for omitted bands are set to zero with a weight 
equal to the minimum number of points. 
   
Read Band-to-Band Residual File  
Reads band accuracy assessment residuals file.   
 
Read DEM  
Read DEM file into IMAGE data structure.   
 
Read OLI LOS Model  
Read OLI geometric/LOS model.   
 
Read LOS Geometric Grid  
Read OLI LOS resampling grid.   
 

7.2.10.7.2 Stage 2 - Setup Least Squares Matrices and Solve 

For each input SCA, every residual for each input band combination that is not an outlier is mapped 
back to input space.  These input space mappings are single value adjustments needed for each 
point to align the LOS, associated with the focal plane, between the bands of the combination.  This 
mapping procedure is described in more detail below.  Once all of these residuals are mapped back 
to the focal plane and stored within the least-squares (LSQ) matrices new LOSs can be calculated.   
PAN band residuals must be scaled by a factor of 2 to account for the resolution differences between 
the PAN band and the multispectral bands and the fact that the PAN residuals were measured in an 
image that had been resolution reduced to match the multispectral bands. 
 
The matrices defining calibration the process takes the following form: 
 

    YcoeffA   
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The matrices [A] and [Y] shown above correspond to one tie point measurement.  The matrix [coeff] 
are the unknown adjustments to the Legendre LOS coefficients, the matrix [A] contain the Legendre 
coefficient multipliers for the band combination corresponding to that one measurement, and the [Y] 
matrix contains the input space residuals for that one measurement.  For one measurement the 
matrices have the following dimensions: 
[coeff] = (2 * Number of Legendre * Number of bands) x 1 = M x 1 
[A] = 2 x (2 * Number of Legendre * Number of bands)      = 2 x M 
[Y] = 2 x 1 
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Where: 
abi,j = Legendre coefficient j for line direction (along track) for band i 
bbi,j = Legendre coefficient j for sample direction (across track) for band i 
j = 0, 1, 2 or the Number of Legendre coefficients to solve. 
i = 1,2,...,9 (Number of OLI bands) 
 
A 2x1 matrix pertaining to one residual measurement can be defined as: 
 

  













sample

line
Y  

 
Where: 
Δline      = input space residual in line direction (angular) 
Δsample = input space residual in sample direction (angular) 
 
The input space residuals are calculated by finding the nominal (search) LOS in input space and the 
measured (search + measured offset) LOS in input space.  These LOSs are found by mapping the 
output space line and sample locations to input space line and sample locations using the LOS 
geometric resampling grid (See OLI Resampling ADD) and then using the LOS model (see Model 
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Line-of-Sight Creation ADD) to convert the input space locations to LOSs.  These input space 
nominal and measured locations are also used to construct the Legendre coefficient multipliers. 
 
The design matrix [A] for one residual measurement is then: 

    nnik YcoeffA   

 

 



















00

,,
...

0,,
00000

,,
...

0,,
0000

00000
,,

...
0,,

00000
,,

...
0,,

00





jkn
sl

kn
sl

jin
rl

in
rl

jkn
sl

kn
sl

jin
rl

in
rl

A  

Where: 
rln,i,j = reference band i Legendre polynomial 
sln,k,j = search band k Legendre polynomial 
j = 0, 1, 2 or the Number of Legendre coefficients to solve 
n = tie-point number 
 
These matrices define one observation.  A sequence of observations can be summed to define the 
normal equations for a set of coefficients that can be used to update the OLI LOS Legendre 
coefficients: 
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Where [N] and [L] are summed over all n for all i, k band combinations.  W is a weight matrix that is 
currently set to the same weight for all observations. 
 
Since all of the tie point observations involve band differences, the solution lacks an absolute 
reference. To stabilize the solution a constraint observation is added to provide such a reference.  
This additional observation is required for the PAN band and represents an offset of zero for each 
direction (line and sample) of the PAN band.  This allows the PAN band to be used as a reference 
and all other bands are then registered to it. 
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Where the PAN band is stored in the first two columns of the [A] observation matrix.   
 
The bands that are not to be used in the solution process are removed by setting the corresponding 
diagonal elements of normal matrix [N] to the minimum number of points (given as an input value).  
The solution for a new set of Legendre coefficients is then: 
 

     LNcoeff
1

  

 
Band Calibration Processing Steps 
Note: Array indexes are zero-relative.   
 nLeg = Number of Legendre update coefficients to solve (1, 2, 3 valid options). 
 Matrix indexes are zero relative 
 
Solve for New Focal Plane Parameters 

Loop on each valid tie-point for each SCA and each band combination.  Calculate LOS errors to determine per 

tie-point adjustment needed to LOS.  Assimilate normal matrices and solve for updates needed to Legendre 

LOS, calculate new Legendre LOS based on updates from least-squares-solution.  Calculate post and pre-fit 

statistics.   

 

Calculate Line of Sight Angular Errors  

Calculate delta input line and sample LOS needed for LSQ.  Read elevation for tie-point, map tie-point to input 

space, and find adjustments needed between search and reference LOS vectors.   

 
 
1.  Initialize parameters 

  







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2

2

0

0




W  

Where σ2 = 16 
2.  For each SCA to process 

 Initialize pre-fit statistics variables 

  pre-fit sum line = 0 

  pre-fit sum sample = 0 

  pre-fit sum line
2
 = 0 

  pre-fit sum sample
2
 = 0 

 Initialize LSQ matrices to zero 

  [N] = [0] 

  [L]  = [0] 

2.1 For each band combination present 

       rband = reference band 

       sband = search band 

2.1.1 For each tie-point 
2.1.2 Calculate reference line, sample location and search adjusted line, sample location. 

rline = tie-point reference line location 

rsamp = tie-point reference sample location 

sline = tie-point search line location + line offset measured  

ssamp = tie-point search sample location + sample offset measured 

Note: sline, ssamp is the adjusted (or true) search location. 
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 Note that rline, rsamp, sline, ssamp are output space pixel locations. 

2.1.3  Set rband and sband to zero-relative  

rband = rband - 1 

sband = sband - 1 

 Map residuals to input space (focal plane space).  

 2.1.4 Find elevation for reference and sample locations 
  relev = elevation at rline,rsamp 

  selev = elevation at sline,ssamp 

 2.1.5 Map rline,rsamp and sline,ssamp to input space using 3d_ols2ils (See Note   #2) and the 

search band OLI resampling grid. 

(riline,risamp) = 3d_ols2ils(search_grid, relev, rline, rsamp) 

(siline,sisamp) = 3d_ols2ils(search_grid, selev, sline, ssamp) 

Where 

riline, risamp is the input space location of reference tie-point location. 

siline, sisamp is the input space location of adjusted search tie-point location. 

search_grid is the OLI resampling grid for the search band. 

Note: Search band grid is used for mapping both the adjusted search (siline,sisamp) and the reference 

locations.    

 2.1.6   Calculate Legendre normalized detector location 

 

1
1SCAin  detctorsnumber 

sisamp*2.0
snorm

1
1SCAin  detectorsnumber 

risamp*2.0
rnorm











 

 

rnorm = normalized reference detector 

snorm = normalized adjusted search detector 

 2.1.7   Calculate reference and search along and across track LOS. 
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 Where 
 ref_x, ref_y = along and across track view angles 
 sear_x, sear_y = along and across track view angles 
 coef_xs,n = search Legendre along track coefficients 
 coef_ys,n = search Legendre across track coefficients 
 2.1.8  Determine LOS vectors 
 sear_z = 1.0 
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 nom_sear_z = 1.0 
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 2.1.9  Calculate the LOS errors 
 
 2.1.9.1 Determine effective line-of-sight instantaneous-field-of-view (IFOV) 
 
 2.1.9.1.1 Map input search pixel location, line and sample, to output space. 
 sline = search line location 
 ssamp = search sample location 
 elevation = elevation for location sline, ssamp 
 

Calculate elevation planes bounding current elevation. 

plane zero grid
z spacing grid

elevation
zplane   

elev0 = grid z spacing * (zplane – grid zero plane) 
elev1 = elev0 + grid z spacing 
 
Calculate cell index, row and column, for search line and sample location and zplane. 
row = sline / grid cell line spacing 
column = ssamp / grid cell sample spacing 
cell index0 = nrows * ncols *  zplane + row * ncols + column 

 
Where: 
grid z spacing = elevation difference between two grid planes 
ncols = number of grid cell columns 
nrows = number of grid cell rows 
 

Calculate output space line, sample location for input space search line, sample location and zplane. 
a0,1,2,3 = grid sample location forward mapping coefficients for cell index0 
b0,1,2,3 = grid line location forward mapping coefficients for cell index0 

 
 lms = sline * ssamp 
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osamp0 = a0 + a1 * ssamp + a2 * sline + a3 *lms 
oline0 = b0 + b1 * ssamp + b2 * sline + b3 * lms 
 
Calculate cell index, row and column, for search line and sample location and zplane +1. 
 
cell index1 = nrows * ncols *  (zplane + 1.0) + row * ncols + column 
 
Calculate output space line, sample location for input space search line, sample location and 
zplane+1. 
 
a0,1,2,3 = grid sample location forward mapping coefficients for cell index1 
b0,1,2,3 = grid line location forward mapping coefficients for cell index1 

 
 lms = sline * ssamp 

osamp1 = a0 + a1 * ssamp + a2 * sline + a3 *lms 
oline1 = b0 + b1 * ssamp + b2 * sline + b3 * lms 
 
Calculate output space line, sample location for input space search line, sample location, and 
elevation. 
 
w0 = (elev1 – elevation) / (elev1 – elev2) 
w1 = (elevation – elev0) / (elev1 – elev2) 

  
 osampn = osamp0 * w0 + osamp1 * w1 
 olinen = oline0 * w0 + oline1 * w1 
 

2.1.9.1.2 Map input location ssamp, sline+1.0 to output space osampn+1,olinen+1  (repeat step 
2.1.9.1.1 for input location ssamp,sline+1) 
 
2.1.9.1.3 Determine change in output space between input locations (ssamp, sline) and 
(ssamp, sline+1.0) 
dline = olinen – olinen+1 
dsamp = osampn = osampn+1 

dsamp*dsampdline*dlinedistance   

 
 2.1.9.1.4 
 If earth acquisition calculate LOS distance to target 
 

Calculate output latitude and longitude for search line and sample (see Forward Model section 
of LOS Projection Ellipsoid & Terrain). 

 
Calculate time for current search line and sample (see section a.1 in Forward Model section of 
LOS Projection Ellipsoid & Terrain). 
 
Calculate satellite position for current search line and sample time (see section a.4 in Forward 
Model section of LOS Projection Ellipsoid & Terrain). 
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Calculate target vector (see section a.7 in Forward Model section of LOS Projection Ellipsoid & 
Terrain). 
 
LOS x coordinate = target x coordinate - satellite x coordinate 
LOS y coordinate = target y coordinate - satellite y coordinate 
LOS z coordinate = target z coordinate - satellite z coordinate 
 
length = sqrt( LOS x * LOS x + LOS y * LOS y + LOS z * LOS z) 
 
IFOValong = (output pixel size * distance ) / length 

 
 If lunar acquisition 
 
 IFOValong = output pixel size * distance 
 
 2.1.9.1.5 Calculate delta input in radians 
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xsearnom

zsear

xsear
line along

__

__

_

_

*)(
__

__

_

_





 

  
2.1.10 Create matrices need to sum with [N] and [L]. 

2.1.10.1  Calculate Legendre generating polynomial coefficients for search and reference: 
sl0 = 1.0 

if( nLeg >= 2 )   sl1 = snorm 

if( nLeg == 3 )  sl2 = 1.5 * snorm
2
 - 0.5 

rl0 = 1.0 

if ( nLeg >= 2 ) rl1 = rnorm 

if( nLeg == 3 ) rl2 = 1.5 * rnorm
2
 - 0.5 

Note: If the number of Legendre coefficients in the solution is less than 3 the corresponding sln and 

rln will be omitted. 

2.1.10.2 Initialize [A] to zero and then set [A] indexes to sln and rln. 

A[0][Number Legendre * sband + n] = sln 

A[1][Number Legendre * sband + n] = sln 

A[0][Number Legendre * rband + n] = -rln 

A[1][Number Legendre * rband + n] = -rln 

 Where: n = 0 … nLeg -1  

 [A] = 0 elsewhere 

2.1.10.3 Set [Y] according to input space deltas measured and sum pre-fit statistics. 

2.1.10.3.1 Store deltas in [Y] 

Y[0][0] = Δline 

Y[1][0] = Δsamp 

2.1.10.3.2 Sum statistics 

pre-fit sum line        = pre-fit sum line        + Δline 

pre-fit sum sample   = pre-fit sum sample  + Δsample 

pre-fit sum line
2
      = pre-fit sum line

2
       + Δline

2
 

pre-fit sum sample
2
 = pre-fit sum sample

2
 + Δsample

2
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2.1.10.4  Create matrices to add to normal matrices 

[Atie-point] = [A]
T
[W][A] 

[Ytie-point] = [A]
T
[W][Y] 

2.1.10.5 Sum N and L matrices 

 [N] = [N] + [Atie-point] 

[L] = [L] + [Ytie-point] 

2.2 Set minimum points for bands to omit from processing. 

      Eliminate observations for omitted band: 

oband = band to omit - 1 (from earlier, bands are 1-relative) 

[N]g+n,i = 0 

 Where g = nLeg * 2 * oband 

  n = 0 … 2*nLeg - 1   

  i = 0 … nLeg * 2 * Number of Bands - 1 

[N]i,g+n = 0 

 Where g = nLeg * 2 * oband 

  n = 0 … 2*nLeg - 1   

  i = 0 … nLeg * 2 * Number of Bands - 1 

[N]g+n,g+n = Minimum Points 

 Where g = nLeg * 2 * oband 

  n = 0 … 2*nLeg - 1   

[L]g+n = 0 

 Where g = nLeg * 2 * oband 

  n = 0 … 2*nLeg - 1   

2.3 Solve for delta Legendre coefficients 

     LNcoeff
1

  

2.4 Calculate new Legendre coefficients 

  
 


)*(

0 0

nband,SCA,n band,SCA, coeffs  along  previouscoeffs along new
NBANDnLeg

i

nLeg

j

jicoeff  

  
 


)*(

0

nband,SCA,nband,SCA, coeffs  across  previous  coeffs across new
NBANDnLeg

nLegi

nLeg

j

jicoeff  

i = 0, nLeg , 2 * nLeg,…, NBANDS * nLeg 

n, j = 0 … nLeg - 1 

 

 

7.2.10.7.3 Stage 3 - Calculate Pre and Post fit Residuals 

 
Compute Post-Fit Statistics 

Calculate pre and post-fit statistics.   

 
1.  For each SCA calculate residuals 

 Initialize post-fit statistics variables 

  post-fit sum line = 0 

  post-fit sum sample = 0 

  post-fit sumsq line = 0 

  post-fit sumsq sample = 0 

2.  For each band combination 
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 2.1   Perform steps 2.1.1 - 2.1.10 from stage 2. 

 2.2  Calculate adjusted reference and search line/sample locations 

riline'   = Δcoeffsca,rband,0  

if( nLeg >=2 ) riline'   = riline' + rnorm * Δcoeffsca,rband,1 

if( nLeg = = 3 ) riline'   = riline' + (1.5 * rnorm
2
 - 0.5) * Δcoeffsca,rband,2  

risamp' = Δcoeffsca,rband,0  

if( nLeg >= 2 ) risamp' = risamp' + rnorm * Δcoeffsca,rband,1 

if( nLeg = = 3 ) risamp' = risamp' + (1.5 * rnorm
2
 - 0.5) *              Δcoeffsca,rband,2 

siline'   = Δcoeffsca,rband,0   

if( nLeg >= 2 ) siline'   = siline' + snorm * Δcoeffsca,sband,1  

if( nLeg = = 3 ) siline' = siline' + (1.5 * snorm
2
 - 0.5) * Δcoeffsca,sband,2  

sisamp' = Δcoeffsca,sband,0  

if( nLeg >= 2 ) sisamp' = sisamp ' + snorm * Δcoeffsca,sband,1 

if( nLeg = = 3 ) sisamp' = sisamp' + (1.5 * snorm
2
 - 0.5) *                      Δcoeffsca,sband,2 

Where: 

SCA, band, 0, 1, 2 are the SCA, band number and coefficients for the updates to the Legendre 

polynomials.  The Δcoeff added to the riline are the along track updates the Δcoeff add to the risamp are 

the across track updates.   

rband = index to reference band coefficient 

sband = index to search band coefficient 

2.3  Calculate new post fit Δerrors by updating Δline and Δsample with Legendre updates 

Δline'   = Δline    + riline'   - siline' 

Δsamp' = Δsamp + risamp' - sisamp' 

Where: 

Δline and Δsamp are the same as those calculated in 2.1.10 from stage 2.  See note #10. 

2.4 Sum post-fit variables 

post-fit sum line       = post-fit sum line       + Δline' 

post-fit sum sample  = post-fit sum sample  + Δsample' 

post-fit sumsq line      = post-fit sumsq line      + Δline'
2 

post-fit sumsq sample = post-fit sumsq sample + Δsample'
2
 

3. Calculate post and pre fit statistics for both line and sample directions: 

  

points ofnumber 

squares sum
  rmse

scale* sum * sum
1points ofnumber 

squares sum
deviation standard

1)points of(number  * points ofnumber 

1
scale

points ofnumber 

sum
mean













 

     Where 

 sum = pre/post sum line or pre/post sum sample 

 sum squares = pre/post sumsq line or pre/post sumsq sample
 

 number of points = number of points used in LSQ fit 

4. Create Band-to-Band Calibration output report (See table #1). 

4.1 Write report header information. 

4.2. Write post and pre-fit statistics (per SCA) for line and sample direction. 
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4.3. Write individual tie-point statistics (if tie-point reporting flag = Yes). 

5. If CPF group flag is set to yes write out ASCII file of CPF group with new Legendre coefficients. 

 

7.2.10.8 Output files 

The output report contains a standard header.  This standard header is at the beginning of the file 
and contains the following: 
 
1) Date and time file was created. 
2) Spacecraft and instrument pertaining to measurements. 
3) Pointing (roll) angle of spacecraft/instrument. 
4) Acquisition type 
5) Report type (band-to-band) 
6) Work order ID of process (left blank if not applicable) 
7) WRS path/row 
8) Software version that produced report. 
9) L0R image file name 
 

The following items should be stored (trended) in the database with respect to the Band-to-Band 
Calibration algorithm: 

 
All report header information: 
 Date and time 
 Spacecraft instrument source 
 Work order ID 
 WRS path/row 
 Software version 
 Off-nadir angle 
 L0Rp file name 
 Processing file name 
The following processing parameters: 
 L0R product ID 
 Bands processed 
 SCAs processed 
The following report file information: 
 Number of points used per SCA 
 Computed Legendre along track coefficient updates 
 Computed Legendre across track coefficient updates 
 New Legendre along track coefficients (updates + existing) 
 New Legendre across track coefficients (updates + existing) 
 Post-fit mean, standard deviation, RMSE 
 Pre-fit mean, standard deviation, RMSE 
See note #11. 

 

Field Description Trend 

Date and time Date (day of week, month, day of month, year) and time 
of file creation. 

Yes 
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Spacecraft and instrument source LDCM and OLI Yes 

Processing Center EROS Data Center SVT No 

Work order ID Work order ID associated with processing (blank if not 
applicable) 

Yes 

WRS path/row WRS path and row (See note #4) Yes 

Software version Software version used to create report Yes 

Off-nadir angle Off-nadir pointing angle of processed image file (See 
note #5) 

Yes 

Acquisition Type Earth viewing or Lunar Yes 

L0Rp image file L0Rp image file name used to create L1T Yes 

Processed image file name Name of L1T used to create report Yes 

Number of Legendre coefficients Number of Legendre coefficients present Yes 

Heading for pre and post fit 
statistics 

One line of ASCII text defining pre and post statistics  

For each SCA (along and across 
track directions) 

  

    SCA number SCA number associated with statistics Yes 

    Pre fit statistics Mean, RMSE, standard deviation, along and across 
track direction (in units of radians) 

Yes 

    Post fit statistics Mean, RMSE, standard deviation, along and across 
track direction (in units of radians) 

Yes 

For each SCA and band   

    Along track solution Legendre along track correction coefficients Yes 

    Across track solution Legendre across track correction coefficients Yes 

For each SCA and band   

    Along track updates Updated Legendre along track coefficients Yes 

    Across track updates Updated Legendre across track coefficients Yes 

For each tie-point of each SCA 
and Band to process 

Output produced only if tie-point results flag is set to 
Yes. 

 

    Point ID Point identifier No 

    SCA number SCA number for band combination No 

    Reference output line Output tie-point location in line direction No 

    Reference output sample Output tie-point location in sample direction No 

    Reference input line Reference input tie-point location in line direction No 

    Reference input sample Reference input tie-point location in sample direction No 

    Search input line Search input tie-point location in line direction No 

    Search input sample Search input tie-point location in sample direction No 

    Reference band Reference band No 

    Search Band Search band  

    Measured line offset Output space offset in line direction (from Band 
Accuracy Assessment residuals file) 

No 

    Measured sample offset Output space offset in sample direction (from Band 
Accuracy Assessment residuals file) 

No 

    Pre-fit line delta Pre-fit input space line delta/offset (Δline) No 

    Pre-fit sample delta Pre-fit input space sample delta/offset (Δsample) No 

    Post-fit line delta Post-fit input space line delta/offset (Δline') No 

    Post-fit sample delta Post-fit input space sample delta/offset (Δsample') No 
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Table 1.  Band Calibration Report file 
 
If the CPF group creation flag is set to yes an ASCII file containing the updated Legendre LOS should 
be generated.  This file would contain the new Legendre LOS for each SCA for every band and would 
be formatted according to the CPF group that the Legendre LOS resides in (for geometric prototype 
code this is the LOS_LEGENDRE group).  The file would also contain the file attributes CPF group 
with the effective dates for the LOS generated (See note #3).  The SCAs and bands that were not 
updated should still be represented within the file; these values should be the same for post and pre 
calibration. 

7.2.10.9 Maturity 

1. Band-to-Band Calibration for OLI closely follows that of ALIAS.   
2. Band calibration for the cirrus band, involving lunar acquisitions, will take several steps.   This 

will only include several pre-processing steps needed before band calibration at which point 
there will be a need for only one band calibration routine for both Earth and lunar based 
acquisitions, with the exception of possibly changing some processing parameters.  These pre-
processing steps will be performed with the CalVal Toolkit. 

7.2.10.10 Notes 

Some additional background assumptions and notes include: 
1. The band calibration results currently contains the L1T name, pre and post fit mean, root mean 

squared error, and standard deviation for the along and across track direction of each SCA, 
new Legendre LOS coefficients, and a new CPF Legendre LOS group parameters.  The 
individual tie-point characteristic information and (pre and post-fit) residuals and should be 
added to the report file (see table #1). 

2. See "Using the LOS geometric resampling grid to map an output pixel location to an input pixel 
location" in the OLI Resampling ADD for ols2ils functionality. 

3. The table listed below contains the file attributes and LOS groups that should be populated 
with the corresponding OLI fields when the CPF group creation flag is set to yes.  The 
CPF_Status, CPF_Name_Source, CPF_Description, and CPF_Version fields were inserted 
during ALIAS development by software development, these fields may or may not be 
present/needed for OLI processing.   

 
Parameter  

Groups 
Parameter  

Name 
Data  
Type 

 
Description 

  Prelaunch 
Source 

GROUP: 

LOS_LEGENDRE 

Along_LOS_Legendre
_BBB_NNN_SCASS 

float32 

array 

(3 values) 
for each 
band of 
each SCA 

Legendre polynomial 
coefficients defining along 
track viewing angle of band 
number BB, band name 
NNN and SCA SS given in 
radians 

Valid format: for each term: 
SN.NNNNESN, where S = 
“+” or “-”, N = 0 to 9, and E = 
"E".   

   

GROUP: 

LOS_LEGENDRE 

Across_LOS_Legendr
e_BBB_NNN_SCASS 

float32 

array 

(3 values) 
for each 
band of 
each SCA 

Legendre polynomial 
coefficients defining across 
track viewing angle of band 
number BB, band name 
NNN and SCA SS given in 
radians 

Valid format: for each term: 
SN.NNNNESN, where S = 
“+” or “-”, N = 0 to 9, and E = 
"E" 
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The file name for the CPF group can follow the convention of: 
Legendre_coefficients_<effective begin date>_<effective end date>.odl 
Where: 
effective begin date = YYYYMMDD 
effective end date    = YYYYMMDD 
YYYY = Year 
MM = Month of year 
DD = Day of month 

4. Any kind of "non-WRS" collect; lunar or off-nadir viewing at the poles should have 000/000 
listed as the path/row. 

5. Pointing angle for lunar acquisitions would be 0.0. 
6. Currently it is not expected that any calibration will be done on anything other than the full 

range of Legendre coefficients (3), however the prototype code supports the range of 1-3 
Legendre coefficients in the solution.  The OLIAS prototype code will keep this option and it 
should remain in the system. 

 
 

7.2.11 OLI Focal Plane Alignment Calibration  

7.2.11.1 Background/Introduction 

The OLI focal plane alignment calibration algorithm compares a precision and terrain corrected (L1T) 
OLI panchromatic band image of a geometric calibration site with the corresponding reference image. 
Reference images will be constructed (offline) from mosaics of high resolution digital orthophoto quad 
(DOQ) data sets or other higher (than OLI) resolution data sources (e.g., SPOT). Whatever the 
source, these high accuracy reference data sets will be collectively referred to as "DOQ" images. 
Each separated-SCA L1T image is compared to the reference to measure SCA-specific deviations 
from the scene-average registration. The measured deviations are used to estimate corrections to the 
Legendre polynomial coefficients that model the nominal panchromatic band lines-of-sight for each 
SCA.  
 
The algorithm is implemented in two steps:  1) a mensuration/setup step in which the separated-SCA 
L1T image is correlated with the reference image to measure the within-SCA deviations, and; 2) a 
calibration Legendre coefficient update computation step in which the measured deviations are used 
to compute line-of-sight model correction Legendre coefficients that adjust the original LOS model to 
minimize the residual image deviations. The calibration update step includes applying an outlier filter 
to the image measurements. Separating the algorithm into two distinct steps makes it possible to run 
the calibration update step multiple times, using different outlier filter thresholds, for example, without 
having to perform the time consuming image mensuration/correlation setup procedure more than 
once. 
 
Results from individual calibration scenes are stored in the geometric trending database so that 
results from multiple scenes can be analyzed together when deciding whether and how to adjust the 
operational focal plane calibration. When a focal plane calibration update is generated, the other 
spectral bands would subsequently be re-registered to the panchromatic band using the band 
alignment calibration procedure. 
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The OLI focal plane calibration procedure is derived from the ALI focal plane calibration algorithm 
used in ALIAS. The prototype LDCM implementation is very similar to the ALIAS focal_plane_setup, 
which measures the SCA-specific deviations relative to the reference image, and 
focal_plane_legendre, which calculates the Legendre polynomial coefficient updates, applications. 

7.2.11.2 Dependencies 

The OLI focal plane alignment calibration algorithm assumes that the L1T process flow has created a 
substantially cloud-free SCA-separated (nadir-viewing) path-oriented L1T panchromatic band image, 
over a geometric calibration site, which has been registered to a reference image by using DOQ 
control in the LOS model correction procedure. Note that either the L1T image will be generated to 
exactly match the reference DOQ image frame or the DOQ reference image will have to be 
resampled to match the L1T as a preprocessing step. This algorithm also assumes that the CPF, 
precision LOS model, precision grid file, and DEM used to produce the L1T image, are available. 

7.2.11.3 Inputs 

The OLI focal plane alignment calibration algorithm uses the inputs listed in the following table. Note 
that some of these “inputs” are implementation conveniences (e.g., using an ODL parameter file to 
convey the values of and pointers to the input data). The second column shows which algorithm step 
(image mensuration or correction model computation) uses the input. 
Algorithm Inputs Processing 

Step 

ODL File (implementation) Both 

   Calibration Parameter File (CPF) Name Both 

   L1T Image File Name Step 1 

   Precision LOS Model File Name Step 1 

   Precision LOS Grid File Name Step 1 

   DEM File Name Step 1 

   Reference Image File Name Step 1 

   Correlation Data File Name Both 

   Report File Name (see note #5) Step 2 

   Number of Tie Points per Cell Step 1 

   Outlier tolerance Step 2 

   L0Rp ID (for trending) Step 2 

   Work order ID (for trending) Step 2 

   WRS Path (for trending) Step 2 

   WRS Row (for trending) Step 2 

   Calibration effective dates for updated parameters Step 2 

   Trending flag Step 2 

CPF Both 

   Algorithm Parameters (formerly system table parameters)  

      Size of Correlation Window (see note #5) Step 1 

      Peak Fit Method Step 1 

      Min Correlation Strength (see note #5) Step 1 

      Max Correlation Displacement (see note #5) Step 1 

      Fill Threshold Fraction (max percent of window containing fill 
value) 

Step 1 

      Tie point weight (in units of 1/microradians
2
) Step 2 

      Fit order (see note #5) Step 2 

      Post-fit RMSE Thresholds (trending metrics) Step 2 

Precision Grid File (see LOS Projection ADD for details) Step 1 

  Number of SCAs Step 1 

  For each SCA: Step 1 

    Grid cell size in lines/samples Step 1 
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    Number of lines/samples in grid Step 1 

    Number of z-planes, zero z-plane index, z-plane spacing Step 1 

    Array of grid input line/sample locations Step 1 

    Array of output line/sample locations (per z-plane) Step 1 

    Array of forward mapping coefficients Step 1 

    Array of inverse mapping coefficients Step 1 

    Rough mapping polynomial coefficients Step 1 

Precision LOS Model File (see LOS Model Creation ADD for 
details) 

Step 1 

  OLI Pan Along-Track IFOV (in radians) Step 1 

   Number of SCAs Step 1 

   Number of Bands Step 1 

   Number of Detectors per SCA per Band Step 1 

   Focal Plane Model Parameters (Legendre Coefficients) (in 
radians) 

Step 1 

L1T Image (separated SCA) Step 1 

  Image corner coordinates Step 1 

  Pixel size (in meters) Step 1 

  Image size Step 1 

  Search image pixel data (panchromatic) Step 1 

DEM Step 1 

  DEM corner coordinates Step 1 

  Pixel size (in meters) Step 1 

  DEM size Step 1 

  Elevation data Step 1 

Reference Image Step 1 

  Image corner coordinates Step 1 

  Pixel size (in meters) Step 1 

  Image size Step 1 

   Reference image pixel data Step 1 

Correlation Data File (output of Step 1) Step 2 

  Correlation results in input space pixels Step 2 

  LOS errors in radians Step 2 

  Correlation results in output space pixels Step 2 

 

7.2.11.4 Outputs 

Step 1:  Focal Plane Alignment Setup 

  Correlation Data File (temporary output passed to Legendre step) 

     Correlation results in output space pixels 

     Correlation results in input space pixels 

     LOS errors in radians 

Step 2:  Focal Plane Alignment Legendre (see Table 1 below) 

  Report File (see Table 1 below for details) 

    Standard report header 

    Acquisition date 

    Ref (DOQ)/Search (L1T) image names 

    Number of SCAs 

      For each SCA: 

      SCA Number 

      Old Along- and Across-track Legendre coefficients (NSCAx2x3) 

      Along- and Across-track Legendre error (fit) coefficients 
(NSCAx2x3) 

      New Along- and Across-track Legendre coefficients (NSCAx2x3) 

      Pre-fit along- and across-track residual statistics (mean, stddev, 
RMSE) 
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      Post-fit along- and across-track residual statistics (mean, stddev, 
RMSE) 

      Confidence level used for outlier rejection 

      Legendre polynomial fit order 

      Number of tie points used for current SCA 

    CPF LOS_LEGENDRE Group (ODL format file) 

        Effective Dates (embedded in file name) 

        New Legendre polynomial coefficients (NSCAx2x3) 

    Measured Tie Point Data 

      For each point: 

      SCA Number 

      Grid Cell Column Number 

      Nominal Output Space Line 

      Nominal Output Space Sample 

      Measured LOS Error Delta Line (in pixels) 

      Measured LOS Error Delta Sample (in pixels) 

      Measured LOS Error Along-Track Delta Angle (in microradians) 

      Measured LOS Error Across-Track Delta Angle (in microradians) 

      Tie Point State (outlier) Flag 

      Along-Track Fit Residual (in microradians) 

      Across-Track Fit Residual (in microradians) 

  Focal Plane Alignment Trending Database (see Table 1 below for 
details) 

    L0Rp ID 

    Work Order ID 

    WRS path/row 

    Acquisition date 

    Ref (DOQ) image name 

    Number of SCAs 

      For each SCA: 

      SCA Number 

      Old Along- and Across-track Legendre coefficients (NSCAx2x3) 

      Along- and Across-track Legendre error (fit) coefficients 
(NSCAx2x3) 

      New Along- and Across-track Legendre coefficients (NSCAx2x3) 

      Pre-fit along- and across-track residual statistics (mean, stddev, 
RMSE) 

      Post-fit along- and across-track residual statistics (mean, stddev, 
RMSE) 

      Confidence level used for outlier rejection 

      Number of tie points used for current SCA 

7.2.11.5 Options 

Focal Plane Alignment Calibration Trending On/Off Switch 

7.2.11.6 Prototype Code 

 
Input to the executable is an ODL file; outputs are a binary tie point mensuration file (used internally 
only), an ASCII report file, an ASCII ODL-formatted CPF fragment, and trending data written to the 
stdout and captured in an ASCII log file. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse  –msse2 
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The code units of the prototype implementation are briefly described here. Additional details are 
provided below for units that perform core algorithm processing logic. 
 
Focal_Plane_Setup.c - This routine is the main driver for the setup portion of the focal plane 
calibration.  
 
get_focal_plane_parms.c - This function gets the input parameters from the ODL parameter file. It is 
used by both the setup and legendre executables. 

 
check_images_match.c - This function checks to make sure the L1T search, DOQ reference, and 
DEM images all match. The corners of all the images should match to within half a pixel, and the 
reference and L1T search image should be the same resolution (pixel size) and the same size.  This 
function is an initial check to make sure that all the images are consistent before correlation is 
attempted. This function assumes the DOQ reference image and the DEM are one-band images. 
 
set_up_grid.c - This function reads the grid file into the grid data structure. The whole grid structure is 
returned so the caller can free all memory allocated when the grid was read using the grid 
deallocation call (oli_free_grid). 
 

select_corr_pts.c - This function selects nominal correlation points evenly distributed about the center 
point of each grid cell (output space).   

 
calc_input_space_errors.c - This function calculates the errors in input space pixels.  This is done by 
first correlating in output space and converting the correlated locations to input space. 
  
perform_correlation.c - This function performs the normalized gray-scale correlation at each point. It 
does this by invoking the correlation library routines described in the GCP Correlation Algorithm 
Description Document (e.g., math_submit_chip_to_corr). 
 
map_coords_to_input_space.c - This function uses the inverse mapping coefficients in the grid to 
calculate the input space line/sample for each output space line/sample.  

 
calc_los_errors.c - This function uses the tie point reference and search input space locations to 
calculate the angular line-of-sight errors. 
 
output_correlation_info.c - This function writes the tie point correlation results to a file.   
 
Generate_Legendre_Polynomials.c - This routine is the main driver for the Legendre polynomial 
generation portion of focal plane calibration.  
 
read_correlation_info.c - This function reads the correlation information from the file generated by the 
Output Correlation Information sub-algorithm above. 
 
filter_outliers.c - This function separates the focal plane correlation data into groups for each SCA for 
the X (sample) and Y (line) directions.  It then finds the standard deviation for the points in each 
group.  Outlier rejection is then performed on the points based on the tolerance selected by the user 
and the Student's T distribution. This procedure is described in the Geometric Accuracy Assessment 
Algorithm Description Document. 
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calculate_point_weights.c - This function calculates the weight associated with each correlation point 
for doing the Legendre polynomial fit. Currently, this routine assigns the weight passed in to each 
point, effectively assigning each point an equal weight.  Originally, it was thought that the correlation 
strength would factor into the weight, but that was determined to not be needed.  This routine was left 
in to allow point-specific weight factors to be added at a later date.  

  

fit_polynomials.c - This function performs the weighted least squares fit of the correlation data points 
(using the angular error) to find the Legendre error polynomial.   

 

calculate_post_fit_residuals.c - This function calculates the residual statistics after the Legendre 
polynomial coefficients have been fit. This unit includes the calc_legendre_poly() function that 
calculates the Legendre polynomial for the input normalized detector value. 
 

create_focal_plane_report.c - This function generates a file reporting the results of the SCA Legendre 
polynomial fit calculations. The report file contents are shown in Table1 below. This unit also includes 
the write_coeffs() function that writes an entire set of coefficients to the indicated output file. 

 
trending_dummy.c - This function is a placeholder for the logic that will write the results of the SCA 
Legendre polynomial fit calculations to the geometric characterization database. In the prototype 
implementation the actual database output is replaced by dummy ASCII output to stdout. 

 
write_SCA_parameters_cpf.c - This function writes the updated LOS_LEGENDRE parameter group 
of the CPF, in the ODL format used by the CPF, to an output file. 

7.2.11.7 Procedure 

The Focal Plane Alignment Calibration Algorithm is used for on-orbit calibration of the alignment of 
the lines-of-sight of the SCAs relative to each other.  This calibration is necessary to meet the image 
registration, geodetic accuracy, and geometric accuracy requirements.   
 
Procedure Overview 
The focal plane alignment algorithm adjusts each SCA to a known stable reference.  By aligning each 
SCA to a common reference, any measured inter-SCA misalignment is removed.  Each SCA is 
correlated against a reference image created from a mosaic of digital orthophoto quadrangle (DOQ) 
images.  A new set of 2nd order Legendre LOS coefficients, representing updates or corrections to the 
original polynomials, are generated by fitting a set of coefficients to the residuals.   
 
Substantially cloud free scenes should be used for focal plane alignment calibration.  The imagery 
should have ground control applied and terrain displacements removed, i.e. the imagery should be a 
terrain corrected (L1T) data set. 
 
Stage 1:  Setup – Correlate L1T Image with DOQ Reference 
An array of test points is generated for each SCA based upon the number of points per grid cell 
specified in the input parameters. The OLI geometric grid is used to generate the test point array by 
spacing the test points at regular intervals in input space, and then computing the corresponding 
output space coordinates for each. Constructing the test point array in input space ensures that the 
test points fall within the active area of each SCA. 
 
Image windows extracted from the L1T image at the test point locations are correlated with 
corresponding windows extracted from the reference DOQ image, using normalized gray scale 
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correlation. This procedure is the same as that described in the OLI Image Registration Accuracy 
Assessment Algorithm Description Document. Since the expected offsets are small, the L1T and 
DOQ image windows are the same size. The correlation procedure yields measured deviations (or 
correlation failure flag) in the line and sample directions, estimated to sub-pixel accuracy. These 
deviations, or residuals, are in units of output space pixels. 
 
The residuals measured in output space are converted to differences in LOS along- and across-track 
angles by mapping the reference point location from output space to input space and then mapping 
the search point location from output space to input space.  The mappings are performed using the 
OLI geometric grid that was used to resample the L1T image, and include the test point elevation 
interpolated from the input DEM. This three-dimensional output space to input space mapping 
(3d_ols2ils) is described in the OLI Image Resampling Algorithm Description Document. Once an 
input space location is found for both points, the LOS vectors are calculated for each input sample 
location using the OLI LOS model. This is described in the Find LOS section of the OLI LOS 
Projection Algorithm Description Document. 
 
The angular differences in input space are then: 
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where: 

rx,ry,rz = reference x,y,z vector components of LOS 
sx,sy,sz = search x,y,z vector components of LOS 

input reference line = input line location for reference point 
input search line = input line location for search point 

 
Stage 2:  Legendre – Compute Focal Plane Calibration Update 
A weighted least squares routine is used to generate the fit between the angular residuals and the 
updated Legendre polynomial coefficients.  The weight matrix [W] is an NxN diagonal matrix where 
the diagonal elements are a user entered weight value. 
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where w = user entered weight 

 
The weight matrix was included in order to make it possible to differentially weight the measured 
deviations based on correlation strength, but this is not implemented in the baseline algorithm. 
Instead, a common weight, read from the CPF, is used for all points. 
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The observation matrix is an Nx1 matrix containing the correlation residuals in input space angular 
units.  There are two observation matrices, one for the along track residuals and one for the across 
track residuals. 
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The design matrix is an Nx3 matrix with each row of the matrix being equal to the Legendre 
polynomial term associated with the reference sample location of the corresponding residual 
measurement. The calculation of these Legendre polynomial terms, as functions of the input sample 
location, is described below. 
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where: 

li,j = ith Legendre polynomial term associated with reference sample location of the jth 
residual measurement.  

 
The solution for the updates to the original Legendre LOS coefficients can be found from: 

             YWXXWXcoeff
TT 1

  

 
The matrix [coeff] is a 1x3 matrix containing the corrections to be applied to the original Legendre 
coefficients.  A separate solution is found for the along and across track component. The mean offset 
across all the SCAs corresponds to the mean residual precision correction error for the calibration 
scene. It is subtracted from the coefficients generated for each SCA to avoid introducing any net 
pointing bias into the focal plane calibration.  Once the mean is subtracted, the corrections are then 
added to the original Legendre LOS coefficients to compute the updated focal plane alignment 
parameters.   
 
Only the PAN band is used for focal plane alignment.  Band calibration uses the PAN band as the 
reference for all the other bands, thus the multispectral bands are aligned to the PAN band during 
band calibration. A band alignment calibration should be performed following an update to the focal 
plane (pan band) calibration to avoid degrading the band-to-band registration. 
 
Figure 1 shows the architecture for the setup portion of the Focal Plane Alignment Calibration 
algorithm. 
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Figure 1:  Focal Plane Calibration Setup Algorithm Architecture 
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Figure 2 shows the architecture of the Legendre polynomial fitting portion of the Focal Plane 
Alignment Calibration algorithm. 
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Figure 2:  Focal Plane Calibration Legendre Polynomial Generation Algorithm Architecture 

 
Focal Plane Cal Setup Sub-Algorithm 
The setup portion consists of correlating points between the search image and the reference image, 
and converting the correlation offsets into line-of-sight deviations that can be used to model each 
SCA's detector array, modeled by a quadratic Legendre polynomial. The results of this program are 
used in the second portion of focal plane calibration, the generation of new Legendre polynomials. 
This program creates a temporary output file that is read by the second portion of focal plane 
calibration.   
 
Select Correlation Points Sub-Algorithm 
To ensure evenly distributed tie point locations during correlation, locations are defined to lie at the 
center of each resampling grid cell, or sub-cell.  There will be pts_per_cell equally-spaced points per 
grid cell.  For example, if there are 4 points per cell, they will be placed as shown in Figure 3. 
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Figure 3:  Correlation Point Placement in Grid Cell 

 

The cell is divided into a 2-by-2 grid of 4 sub-cells, and each sub-cell is divided in half to place the 
point in the middle, yielding points at (0.25,0.25), (0.75,0.25), (0.25,0.75), and (0.75,0.75).  
 
The calculation of the output space line/sample coordinates of the tie points is done as follows: 
 a) Compute number of rows and columns of tie points in each cell. 

ncol = (int)ceiling( sqrt(pts_per_cell) ) 
nrow = (int)ceiling( (double)pts_per_cell/(double)ncol ) 
This creates an array of tie points containing at least pts_per_cell points. 

b) For each tie point, i = 1 to ncol and j = 1 to nrow: 
b1) Compute the grid cell fractional location (cfrac,rfrac). 

nrow

j
rfrac

ncol

i
cfrac

2

12

2

12 



  

b2) Compute the output space line, olij, using bilinear interpolation on the output line numbers 
at the grid cell corners, where lUL, lUR, lLL, and lLR are the output space line coordinates at the 
grid cell upper-left, upper-right, lower-left, and lower-right corners, respectively: 

olij = lUL * (1-cfrac)*(1-rfrac) 
      + lUR * cfrac * (1-rfrac) 
      + lLL * (1-cfrac) * rfrac 
      + lLR * cfrac * rfrac 

b3) Compute the output space sample, osij, using bilinear interpolation on the output sample 
numbers at the grid cell corners, where sUL, sUR, sLL, and sLR are the output space sample 
coordinates at the grid cell upper-left, upper-right, lower-left, and lower-right corners, 
respectively: 

osij = sUL * (1-cfrac)*(1-rfrac) 
      + sUR * cfrac * (1-rfrac) 
      + sLL * (1-cfrac) * rfrac 
      + sLR * cfrac * rfrac 

Note that the bilinear weights are the same for the line and sample computations and only 
need be computed once. 

 
The heritage version of this sub-algorithm locates the points by computing the intersection of the 
cell diagonals and then calculating offsets from that point. It is more straightforward to simply use 
bilinear interpolation, as described above, to calculate the tie point output space coordinates, so 
this unit has been reworked from the heritage implementation (see note #2). 
  

Map Coordinates to Input Space Sub-Algorithm 
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This function uses the inverse mapping coefficients in the grid to calculate the input space 
line/sample for each output space line/sample.  It does this for both the reference image line/sample 
location and the search (L1T) image line/sample location. 
  
For each SCA 
 

For each residual 
 

1) Interpolate a height from the DEM at the location corresponding to the tie point reference 
image line/sample coordinates (xxx_get_elevation). 
 
2) Map the reference output line/sample location to its corresponding input line/sample location 
using oli_3d_ols2ils routine  
 
3) Interpolate a height from the DEM at the location corresponding to the tie point search 
image line/sample coordinates (xxx_get_elevation). 
 
4) Map the search output line/sample location to its corresponding input line/sample location 
using the oli_3d_ols2ils  
 

Calculate LOS Errors Sub-Algorithm (calc_los_errors) 
This function uses the tie point reference and search input space locations to calculate the angular 
line-of-sight errors. 
 

For each SCA 
 

For each residual 
 

1) Calculate reference line of sight vector for sample location using the nominal detector 
type and the precision LOS model (oli_findlos). 
 
2) Calculate the search LOS vector for sample location using the nominal detector type and 
the precision LOS model. 
 
3) Calculate the residual errors in terms of the difference in the LOS along and across track 
angles: 

along-track LOS error = ref los.x/los.z – srch los.x/los.z 

                                         + input line error * along-track pan IFOV 

across-track LOS error = ref los.y/los.z – srch los.y/los.z 
 

Output Correlation Information Sub-Algorithm 
The correlation points are dumped to a binary file, so the second phase of focal plane calibration 
(Legendre polynomial generation) can read them directly back in. First, a long integer is written to 
indicate the number of records, then all the records are written. Each record contains the following 
fields: 

Type Field Description 

Int sca_number SCA number (0-relative) 

Int grid_column grid column number (0-relative) 

Int grid_row grid row number (0-relative) 
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double nom_os_pt.line nominal output space point line 

double nom_os_pt.samp nominal output space point sample 

double ref_os_pt.line reference output space line 

double ref_os_pt.samp reference output space sample 

double srch_os_pt.line search output space line 

double srch_os_pt.samp search output space sample 

double ref_is_pt.line reference input space line 

double ref_is_pt.samp reference input space sample 

double srch_is_pt.line search input space line  

double srch_is_pt.samp search input space sample  

double los_err.line angular along-track LOS error 

double los_err.samp angular across-track LOS error 

double los_err_pix.line line LOS error in pixels 

double los_err_pix.samp sample LOS error in pixels 

double correlation_accuracy correlation accuracy 

ActiveFlag active_flag correlation success flag 

double pt_weight point weight for use in fit 

double fit_residual.line line residual from fit of pts 

double fit_residual.samp sample residual from fit of pts 

 
This is not a human-readable (ASCII) file, because it is only used to transport information from the 
first phase of calibration to the second. If the file already exists, it will be overwritten. 
 
Generate Legendre Polynomials Sub-Algorithm 
The generate Legendre portion reads the results of the focal plane setup, filters the outliers, fits the 
data to a Legendre polynomial, updates the SCA models, and generates output reports.  This process 
is outlined below. 
 
a) For each SCA 
 

a.1) Build design matrix 
 
Calculate normalized detector for reference sample location (see note #1). Note that in this 
context the “detector” number is the input sample number within the current SCA. 
 

1
detectors  ofnumber  

detector*2
detector  normalized   

 
where: 

detector = reference sample location 
number of detectors = number of pan band detectors in current  SCA 

 
Calculate “row” of design matrix and store in matrix 
 

l0,j = 1 
l1,j = normalized detector 
l2,j = 1.5 *(normalized detector)2– 0.5 
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where  j = residual number 
 

a.2) Build weight matrix using the (fixed) input weight value. 
 
a.3) Build line and sample observation matrices from residuals in terms of angular  
       differences. 
 

a.4) Solve for line and sample solutions using weighted least squares routine (see the Fit 
Polynomials sub-algorithm below). 

 
a.5) Calculate pre-fit residual statistics from the original measured deviations. 

 
a.5.1) Calculate statistics for along- and across-track residuals used in a.3. 

 
Compute mean, standard deviation and RMSE for the residuals.  Values are calculated 
for along- and across-track directions independently.   

 
  For along-track residuals: 

a.5.1.1) Calculate mean 
a.5.1.2) Calculate standard deviation  
a.5.1.3) Calculate RMSE 
 

For across-track residuals: 
a.5.1.4) Calculate mean 
a.5.1.5) Calculate standard deviation  
a.5.1.6) Calculate RMSE 

 
a.6) Calculate post fit residuals statistics for correction coefficients 
 

Post-fit residuals are calculated by updating the original residual deviations used in step 
a.3 above using the Legendre polynomial corrections.  Statistics are then calculated on 
these updated residuals. 
 
a.6.1) For each residual 
 

a.6.1.1) Calculate normalized detector for reference sample location (as shown in 
a.1) 
 
a.6.1.2) Calculate updated along-track LOS angle from along-track Legendre 
coefficients calculated in a.4 (see Calculate Legendre Polynomial sub-algorithm 
below). 
 
a.6.1.3) Find difference between along-track angle from a.6.1.2 and along-track 
angular residual 
 
a.6.1.4) Calculate updated across-track LOS from across-track Legendre 
coefficients calculated in a.4 
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a.6.1.5) Find difference between across-track angle from a.6.1.4 and across-
track angular residual 
 

a.6.2) Calculate statistics for along and across track updated residuals calculated in 
a.6.1. 

 
Compute mean, standard deviation and RMSE for updated residuals.  Values are 
calculated for along- and across-track directions independently.   

 
  For along-track residuals: 

a.6.2.1) Calculate mean 
a.6.2.2) Calculate standard deviation  
a.6.2.3) Calculate RMSE 
 

For across-track residuals: 
a.6.2.4) Calculate mean 
a.6.2.5) Calculate standard deviation  
a.6.2.6) Calculate RMSE 

 
b) Remove bias from the correction coefficients 

sum along = sum across = 0.0 
 

b.1) For all SCAs: 
sum along = sum along + coeff_along0,sca 

 

sum across = sum across + coeff_across0,sca 
 

b.2) Compute the average across all SCAs: 

scas  ofnumber  

across  sum
acrossmean  

scas  ofnumber  

along  sum
alongmean  





 

 
b.3) For all SCAs: 

coeff_along0,sca = coeff_along0,sca – mean along 
 

coeff_across0,sca = coeff_across0,sca – mean across 
 

c) For each SCA, add the correction coefficients to original Legendre LOS coefficients: 
 

new along legendresca,i = update along legendresca,i + old along legendresca,i 

 
new across legendresca,i = update across legendresca,i + old across legendresca,I 

 
where: 

i = 0,1,2 Legendre polynomial number 
sca = SCA number 

 
Filter Outliers Sub-Algorithm 
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This function separates the focal plane correlation data into groups for each SCA for the X (sample) 
and Y (line) directions.  It then finds the standard deviation for the points in each group.  Outlier 
rejection is then performed on the points based on the tolerance selected by the user and the 
Student's T distribution. This procedure is described in the Geometric Accuracy Assessment 
Algorithm Description Document. 
 
Calculate Point Weights Sub-Algorithm 
This function calculates the weight associated with each correlation point for doing the Legendre 
polynomial fit. 
 
Currently, this routine assigns the weight passed in to each point, effectively assigning each point an 
equal weight.  Originally, it was thought that the correlation strength would factor into the weight, but 
that was determined to not be needed.  This routine was left in to allow point-specific weight factors to 
be added at a later date.  
  

Fit Polynomials Sub-Algorithm 
This function performs the weighted least squares fit of the correlation data points (using the angular 
error) to find the Legendre error polynomial.  The least squares correction parameter vector X is given 
by solving: 
 

ATWAX = ATWY 
 
Where: 
      A  is the [corr_points x NUMBER_COEFFS] design matrix 
 
      W is the weight matrix including the weight for each correlation data 
           point of the A matrix (only the diagonal contains weights for that row) 
 
      AT being the transpose of the A matrix 
 
      X is the [NUMBER_COEFFS x 1] matrix with the Legendre coefficients we  
          are looking for 
 
      Y is the [corr_points x 1] matrix of angular errors for each correlation  
          data point corresponding to the rows in the A matrix 
 
Solving the above equation for X yields: X = (ATWA)-1 * ATWY 
 
An optimization is used to keep the size of the matrices to a manageable level. Since the [W] matrix 
(weight) only contains data on the diagonal the ATWA normal equation matrix can be accumulated in 
a [NUMBER_COEFFS x NUMBER_COEFFS] matrix and the ATWY matrix can be accumulated in a 
[NUMBER_COEFFS x 1] matrix. The ATW and ATWA matrices are the same for both along- and 
across-track directions. 
 

Calculate Legendre Polynomial Sub-Algorithm 
This function calculates the Legendre polynomial for the input normalized detector value, x: 

along = coeff_along0 + coeff_along1 x + coeff_along2 (1.5*x2 – 0.5) 
across = coeff_across0 + coeff_across1 x + coeff_across2 (1.5*x2 – 0.5) 
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Write Focal Plane Calibration Results to Characterization Database 
This function writes the results of the SCA Legendre polynomial fit calculations to the geometric 
characterization database. The output is only written to the database if the post-fit along- and across-
track RMSE statistics are all below the threshold values specified in the CPF (the trending metrics). 
The characterization database output is listed in Table 1 below. 
 
Write SCA Parameters CPF Sub-Algorithm 
This function writes the updated LOS_LEGENDRE parameter group of the CPF, in the ODL format 
used by the CPF, to a separate output file named “LOS_LEGENDRE_yyyymmdd_YYYYMMDD.cpf”, 
where yyyymmdd is the user-specified start effective date and YYYYMMDD is the user-specified 
ending effective date. Current plans call for actual calibration updates to be based on multiple scene 
results extracted from the characterization database, so this capability is primarily a convenience for 
testing purposes. 
 
Algorithm Output Details 
The contents of the output focal plane alignment calibration report file and the corresponding 
geometric characterization database outputs are summarized in Table 1 below.  All fields are written 
to the output report file but only those with "Yes" in the "Database Output" column are written to the 
characterization database. Note that the first eleven fields listed constitute the standard report 
header. 
 
 
 
 
 

Field Description Database 
Output 

Date and time Date (day of week, month, day of month, year) 
and time of file creation. 

Yes 

Spacecraft and 
instrument 
source 

LDCM and OLI Yes 

Processing 
Center 

EROS Data Center SVT (see note #4) Yes 

Work order ID Work order ID associated with processing (blank if 
not applicable) 

Yes 

WRS path WRS path number Yes 

WRS row WRS row number Yes 

Software version Software version used to create report Yes 

Off-nadir angle Scene off-nadir roll angle (in degrees) (only nadir-
viewing scenes are used for focal plane 
calibration) 

Yes 

Acquisition type Earth, Lunar, or Stellar (only Earth-viewing 
scenes are used for focal plane calibration) 

Yes 

L0Rp ID Input L0Rp image ID Yes 

L1T image file Name of L1T used to measure tie points No 

Acquisition date Date of L1T image acquisition (new) Yes 

Reference image Name of reference (DOQ) image used to measure Yes 
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file tie points 

Confidence Level Confidence level used for outlier rejection Yes 

Fit Order Order of Legendre fit Yes 

Number of SCAs Number of SCAs calibrated (14) (new) Yes 

For each SCA:   

SCA Number Number of the current SCA (1-14) Yes 

Original AT 
Legendre coeffs 

Original along-track Legendre coefficients:  a0, 
a1, a2 

Yes 

Original XT 
Legendre coeffs 

Original across-track Legendre coefficients:  b0, 
b1, b2 

Yes 

Error AT 
Legendre coeffs. 

The computed updates to the along-track 
Legendre coefficients:  c0, c1, c2 

Yes 

Error XT 
Legendre coeffs. 

The computed updates to the across-track 
Legendre coefficients:  d0, d1, d2 

Yes 

New AT 
Legendre coeffs 

New along-track Legendre coefficients:  a'0, a'1, 
a'2 

Yes 

New XT 
Legendre coeffs 

New across-track Legendre coefficients:  b'0, b'1, 
b'2 

Yes 

Pre-fit AT 
residual statistics 

Pre-fit along-track residual mean, standard 
deviation, and RMSE statistics 

Yes 

Pre-fit XT 
residual statistics 

Pre-fit across-track residual mean, standard 
deviation, and RMSE statistics 

Yes 

Post-fit AT 
residual statistics 

Post-fit along-track residual mean, standard 
deviation, and RMSE statistics 

Yes 

Post-fit XT 
residual statistics 

Post-fit across-track residual mean, standard 
deviation, and RMSE statistics 

Yes 

Number of Points Number of tie points used for current SCA Yes 

CPF Group:   

Effective Date 
Begin 

Beginning effective date of CPF group:  YYYY-
MM-DD 

No 

Effective Data 
End 

Ending effective date of CPF group:  YYYY-MM-
DD 

No 

For each SCA:   

New Legendre 
polynomial 
coefficients 

Nine (one per band) arrays of three along-track 
Legendre coefficients followed by nine arrays of 
three across-track Legendre coefficients. 

No 

Tie Point Data: For each tie point:  

SCA Number SCA where the tie point was measured No 

Grid Cell Column 
Number 

Column number of the grid cell containing the tie 
point 

No 

Nominal Output 
Space Line 

Predicted tie point output space line location No 

Nominal Output 
Space Sample 

Predicted tie point output space sample location No 

LOS Line Error Measured LOS error delta line (in pixels) No 

LOS Sample 
Error 

Measured LOS error delta sample (in pixels) No 

LOS AT Error Measured LOS error along-track delta angle No 
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(in microradians) 

LOS XT Error Measured LOS error across-track delta angle 
(in microradians) 

No 

State Flag  Tie point state (outlier) flag No 

AT Fit Residual Along-track fit residual (in microradians) No 

XT Fit Residual Across-track fit residual (in microradians) No 

Table 1:  Focal Plane Calibration Output Details 
 
Accessing the Focal Plane Calibration Results in the Characterization Database 
Though not part of the formal focal plane calibration algorithm, some comments regarding the 
anticipated methods of accessing and analyzing the individual scene focal plane calibration results 
stored in the characterization database may assist with the design of the characterization database 
(see note #3). 
 
The database output from the focal plane alignment calibration algorithm will be accessed by a data 
extraction tool that queries the characterization database to retrieve focal plane calibration results 
from multiple scenes. The only processing required on the returned results is to compute the average 
"new" Legendre coefficients for each SCA across all returned scenes. The returned scene results and 
computed mean Legendre coefficient values will be output in a report containing a comma-delimited 
table of the retrieved trending results as well as the summary averages.  
 
The geometric results would typically be queried by acquisition date and/or WRS path/row. The most 
common query would be based on acquisition date range, for example, selecting all of the results for 
a given calendar quarter: 
 
 Acquisition_Date is between 01APR2012 and 30JUN2012 
 
The average coefficients would be calculated from the "new" Legendre coefficients for the individual 
scenes returned, as: 
 





numScene

i

ijSCAnetjSCA Coeff
numScene

Coeff
1

,,,,

1
 

for coefficient j (j=0,1,2) for each SCA. 
 

The query results would be formatted in a set of comma-delimited records (for ease of ingest into 
Microsoft Excel), one record per scene. Each record would contain all of the "header" fields written to 
the characterization database (items with "Yes" in the rightmost column of Table 1 above) but only 
the "new" Legendre coefficients for each SCA. The other fields would be retrieved using general 
purpose database access tools, if and when desired. A header row containing the field names should 
precede the database records. 
 
Following the scene records the average Legendre coefficients should be written out in the same 
CPF/ODL syntax used in the report file. This output uses the same structure shown in the final row in 
Table 1 above, but contains the average, rather than a single scene's, Legendre coefficients.  

7.2.11.8 Maturity 

Most of the heritage ALIAS focal plane alignment calibration logic was reused, but the OLI version 
was adapted to account for the OLI sensor architecture: 
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1. There are 14 separate SCAs to calibrate (vs. 4 ALI SCAs). 
2. The heritage Legendre polynomial order of 2 will be used for the OLI, despite the somewhat 

longer SCAs. This is justified by the OLI telescope design information available to date. Note 
that the TIRS version of this algorithm (TIRS Alignment) will require higher order Legendre 
terms. 

7.2.11.9 Notes 

Some additional background assumptions and notes include: 
1. The heritage fit_polynomials procedure uses the input space reference image point locations 

to derive the correction polynomial coefficients. This has been changed to use the input space 
search image point locations (which will be very close) instead. 

2. The heritage tie point selection sub-algorithm (select_corr_pts) is unnecessarily complicated. It 
has been reworked to use a simpler bilinear interpolation approach. 

3. The trending output from this algorithm will be accessed by an analysis tool that queries the 
trending database to retrieve focal plane alignment results from multiple scenes. Averaging the 
Legendre coefficients derived from calibration scenes within a user-specified date range will 
smooth out residual precision correction errors, leading to a more consistent focal plane 
calibration solution. The analysis tool will create a report file containing a comma-delimited 
table of the retrieved trending results and the averaged Legendre coefficients. 

4. A configuration table (system table) should be provided for each installation of the algorithm 
implementation to convey site-specific information such as the processing center name (used 
in the standard report header), the number of processors available (for parallel processing 
implementations), etc. This takes the place of the heritage system table which also contained 
certain algorithm-related parameters. Anything related to the algorithms has been moved to 
the CPF for LDCM. For the prototype implementation, the site-specific report header fields are 
provided as environment variables. 

5. Heritage optional input parameters that allow the report output to be suppressed and that over-
ride several of the processing parameters now provided in the CPF (minimum correlation 
strength, maximum correlation offset, correlation window size, and Legendre fit order) have 
been retained in the prototype implementation to facilitate testing, but they are not required. 

7.2.12 OLI Sensor Alignment Calibration Algorithm 

7.2.12.1 Background/Introduction 

The OLI sensor alignment calibration algorithm uses a time sequence of the LOS model alignment 
trending results generated by the LOS model correction algorithm (see the LOS Model Correction 
ADD for details) to estimate the orientation of the OLI coordinate system relative to the spacecraft 
attitude determination coordinate system. This spacecraft -to-OLI alignment is one of the fundamental 
geometric calibration parameters stored in the Calibration Parameter File. Analyzing time sequences 
of measured alignment results makes it possible to smooth out random scene-to-scene pointing 
errors to estimate, and correct for, any underlying systematic alignment errors. The OLI sensor 
alignment calibration algorithm is inspired by the ALI sensor alignment algorithm used in ALIAS. Its 
implementation will be different, in that the ALIAS code was set up to operate on individual scene 
results. The heritage logic takes the precision solution output, converts it to apparent alignment 
errors, and then blends the individual scene results with the current best estimate of the alignment 
state using a Kalman filter. This approach required the scenes to be processed in time order and did 
not provide a view of how the apparent alignment errors varied with time, which would have made it 
easier to detect systematic (e.g., seasonal) effects. By retrieving and analyzing groups of individual 
alignment results, the OLI algorithm will make it possible to select an appropriate time window and 
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take all the data from that window into account when deriving the alignment calibration for that time 
period. 

7.2.12.2 Dependencies 

The OLI sensor alignment calibration algorithm assumes that the LOS model correction algorithm has 
populated the geometric trending database with LOS model alignment trending results.  

7.2.12.3 Inputs 

The OLI sensor alignment calibration algorithm uses the inputs listed in the following table. The user 
inputs define the parameters of a query used to retrieve the desired alignment trending data created 
by the LOS model correction algorithm. 
Algorithm Inputs 

LOS Model Correction Alignment Trending Data (from trending DB)  

  Precision correction reference date/time (year, day of year, hours, minutes, 
seconds) 

  Roll-pitch-yaw alignment angles (in microradians) 

  Ephemeris position corrections (in meters) 

  Alignment covariance matrix 

  Across- and along-track RMS GCP fit solution quality metrics (in meters) 

  Control type used (GLS or DOQ) 

  Number of control points used 

  GCP outlier threshold used 

  GCP RMS fit (in meters) 

  Off-nadir angle (in degrees) 

  Geometric characterization ID (of trended scene) 

  Work Order ID (of trended scene) 

  WRS Path/Row 

User Inputs 

  Trending Data Query Date Range 

  Calibration Effective Date Range 

  Control Type Selection (GLS, DOQ, Both) 

  Control Type Weights (if Both are used) (see note 2) 

  Maximum off-nadir angle (in degrees) (see note 5) 

  Alignment Trending Flag (1 = save results) 

  Calibration Parameter File Name 

  Output Report File Name 

 

7.2.12.4 Outputs 

OLI Alignment Report (see Table 1 for details) 

  Standard report header fields 

  Control type/GCP source selected 

  Number of scenes analyzed 

  Retrieved data date range 

  Estimated alignment angles (roll, pitch, yaw) 

  Measured alignment angle RMS residuals (roll, pitch, yaw) 

  OLI Alignment Calibration Parameters 

    Alignment effective date range 

    ACS to OLI rotation matrix 

  Table of alignment trending results returned 

OLI Alignment Characterization Database Output 

  Processing date 

  Processing site 

  Maximum off-nadir angle used 
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  Control type/GCP source selected 

  DOQ vs. GLS scene weights used 

  Number of scenes analyzed 

  Retrieved data date range 

  Estimated alignment angles (roll, pitch, yaw) 

  Measured alignment angle RMS residuals (roll, pitch, yaw) 

  Alignment effective date range 

  ACS to OLI alignment matrix 

7.2.12.5 Options 

Control Source Selection (GLS or DOQ or Both) 
Alignment Calibration Trending On/Off Switch 

7.2.12.6 Prototype Code 

 
Inputs to the executable are an ODL parameter file, an ODL calibration parameter file, and an ASCII 
text file that emulates the IAS trending database; outputs are an ASCII report file, an ASCII ODL-
formatted CPF fragment, and trending data written to the stdout and captured in an ASCII log file. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse  –msse2 
 
The code units of the prototype implementation are briefly described here. Additional details are 
provided below for units that perform core algorithm processing logic. 
 
aligncal.c – Main driver of the OLI sensor alignment calibration process. Also includes a utility unit to 
format dates as text. 
 

get_aligncal_parms.c – Read the input ODL parameter file and pass processing parameters back 
to the main procedure. 
 
query_dummy.c – A dummy unit that takes the place of a trending database query function. The 
dummy processes an input ASCII file called alignment_table.dat which takes the place of the 
trending database. 
 

delta_date.c – Calculates the difference, in seconds, between two dates specified as year, day 
of year, second of day. 

 
prec_align_to_obs.c – Processes a single trended alignment calibration record (generated by the 
oliprecision process) using the covariance information to combine the observed attitude and 
position biases into an integrated alignment error estimate. 
 
aligncal_output.c – Subprocedure that controls the generation of the report, calibration parameter 
file ODL fragment, and trending data outputs. 
 

write_report.c – Generates the output ASCII report file. 
 

output_header.c – Creates the standard (tailored for this application) report header. 
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calculate_alignment_matrix.c – Constructs the attitude control system to OLI rotation matrix 
corresponding to a set of input roll-pitch-yaw alignment angles. 
 
write_alignment_matrix_ODL.c – Generates the calibration parameter file ODL fragment 
containing the newly computed attitude-to-OLI rotation matrix. 

 
trending_dummy.c – A dummy unit that writes the trending output from this procedure to stdout, 
taking the place of a trending database insertion function. 

7.2.12.7 Procedure 

The purpose of the sensor alignment algorithm is to use a sequence of LOS model correction 
solutions, including both correction parameter estimates and estimated covariance information, to 
estimate the underlying attitude control system (ACS) frame to OLI instrument frame alignment. A 
weighted least squares batch filter implementation is used to isolate the systematic alignment trend 
from the scene-to-scene variability of the attitude and ephemeris precision correction errors. 
 
Unlike the other geometric correction, characterization, and calibration algorithms, the operational 
implementation of this algorithm will rely upon an interactive user interface that queries the geometric 
characterization database to retrieve a user-specified (based on date range and/or control source) set 
of LOS model correction alignment characterization results. The prototype implementation emulates 
this process by providing query parameters in an ODL parameter file and using them to filter (query) a 
static ASCII text file that emulates the trending database. 
 
The algorithm uses the individual scene results returned from the database to estimate updates to the 
OLI alignment angles. The LOS model correction algorithm generates apparent OLI-to-ACS 
alignment angles each time it runs, whether on L1T product scenes using Global Land Survey (GLS) 
2000 control, or on calibration scenes using digital orthophoto quadrangle (DOQ) control, based on 
the attitude corrections it estimates from the ground control measurements. The sensor alignment 
calibration algorithm analyzes these results over multiple scenes to detect the systematic trends that 
are used to update the ACS-to-OLI alignment estimate used in the CPF.  
 
The sensor alignment calibration algorithm consists of five steps: 

1. Allow the user to specify the date range, control source(s), and maximum off-nadir angle 
defining the desired range of LOS model correction alignment results. 

2. Query the geometric characterization database to retrieve results meeting the specified 
criteria. 

3. Determine the best-fit alignment angles from the individual scene results using a least squares 
procedure. 

4. Allow the user to review the results, edit the list of input scenes used and rerun the solution, 
and accept or reject the final result. 

5. If the result is accepted by the user, generate an output report including the list of input scenes 
used and the final best-fit alignment parameters, compute the corresponding ACS to OLI 
alignment matrix, and write out a calibration parameter group containing the alignment matrix 
in the format used by the CPF. 

 
The sensor alignment calibration algorithm procedure is depicted in figure 1. 



LDCM-ADEF-001 
Version 3 

 

 

  
Get Query Parameters   

Retrieve LOS Model 
Correction Results 

Calculate Alignment  
Matrix 

  

User 

Geo Char  
Database   

  Report  
File 

Batch Filter 

Write Report   

Write Database   
Output   

DB   

User Review Results 

    

 

Figure 1:  Sensor Alignment Calibration Algorithm Architecture 

 

7.2.12.7.1 Step 1: Define the Data 

The user provides a start and stop date to define the desired range of acquisition dates for the 
returned characterization data, a control type selection that makes it possible to use scenes 
processed with either DOQ or GLS control, or both, and a maximum off-nadir angle, in degrees, to 
include or exclude off-nadir acquisitions from the calibration process. The start/stop dates are 
inclusive. If the start date is not provided, all data acquired on or before the stop date are used. If the 
stop date is not provided, all data acquired on or after the start date are used. If no dates are 
provided, all dates are included. The DOQ/GLS/Both control selection defaults to DOQ. The 
maximum off-nadir angle is provided as an absolute value, i.e., only scenes between +MAXANG and 
-MAXANG would be included if MAXANG is the specified limit. The off-nadir angle limit defaults to 0.1 
degrees to exclude off-nadir images. 
 

7.2.12.7.2 Step 2: Retrieve the Data 

The date range and control selection defined in step 1 are used to construct a database query to 
retrieve the desired scene records from the LOS model correction alignment table in the 
characterization database (see Table 3 in the LOS Model Correction ADD). All fields in this table are 
returned and all but the full alignment covariance matrix are displayed to the user (in step 4 below). 
Only the diagonal elements and the roll-Y and pitch-X elements of the covariance are displayed. The 
fields returned include: 

1. Work order ID, 
2. Geometric Characterization ID, 
3. WRS path, 
4. WRS row, 
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5. Control type, 
6. Off-nadir angle, 
7. Number of GCPs used, 
8. GCP outlier threshold used, 
9. Root-mean-square (RMS) ground control point (GCP) fit (solution quality metric), 
10. Acquisition date (year, day of year) and time (hours, minutes, seconds), 
11. Measured roll alignment, 
12. Measured pitch alignment, 
13. Measured yaw alignment, 
14. Measured ephemeris (orbital) X correction, 
15. Measured ephemeris (orbital) Y correction, 
16. Measured ephemeris (orbital) Z correction, 
17. Alignment covariance matrix: 

Covroll-roll Covroll-pitch Covroll-yaw Covroll-X Covroll-Y Covroll-Z 

Covpitch-roll Covpitch-pitch Covpitch-

yaw 
Covpitch-X Covpitch-Y Covpitch-

Z 

Covyaw-roll Covyaw-pitch Covyaw-yaw Covyaw-X Covyaw-Y Covyaw-Z 

CovX-roll CovX-pitch CovX-yaw CovX-X CovX-Y CovX-Z 

CovY-roll CovY-pitch CovY-yaw CovY-X CovY-Y CovY-Z 

CovZ-roll CovZ-pitch CovZ-yaw CovZ-X CovZ-Y CovZ-Z 

 
Note that the covariance matrix can be subdivided into four 3x3 blocks: 

A B 

BT C 

Where: A is the covariance of the attitude correction parameters, C is the covariance of the 
ephemeris correction parameters, B is the cross-covariance of the attitude and ephemeris 
parameters, and BT is the transpose of the cross-covariance. 

 
This formulation of the covariance matrix will be used below in combining the measured alignment 
and ephemeris corrections. 
 

7.2.12.7.3 Step 3:  Compute the Alignment 

Computing the least squares estimate of the underlying alignment trends from the retrieved sequence 
of individual scene alignment measurements is complicated by the correlation between the measured 
angular alignment corrections and the measured ephemeris corrections. Although we do not expect 
to detect any systematic offset in the position bias terms (x, y, and z), they are included because of 
their high correlation with the attitude biases. This is reflected in the observation covariance matrix 
where significant off-diagonal terms will exist for X-pitch and Y-roll. Any particular LOS model 
correction solution will resolve the correlation between the parameters by allocating the along-track 
and across-track errors between the ephemeris and attitude parameters based on their a priori 
weights. Thus, some of the systematic alignment bias could end up allocated to the ephemeris 
correction terms. Over multiple precision correction solutions, the net ephemeris bias should be very 
close to zero. So, we use the covariance information to combine the ephemeris terms with the 
alignment terms to create consolidated along- and across-track corrections. In practice, since 
accurate GPS-derived ephemeris will be available, most of the correction will be allocated to the 
attitude terms in the LOS model correction solutions anyway. 
 
Each retrieved scene provides a vector of six correction measurements: 
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where: 

roll = roll alignment angle, in microradians (μrad); 
pitch = pitch alignment angle (μrad) 
yaw = yaw alignment angle (μrad) 
X = along-track orbit position error in meters (m) 
Y = cross-track orbit position error (m) 
Z = radial orbit position error (m) 
x = the roll-pitch-yaw 3x1 sub-vector 
y = the X-Y-Z 3x1 sub-vector 

 
The corresponding covariance matrix is also retrieved (see the LOS Model Correction ADD for a 
description of how these characterization data are created). It has the following structure: 
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Comparing this to the A-B-C decomposition shown above, note that the "A" portion of the covariance 
matrix contains the attitude/attitude terms, the “B” portion of the matrix contains the 
attitude/ephemeris terms, and the "C" portion of the matrix contains the ephemeris/ephemeris terms. 
 
The alignment and ephemeris corrections are combined as follows: 
 

x' = x - BC-1y 
 

where: x' = the consolidated along- and across-track alignment vector 
  x = the input alignment corrections 
  y = the input ephemeris corrections 
  B and C are the 3x3 covariance sub-matrices defined above. 

 
Thus, the six LOS model correction measurements retrieved for each scene are reduced to three 
equivalent alignment angle observations for each scene. Consolidating the results for each scene in 
this manner yields a sequence of alignment angle observations: 
 

x'j  where:  j = 1 to N with N being the number of scenes retrieved. 
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Each scene observation is also assigned a (scalar) weight, wj, based upon its control source. The 
DOQ and GLS weights are editable by the user, and are initially populated with default values (e.g., 
50% for DOQ scenes and 50% for GLS scenes). Note that these weights are only relevant if both 
GLS and DOQ controlled scenes are used at the same time. The logic that enables the user to edit 
the weights should ensure that only numbers between 0 and 100% are allowed. 
 
The new alignment estimate is the weighted average of these observations: 
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Compute the RMS residuals: 
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The corresponding orientation matrix is: 
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Take the transpose of the MOLI2ACS matrix to compute the ACS to OLI alignment matrix used in the 
CPF, MACS2OLI. 
 
 

7.2.12.7.4 Step 4:  Review the Results 

The user is presented with a scrollable table of the individual scene results as well as the summary 

roll, pitch, and yaw alignment values (r, p, and y) and the roll-pitch-yaw RMS residuals. The scene 
results table's columns include, in addition to the fields identified in step 2 above, the weight value, 
and the consolidated roll'-pitch'-yaw' values computed in step 3. The Landsat 7 Bumper Mode User 
Interface (BUI) is a good model for this display. 
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Each row in the table includes a check box or button (e.g., the BUI "Select" column) that the user can 
select to remove that scene/row from the alignment calculation. The user may choose to exclude 
scenes, based on the off-nadir angle or RMS GCP fit metrics, for example. There is also a button that 
the user can press to recalculate the average alignment based on the current selection of rows. The 
user should be able to adjust the selected scene list and recompute the average alignment as many 
times as desired. 
 
A capability to plot each alignment angle is desirable but not required (see note #1). If provided it 
should allow the user to select which axis (roll, pitch, or yaw) to plot and then plot the corresponding 
consolidated angles for each selected scene on the Y axis with scene acquisition date on the X axis. 
It should also show the mean alignment value for that axis as a solid horizontal line or other easily 
identifiable symbol. 
 
Once the user is satisfied with the alignment solution, or is ready to give up, he or she presses either 
the "Accept" button or the "Quit" button. The "Accept" button advances the process to step 5. The 
"Quit" button terminates the algorithm. 
 

7.2.12.7.5 Step 5:  Generate the Output 

The sensor alignment calibration algorithm creates either two or three outputs depending upon the 
setting of the "Alignment Trending Flag". In all cases, a report file is generated using the input file 
name specified by the user, and an ODL file fragment is written out containing the 
ATTITUDE_PARAMETERS calibration parameter file group including the newly calculated ACS-to-
OLI rotation matrix. Characterization database output is only created if the alignment trending flag is 
set to "Yes". The user input effective date ranges for the output calibration parameters (the ACS-to-
OLI sensor alignment matrix) are embedded in the automatically generated file name used for the 
output ODL CPF fragment. The calibration parameter effective date range need not match the original 
query date range as it is often desirable to include extra data from outside the calibration time window 
to ensure continuity in the calibration parameters from time period to time period.  
 
Once the solution is accepted by the user a report file is generated containing the items shown in 
Table 1. Note that the first 11 items in Table 1 constitute the standard report header, but that several 
of these fields are not applicable for a multi-scene algorithm such as sensor alignment calibration. 
Also note that the alignment matrix output is formatted as a CPF parameter group and includes the 
effective date range specified by the user. In addition to the standard report header information, the 
report file contains the summary alignment angles and RMS residuals, the CPF OLI alignment matrix 
and effective dates, and a comma-delimited table containing key fields from all the individual scene 
rows used in the alignment solution. 
 
If the alignment trending flag is set, the subset of the items in Table 1 with "Yes" in the "Database 
Output" column are written to the characterization database.  

Field Description Databas
e 

Output 

Date and time Date (day of week, month, day of month, year) and 
time of file creation. 

Yes 

Spacecraft and 
instrument 
source 

LDCM and OLI No 



LDCM-ADEF-001 
Version 3 

 

Processing 
Center 

EROS Data Center SVT (see notes #3) Yes (see 
note #4) 

Work order ID Work order ID – not used for sensor alignment 
calibration as it operates on the results of multiple 
work orders. 

No 

WRS path WRS path number - blank for sensor alignment cal No 

WRS row WRS row number - blank for sensor alignment cal No 

Software 
version 

Software version used to create report No 

Off-nadir angle Actual maximum scene off-nadir roll angle (in 
degrees) 

Yes 

Acquisition 
Type 

Earth viewing, Lunar, or Stellar (only Earth-viewing 
scenes are used for sensor alignment calibration) 

No 

Geo char ID Geometric characterization trending ID – not used 
for sensor alignment calibration. 

No 

L1G image file Not used for sensor alignment calibration No 

Acquisition 
date 

N/A for sensor alignment calibration No 

GCP source Ground control source used (GLS or DOQ or Both) Yes 

DOQ Weight Weight placed on DOQ-controlled scenes (0-100%) Yes 

GLS Weight Weight placed on GLS-controlled scenes (0-100%) Yes 

Number of 
scenes used 

Number of scenes used in calibration Yes 

Data start date Start date of data window used (query start) Yes 

Data stop date Stop date of data window used (query stop) Yes 

Roll alignment Best-fit roll alignment angle in microradians Yes 

Pitch alignment Best-fit pitch alignment angle in microradians Yes 

Yaw alignment Best-fit yaw alignment angle in microradians Yes 

Roll residual 
RMSE 

RMSE of individual scene roll residuals 
(microradians) 

Yes 

Pitch residual 
RMSE 

RMSE of individual scene pitch residuals 
(microradians) 

Yes 

Yaw residual 
RMSE 

RMSE of individual scene yaw residuals 
(microradians) 

Yes 

Alignment 
effective date 
start 

Start effective date of alignment calibration 
Report format:   
Effective_Date_Begin = "YYYY-MM-DD" 

Yes 

Alignment 
effective date 
stop 

Stop effective date of alignment calibration 
Report format: 
Effective_Date_End = "YYYY-MM-DD" 

Yes 

OLI sensor 
alignment 
matrix 

Best-fit ACS to OLI rotation matrix 
Report format: 
Attitude_To_OLI_Matrix =  
(sn.nnnnnnnnEsnn, sn.nnnnnnnnEsnn, 
sn.nnnnnnnnEsnn,  
 sn.nnnnnnnnEsnn, sn.nnnnnnnnEsnn, 
sn.nnnnnnnnEsnn,  
 sn.nnnnnnnnEsnn, sn.nnnnnnnnEsnn, 

Yes 
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sn.nnnnnnnnEsnn)  
 where:  s = sign (+/-) and n = digit 

For each scene 
used in the 
calibration: 

  

Work order ID Work order ID that generated scene results No 

Geo Char ID Geometric Characterization ID for scene No 

WRS path Scene WRS path number No 

WRS row Scene WRS row number No 

Control type DOQ or GLS No 

RMS GCP fit Root-mean-square (RMS) ground control point 
(GCP) fit solution quality metric 

No 

Acquisition 
date 

Scene acquisition date No 

Combined roll 
alignment 

Consolidated roll value (roll') in microradians No 

Combined pitch 
alignment 

Consolidated pitch value (pitch') in microradians No 

Combined yaw 
alignment 

Consolidated yaw value (yaw') in microradians No 

Table 1:  Sensor Alignment Calibration Output Details 
 

Accessing the Sensor Alignment Characterization Database 
Though not part of the formal sensor alignment calibration algorithm, some comments regarding the 
anticipated methods of accessing and analyzing the sensor alignment results stored in the 
characterization database may assist with the design of the characterization database. 
 
The database output from the sensor alignment calibration algorithm will be accessed only for 
purposes of reviewing the history of calibration operations. Unlike other calibration and 
characterization algorithms, no summary statistics are required since the sensor alignment calibration 
results are themselves summary statistics. Hence, a special tool to perform the query and retrieval is 
probably not necessary so long as basic database query capabilities are readily available. 
 
The sensor alignment results would typically be queried by processing date, CPF effective dates, 
maximum off-nadir angle, and/or GCP source. The most common query would likely be a 
combination of GCP source and CPF effective date range, for example, selecting all of the DOQ-
derived results effective for a given calendar year: 
 
 GCP_Source = "DOQ" 
  Effective_Start_Date is between 01JAN2013 and 31DEC2013  
  Effective_Stop_Date is between 01JAN2013 and 31DEC2013  
 
The query results should be formatted in a set of comma-delimited records (for ease of ingest into 
Microsoft Excel), one record per scene. Each record would contain all of the fields written to the 
characterization database (items with "Yes" in the rightmost column of Table 1 above). A header row 
containing the field names should precede the database records. 
y. 



LDCM-ADEF-001 
Version 3 

 

7.2.12.8 Maturity 

Parts of the heritage ALIAS sensor alignment calibration logic were reused, but the OLI version is 
substantially new (but simpler). 

1. A user interface to capture input from the Cal Analyst will be required, but is not provided with 
the prototype implementation. 

2. An interface to query the geometric trending database will be required. This is emulated by a 
text file in the prototype implementation. 

3. A capability to display the query results (as a table) to the Analyst, allowing him/her to 
selectively include or exclude particular entries will be required. This is not provided in the 
prototype implementation. 

4. The updated alignment estimate computation capabilities perform the following: 
a. Merge the X and Y precision solution offsets into the pitch and roll (respectively) 

alignment estimates using the trended covariance information. Note that this blending 
was implicit in the heritage Kalman filter implementation. 

b. Fit constant (average) functions to the alignment estimates. 
c. Convert the alignment angles to the equivalent ACS-to-OLI rotation matrix for inclusion 

in the CPF. 
5. A capability to insert the resulting alignment calibration parameters into the trending database 

(upon Analyst command) will also be required. This is emulated by ASCII output to stdout in 
the prototype implementation. 

7.2.12.9 Notes 

Some additional background assumptions and notes include: 
1. Plotting capability that shows the individual scene alignment measurements along with the 

fitted constant results would also be nice. 
2. Results derived from GLS control, if used at all for sensor alignment calibration, would be 

given lower weight than DOQ controlled scenes due to the poorer accuracy of the GLS control 
source as well as the additional alignment uncertainty introduced by using the SWIR1 band for 
GCP mensuration. 

3. Configuration parameters should be provided for each installation of the algorithm 
implementation to convey site-specific information such as the processing center name (used 
in the standard report header), the number of processors available (for parallel processing 
implementations), etc. This takes the place of the heritage system table which also contained 
certain algorithm-related parameters. Anything related to the algorithms has been moved to 
the CPF for LDCM. This is implemented through environment variables in the prototype. 

4. Most geometric characterization trending output is performed on a scene-by-scene basis so 
the work order ID, geometric characterization ID, and/or acquisition date fields uniquely identify 
the data being characterized and provide the basis for a unique database key for the trended 
record. In the case of sensor alignment, many input data sets are used, so provisions for a 
unique database record key are somewhat different. This is primarily an implementation detail, 
so no unique key fields are called out in the output table or Table 1 above, nor are sensor 
alignment calibration work order or geometric characterization IDs included in the database 
output. That said, the concept is that a unique sequence number would be automatically 
generated each time a new sensor alignment calibration record was inserted into the 
characterization database. In conjunction with a processing site identifier (e.g., EROS, GSFC, 
BATC, or SDSU), this sequence number would provide the basis for a primary key that would 
uniquely distinguish OLI sensor alignment calibration results generated at EROS or elsewhere. 

5. Sensor alignment calibration would typically be run using the results from nadir-viewing scenes 
only. Since all processed scenes can produce alignment calibration results (through the LOS 



LDCM-ADEF-001 
Version 3 

 

model correction algorithm) the user of this application needs to be able to filter the scene 
results based upon the off-nadir angle field. 

 

7.2.13 OLI MTF Bridge Characterization 

7.2.13.1 Background/Introduction 

The OLI Modulation Transfer Function (MTF) Characterization algorithm measures the on orbit spatial 
performance of the OLI using terrestrial linear targets, mostly long bridges. Historically, the Lake 
Pontchartrain Causeway and nearby I-10 bridge located in Louisiana have been used for this purpose 
since the launch of Landsat 7 in 1999.  First, the Lake Pontchartrain Causeway was used to perform 
the across track characterization. Then the cross sectional response to the I-10 bridge was 
characterized and the previously determined across track component was backed out of the 
characterization, leaving the along track component.  Both bridges cross over a large area of water 
providing for a fairly uniformed background against a well-defined step function. 
 
The current algorithm generalizes the cross-sectional response approach used for the I-10 bridge to 
accommodate a wider variety of target geometries and locations. This makes a larger target list 
available for use, providing more spatial performance observations over a wider variety of acquisition 
conditions, hopefully leading to more robust estimates of OLI spatial performance. 
 
The MTF bridge characterization is accomplished in four steps.  The first step extracts image pixels 
over the bridge targets using a pre-specified UTM region of interest to identify where pixels are, and 
are not, to be extracted.  The DN value and UTM location of each pixel are recorded so that the 
pixel’s distance from the bridge target centerline can be calculated.  The second step creates a 
“super-resolution” profile of the bridge by interleaving pixels, sorted by distance from target into 
nominally 1/8 pixel-sized bins, to create one profile sampled at 1/8 the original sample distance.  The 
third step uses a simulated annealing method to minimize the difference between a simulated target 
response and the “super-resolution” data to derive OLI system transfer function (STF) parameter 
value estimates for the direction defined by the target’s cross section. The fourth, and final, step uses 
target fit results from multiple cross sectional angles to estimate the underlying along- and across-
track system transfer function components. 
 
For each OLI spectral band, the characterization estimates the STF, constructs the corresponding 
point spread function (PSF), and edge spread function (ESF), and measures the slope of the ESF 
between the 40% and 60% response points.  This ESF slope is the OLI spatial Key Performance 
Parameter (KPR) that is monitored for the operational life of the mission. Additional edge response 
parameters can be derived from the constructed ESF. As noted above, the STF is estimated by 
comparing a simulated modeled target to actual image data.  The instrument model consists of 
optical, detector, phase, and ground sample distance (GSD) components.  The along track model 
also contains an integration time component.  

7.2.13.2 Dependencies 

The OLI MTF bridge characterization algorithm assumes that a cloud free L1G image has been 
generated and the corresponding geometric model and grid are available.  The image must be in a 
North-up UTM projection. 
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7.2.13.3 Inputs 

The MTF Bridge Characterization algorithm and its component sub-algorithms use the inputs listed in 
the following tables. Note that some of the “inputs” are implementation conveniences (e.g., using an 
ODL parameter file to convey the values of and pointers to the input data).  MTF Bridge 
characterization does not normally include the OLI cirrus band. 
 

7.2.13.3.1 MTF Extract Inputs 

Algorithm Inputs Contents 

ODL Parameter File Processing parameters 

   L0R File Name     Original L0R data (including metadata) 

   L1R File Name     Unresampled image values 

  Grid File Name     Maps output locations to input image space 

   OLI LOS Model File Name     Used to compute target range and velocity 

   Calibration Parameter File Name     Sensor and Earth constants 

   Band List     Bands to process 

Target Definition File ODL file containing bridge target parameters 

    Band List     Bands included in target definition 

    Number of Targets     Number of targets in current WRS      

    For each target:     Parameters provided for each target 

        Target Name         Identifying text name of bridge target 

        Water Reflectance (per band)         Water background signal (DN) level per band 

        Water Asymmetry (per band)         Asymmetry in water signal per band 

        Target Centerline UTM Coordinates         UTM X,Y defining start and end of target 
centerline 

        Number of Target Spans         Number of spans (pulses) in target 

        For each span:         Parameters provided for each span 

            Bridge Reflectance (per band)             Bridge signal (DN) level per band 

            Span Width (meters)             Bridge span width in meters      

            Span Offset (meters)              Offset (in meters) from the target centerline 

        Target Region of Interest (ROI)         UTM polygon(s) defining target bounds 

            Number of Polygons             Number of separate polygons in ROI 

            For each polygon:             Parameters provided for each polygon 

                Number of Vertices                 Number of coordinates in current polygon 

                Coordinate List                 UTM X,Y coordinates for each vertex 

 

7.2.13.3.2 MTF Profile Inputs 

Algorithm Inputs Algorithms/sub algorithms 

ODL Parameter File Processing parameters 

   L0R File Name     Original L0R data (including metadata) 

   Band List     Bands to process 

   SCA List     SCAs to include (only a few will actually contain 
data) 

   Number of Profile Samples (default = 
128) 

    Length of profile to construct 

   Oversampling Factor (default = 8)     Oversample factor for constructed profile 

   Outlier Threshold     T-Distribution Test Threshold (0.0 to 1.0) 

   Target Definition File Name See MTF Extract for target definition file contents. 

    Pixel File Directory Name Directory containing the MTF Extract pixel table files 

 

7.2.13.3.3 MTF Estimate Inputs 

Algorithm Inputs Algorithm/sub-algorithms 
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ODL Parameter File Processing parameters 

    L0R File Name     Original L0R data (including metadata) 

    Target Definition File Name     See MTF Extract for target definition file contents. 

    Profile ODL File Directory Name     Directory containing the MTF Profile output ODL 
files 

    Band List     Bands to process 

    Solution Method Switch 

    Selects Numerical Recipes (heritage) 
implementation (0) or GSL implementation  (1) of 
simulated annealing 

    Number of Solution Iterations     Number of simulated annealing iterations to run 

    Max Number of Annealing Iterations 

    Maximum number of simulated annealing 
iterations to perform in each solution iteration loop 
(optional) 

    Bridge Parameter Solution Mask 

    Mask of 0’s and 1’s indicating which target 
parameters to adjust in each simulated annealing 
iteration 

    STF Parameter Solution Mask 

    Mask of 0’s and 1’s indicating which OLI STF 
parameters to adjust in each simulated annealing 
iteration 

MTF System Table File File containing simulated annealing initial values 

    Band List     Bands included in fit parameter lists 

    Bridge Parameter Default Values (per 
band) 

    Initial values, overridden by target definition file 

        Water Reflectance         Water background signal (DN) level 

        Water Asymmetry         Asymmetry in water signal 

        Ground Sample Distance (in meters)         Band nominal GSD 

        Bridge Reflectance         Bridge signal (DN) level (all spans) 

        Span Width (meters)         Bridge span width (all spans) 

        Span Offset (meters)         Offset from the target centerline (all spans) 

    STF Parameter Default Values (per 
band) 

    Initial values for OLI STF model parameters 

        Gaussian Optical Blur (in 
microradians) 

        Optical blur (Gaussian) dimension 

        XT Detector Size (in microradians)         Cross-track detector dimension 

        AT Detector Size (in microradians)         Along-track detector dimension 

        Integration Time (in milliseconds)         Detector integration time 

        Exponential Decay (in microradians)         ALI heritage charge diffusion distance (not 
used) 

        Model/Data Phase Shift (in meters)         Model profile/data profile registration offset 

   Bridge Parameter Simplex Values (per 
band) 

    Parameter variation magnitudes for 6 bridge 
subfields 

        Same 6 subfields as default values         Same units as default values         

    STF Parameter Simplex Values (per 
band) 

    Parameter variation magnitudes for 6 STF 
subfields 

        Same 6 subfields as default values         Same units as default values         

7.2.13.3.4 MTF Perform Inputs 

Algorithm Inputs Algorithm/sub-algorithms 

ODL Parameter File Processing parameters 

    MTF Estimate Trending File Name     File containing input trending records 

    Spatial Performance Report File Name     Output summary report file name 

    Band List     Bands to process 

    Number of Samples 
    Number of samples to use in synthesizing OLI 
edge spread function (ESF) 

    Oversampling Factor 

    Oversample factor (relative to nominal band GSD) 
to used in synthesizing OLI ESF (need not be the 
same as the estimation oversampling factor) 
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MTF Estimate Trending File 
File containing trending output from one or more 
MTF Estimate runs 

    Contains one trending record for each 
target/band analyzed 

    See MTF Estimate Output table for trending 
record field definitions 

7.2.13.4 Outputs 

The MTF Bridge Characterization algorithm and its component sub-algorithms create the outputs 
listed in the following tables.  

7.2.13.4.1 MTF Extract Outputs 

Pixel Table Output Files One ASCII output file containing the pixel records for 
each band, polygon, and target: 
“TarNPolyMBandKScaL.dat” 
    Where:  N is the target number 
                 M is the polygon number 
                 K is the band number 
                 L is the SCA number 

Each pixel record contains: Pixel record fields 

    Band number     Band number (enumerated type, 0 to 8) 

    SCA number     SCA number (1 to 14) 

    L1R line number     L1R line number  where pixel was extracted 

    L1R sample number     L1R sample number where pixel was extracted 

    UTM Y coordinate (meters)     UTM Y coordinate of pixel 

    UTM X coordinate (meters)     UTM X coordinate of pixel 

    Ground velocity (meters/second)     Pixel ground velocity (used to scale integration 
time) 

    Pixel orientation/azimuth angle 
(radians) 

    Pixel azimuth angle (from UTM grid north) 

    Target range (meters)     Pixel target range (used to scale angular 
dimensions) 

    Pixel signal level (DN)     Pixel image value 

 

7.2.13.4.2 MTF Profile Outputs 

Target Profile Output Files One ODL output file containing the oversampled 
profile for each band and target: 
“Profile_TarNBandK.odl” 
    Where:  N is the target number 
                 K is the band number 

Each file contains: ODL fields contained in each output Profile file. 

    Target Name     Name of bridge target from target definition file 

    Target ID     Target number (index) within scene 

    Band Number     Band number for current file 

    Number of Samples in Profile     Length of target profile 

    Ground Sample Distance (in meters)     Nominal ground sample distance for current band 

    Oversampling Factor     Oversample factor for constructed profile 

    Target Azimuth Angle (in radians)     Azimuth of target relative to pixels (target 
orientation) 

    Target Range (in meters)     Average range to target (to scale angular 
dimensions) 

    Ground Velocity (in meters/second)     Average target velocity (to scale integration time) 

    Profile Samples (mean pixel signal 
values) 

    Constructed target profile sample sequence 

    Weights (profile bin standard     Standard deviations of mean profile values 
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deviations) 

 

7.2.13.4.3 MTF Estimate Outputs 

MTF Bridge Characterization Report File Text report summarizing the MTF estimation fit 
results 

Best Fit Modeled Profile Output Files One fitted profile output file per target and band 
containing comma-delimited model profile values:  
“ModelProfile_TarNBandK.odl” 
    Where:  N is the target number 
                 K is the band number  

MTF Bridge Characterization Trending 
File 

Fit parameter solution summary containing one 
record for each target and each band 

Each record contains: Pipe (|) delimited fields in each trending record 

    Year     Year of acquisition 

    Day of Year     Day of year of acquisition 

    WRS Path     WRS path of acquisition 

    WRS Row     WRS row of acquisition 

    Target Name     Name of bridge target 

    Band Number     Band number for current record 

    Target Orientation Angle (in radians)     Target orientation relative to image pixels 

    Gaussian Optical Blur (in microradians)     Optical blur (Gaussian) dimension 

    XT Detector Size (in microradians)     Cross-track detector dimension 

    AT Detector Size (in microradians)     Along-track detector dimension 

    Integration Time (in milliseconds)     Detector integration time 

    Exponential Decay (in microradians)     ALI heritage charge diffusion distance (not used) 

    Model/Data Phase Shift (in meters)     Model profile/data profile registration offset 

    Final RMS Fit     RMS fit of model to data 

    Ground Sample Distance (in meters)     Current band nominal GSD 

    Target Range (in meters)     Range to target used to scale angular units 

    Ground Velocity (in meters/second)     Velocity used to scale integration time 

    Water Reflectance     Water background signal (DN) level 

    Water Asymmetry     Asymmetry in water signal 

    Number of Spans     Number of spans in target 

    For each span:     Fields for each target span 

        Bridge Reflectance         Bridge signal (DN) level 

        Span Width (meters)         Bridge span width 

        Span Offset (meters)     I    Offset from the target centerline 

 

7.2.13.4.4 MTF Perform Outputs 

OLI Spatial Performance Report File Text report summarizing the MTF estimation fit 
results 

    For each band:     Following information is provided for each band 

        Summary of scenes/targets analyzed         List of each scene/target included 

        Final fitted 2D STF parameters         Final along- and across-track STF parameter 
values 

        Computed ES and HEE performance         Edge slope and half edge extent in each 
direction 

    Spatial performance KPR summary 
table 

    ES results and corresponding KPR penalty values  

XT Synthesized ESF Profile File (per 
band) 

One synthesized cross-track ESF output file per 
band containing comma-delimited normalized ESF 
values:  “XT_ESF_BandK.odl” 
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    Where:  K is the band number  

AT Synthesized ESF Profile File (per 
band) 

One synthesized along-track ESF output file per 
band containing comma-delimited normalized ESF 
values:  “AT_ESF_BandK.odl” 
    Where:  K is the band number  

7.2.13.5 Options 

Heritage “Numerical Recipes in C” vs. GNU Scientific Library (GSL) simulated annealing 
implementation selection switch. 

7.2.13.6 Prototype Code 

 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse  –msse2 
 
The following text is a brief description of the main set of modules used within the prototype with each 
module listed along with a very short description. It should be noted that not all library modules are 
referenced in the explanations below.  
 

7.2.13.6.1 MTFEXTRACT 

mtfextract – Main driver for extraction of L1R image pixels around target bridge(s) specified in input 
target definition file.  Calls modules to retrieve ODL processing parameters, retrieve CPF parameters, 
extract the scene WRS path/row and retrieve the corresponding target definition file parameters, load 
the grid and use it to map target ROI polygons to Level-1R locations, extract image pixels from Level-
1R imagery, load the model and use it to calculate pixel viewing geometry parameters, and write pixel 
data records to the appropriate output files. 
 
mtf_forward_model – Uses the model to calculate the ground location of the L1R pixel. 
 
mtf_get_ext_parms – Reads MTFEXTRACT ODL file containing processing parameters. 
 
mtf_get_path_row – Determines the current scene WRS path/row by reading the Level 0R metadata. 
 
mtf_get_target – Finds the SCAs that contain each target polygon, scans the polygons to identify the 
pixels that fall inside, extracts the associated pixel DN values, computes the pixel geometric 
information, and writes the resulting pixel records to an output file for the current band, SCA, target, 
and polygon. 
 
mtf_get_target_descriptions – Uses the WRS path/row to construct the associated target definition file 
name, opens the file, and reads the target definition parameters, including the ROI polygons. 
 
mtf_get_utm – Calculates the UTM X,Y coordinates of a L1R pixel. Also generates the target range, 
ground velocity, and orientation angle parameters required for the output pixel record. 
 
mtf_init_l1r_image – Prepares the L1R image data for reading from the L1R image file. 
 
mtf_ols_to_ils – Maps target ROI polygon vertex UTM locations to input or Level-1R locations.  Uses 
resampling grid for mapping locations. 
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mtf_point_in_polygon – Performs a point-in-polygon test to determine whether a particular pixel falls 
inside the current polygon. 
 
mtf_poly_sca_bounds – Calculates the bounds (in L1R line/sample space) for a particular polygon in 
a particular SCA to simplify subsequent search for contained pixels. 
 
mtf_read_l1r_image – Reads a L1R image data window for a particular band and SCA from the 
Level-1R image file. 
 

7.2.13.6.2 MTFPROFILE 

mtfprofile – Main driver for building oversampled (super-resolution) target profiles.  Calls modules for 
reading MTPROFILE ODL parameters, reading the target parameter file, reading the pixel table files 
for each band, SCA, target, and polygon, processing the pixels into distance bins to build 
oversampled profiles for each target, and writing out the profile data for each target to an ODL file. 
 
mtf_calc_bin – Assign a particular pixel to a particular target profile bin based on the pixel’s distance 
from the target centerline. 
 
mtf_calc_view_geometry – Analyzes the pixel records for a particular target to compute summary 
rotation angle, range, and ground velocity parameters. 
 
mtf_count_pixels – Determine the number of pixels in a given pixel table file. This is used to 
determine how much space to allocate. 
 
mtf_filter_outliers – Uses a t-distribution test to identify and remove outlier pixels from a profile 
distance bin. 
 
mtf_get_path_row – Determines the current scene WRS path/row by reading the Level 0R metadata. 
 
mtf_get_prof_parms – Read MTFPROFILE ODL file processing parameters. 
 
mtf_get_targets – Read the target definition file to load the target parameters. 
 
mtf_load_pixels – Read the pixel records from a pixel table file. 
 
mtf_process_bin – Find all the pixels contained in a given bin, remove outliers, and compute 
statistics.  
 
mtf_write_profile – Writes out the oversampled profile for a target. 
 

7.2.13.6.3 MTFESTIMATE 

mtfestimate - Main driver for estimating MTF parameters from bridge oversampled (super-resolution) 
profiles.  Calls functions to read MTF estimation processing parameters, to read target profile data 
files, estimate MTF parameters, and write out characterization results. 
 
mtf_complex – Set of libraries for performing complex math operations. 
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mtf_fit - A package of routines that perform the best-fit analysis of analytical models of the along- and 
across-track system transfer functions to the bridge super-resolution profiles. 
 
mtf_fit_gsl - A version of mtf_fit that uses GNU Scientific Library (GSL) routines to perform the 
simulated annealing best-fit analysis. 
 
mtf_func_gsl - A version of the model to data fitting objective function tailored for use with the GSL 
simulated annealing procedure. 
 
mtf_get_est_parms - Get the mtfestimate processing parameters from the input work order parameter 
ODL file and the MTF system table file. 
 
mtf_get_sys_parms - Get the STF model parameters from the MTF system table parameter file. 
 
mtf_get_targets – Get the target model parameters from the target definition file. 
 
mtf_get_wo_parms - Get the processing parameters from the input work order ODL file. 
 
mtf_model - Functions that serve as models for sensor and target (bridges).  Sensor  
models are broken down into individual components along with one function to call all components 
and determine full models. 
 
mtf_numrecipes - Source file for package of routines from "Numerical Recipes in C" that perform the 
heritage simulated annealing procedure. 
 
mtf_parse_l0rname – Extracts the path/row and date from the L0R file name. 
 
mtf_read_profile – Reads a target oversampled profile ODL file. 
 
mtf_report_fit- Generate mtfestimate output report file. 
 
mtf_trend_fit- Generate mtfestimate output trending data file for use by mtfperform. 
 
mtf_write_profile - Write the best-fit model profile to a comma delimited text file. 
 

7.2.13.6.4 MTFPERFORM 

mtfperform - Main driver for calculating OLI along-track and across-track spatial performance based 
on the results of multiple STF model fit results from mtfestimate.  Calls functions to read processing 
parameters, to read the mtfestimate output trending data file, estimate MTF parameters, and write out 
characterization results. 
 
mtf_complex – Set of libraries for performing complex math operations. 
 
mtf_fit_stf – Use the 1D STF fit results for multiple targets at different rotation angles (from the 
mtfestimate trending records) to estimate the OLI 2D (along-track and across-track) STF parameters. 
 
mtf_get_perf_parms - Get the mtfperform processing parameters from the input ODL parameter file. 
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mtf_model - Functions that implement the OLI sensor model. Includes individual sensor model 
components along with one function to call all components and determine full model. 
 
mtf_report- Generates mtfperform output spatial performance report file. 
 
mtf_trendrec – Routines that read the trending records produced by mtfestimate that contain the 
results for particular targets. 
 
mtf_write_esf - Write the OLI edge spread function to a comma delimited text file. 

7.2.13.7 Procedure 

MTF characterization generates an on-orbit estimate of the spatial (MTF and ESF) performance for 
the OLI instrument. The characterization estimates the OLI system transfer function (STF) and from 
this derives the corresponding edge spread function (ESF) from which the OLI edge slope and half 
edge extent key spatial performance parameters are determined. The STF is estimated by comparing 
a simulated modeled target to actual image data.  The instrument model consists of optics, detector, 
sample phase, and ground sample distance components. The along track model also contains an 
integration time component. The bridge target model uses several long bridges at different 
orientations with respect to the OLI ground track, each of which is described in a target definition file. 
The target list includes the two bridges within WRS path 22 row 39 that have historically been used 
for Landsat 7 spatial performance evaluation. The current implementation can support any bridge 
target that can be described in a target definition file. 
 
The MTF characterization is accomplished by running four separate routines. The first three routines 
are applied to OLI scenes that contain bridge targets to derive results for those targets. The fourth 
routine summarizes the results of multiple targets to derive the full 2D OLI STF and corresponding 
spatial performance. A process flow diagram showing how these routines fit together is provided in 
Figure 1 below. The first routine, MTFEXTRACT, extracts radiometrically corrected but unresampled 
image pixels over the bridge targets. These pixels are selected based upon region of interest 
polygons assigned to each target. These polygons can be designed to avoid problematic portions of 
the target area. The extracted pixel data are written to a pixel table file as pixel records that also 
contain geolocation and viewing geometry information. The second routine, MTFPROFILE, creates 
an oversampled “super-resolution” profile of the bridge target(s) by calculating each pixel’s distance 
from the bridge target, and sorting the pixels into distance bins that are then averaged to form an 
oversampled representation of the target cross-section. The bins are designed to provide an 
oversampled profile, nominally with a 1/8 pixel granularity. Target profiles are written out as ODL files 
that include pixel standard deviations as well as mean values for each distance bin. This makes it 
possible to weight (or ignore) individual bins based upon the pixel content (or lack thereof) in each 
bin. The third routine, MTFESTIMATE, uses a simulated annealing method to minimize the difference 
between a theoretical target response synthesized from models of the target and OLI STF, and the 
actual oversampled profile data. 
 
Any one target can only provide a one-dimensional estimate of the OLI STF in the direction 
perpendicular to the target. Thus, each target observed provides a cross-section of the full two-
dimensional OLI spatial response. The idea underlying this algorithm is that by observing targets at 
multiple angles, we can infer the full 2D STF from the 1D cross-sections. This is the function of 
MTFPERFORM, the fourth MTF characterization routine. The more target observations we have, the 
better this procedure should work, hence the desire to support many different targets by using a 
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parameterized target model. New targets can be added by simply creating an appropriate target 
definition file. This makes it possible to generate a richer set of observations for estimating OLI spatial 
performance.  
 

 
 

Figure 1:  MTF Characterization Process Flow 

 
The parameters required to define a bridge target include: 
 
Ns = number of spans 
For i = 1 to Ns: 
wi = span width (in meters) 
xi = span offset from target centerline (in meters) 

i = span reflectance (per band) scaled to the L1R DN range 
hi = span height above water (in meters) (not currently used) 

w = background (water) reflectance (per band) scaled to the L1R range 

w  
H = water WGS84 ellipsoid height (in meters) 
Xs,Ys and Xe,Ye – UTM coordinates of target centerline endpoints 
Na = number of polygon areas in the region of interest (ROI) 
For j = 1 to Na 
Np = number of points in area (first point is not repeated at end) 
For k = 1 to Np  
Xj,k,Yj,k = UTM coordinates of polygon area j, vertex k 
 
These parameters are packaged in an ODL target definition file. A (simple) example of a target 
definition file is shown in Figure 2. Note that the file contains both the target model parameters and 
the target ROI. 
 
OBJECT = MTF_Target 
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   BAND_LIST = (1,2,3,4,5,6,7,8,9) 
   Number_of_Targets = 1 
   Target0_Number_of_Spans = 1 
   Target0_Name = "San_Mateo" 
   Target0_Reflectance0 = (50.0, 100.0, 100.0, 100.0, 100.0, 35.0, 60.0, 50.0, 60.0) 
   Target0_Water =             (20.0,  70.0,   70.0,   60.0,   45.0, 15.0, 15.0, 15.0, 15.0) 
   Target0_Asymmetry =    (  0.0,    0.0,     0.0,     0.0,     0.0,   0.0,   0.0,   0.0,   0.0) 
   Target0_Span0 = 37.165 
   Target0_Offset0 = 0.000 
   Target0_Coordinates = (574409.169, 4163593.065, 567700.867, 4161024.250) 
END_OBJECT = MTF_Target 
OBJECT = MTF_ROI 
   Target0_Number_Polygons = 4 
   Target0_Polygon0_Vertices = 4 
   Target0_Polygon0_Coordinates = (574194.604, 4164153.388, 574623.734, 4163032.742, 
                                                           573849.091, 4162736.108, 573419.961, 4163856.754) 
   Target0_Polygon1_Vertices = 4 
   Target0_Polygon1_Coordinates = (573380.402, 4163841.605, 573809.532, 4162720.959, 
                                                           572241.073, 4162120.348, 571811.943, 4163240.994) 
   Target0_Polygon2_Vertices = 4 
   Target0_Polygon2_Coordinates = (571775.697, 4163227.114, 572204.827, 4162106.468, 
                                                           569041.535, 4160895.146, 568612.405, 4162015.792) 
   Target0_Polygon3_Vertices = 4 
   Target0_Polygon3_Coordinates = (568568.810, 4161999.098, 568997.940, 4160878.452, 
                                                           567915.432, 4160463.927, 567486.302, 4161584.573) 
END_OBJECT = MTF_ROI 
END 

Figure 2:  Sample Target Definition File MTF_Targets_044034.table 

 
Figures 3a, 3b, and 3c show the image sampling geometry relative to the bridge target. 
 

 



LDCM-ADEF-001 
Version 3 

 

 

Figure 3a:  UTM North-Up Detector Pattern and Bridge Target 

 

 

Figure 3b:  Superimposed Sampling Pattern and Bridge Target 

Figure 3a shows the image pixel sampling grid and the bridge target separately in a UTM north-up 
configuration. Figure 3b shows the image sampling pattern superimposed upon the target, and Figure 
3c shows the sampled target rotated into the target orientation. 
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Figure 3c:  Pixel Sampling Pattern and Bridge Target in Target Orientation 

 

7.2.13.7.1 Phase 1. MTFEXTRACT:  Extraction of image pixels covering 
the target area. 

The first step in the MTF characterization process is to extract the unresampled (Level 1R) image 
pixels that sample the useful portion of the target area. Ideally the input image should be processed 
to top of atmosphere reflectance, but this is not strictly necessary. Note that not all portions of a target 
may be useful. For example, the Landsat 7 heritage targets, the Lake Pontchartrain Causeway and I-
10 Bridge in WRS 22/39 are both double span bridges with periodic crossovers joining the spans for 
use as emergency vehicle turnaround areas. These crossovers are segments of the target bridge 
where the double-span target model is invalid. As such, the corresponding image pixels must be 
removed from the MTF analysis. This is controlled through the definition of the target region of 
interest which can be designed to contain multiple polygons so as to exclude problematic portions of 
the target area. 
 
A geometrically corrected (precision and terrain) version of the OLI image is generated as an aid to 
correctly locating the bridge target areas. Although the corrected L1T image itself is not used, the 
precision model and grid used to generate it provide the information needed to project the target 
model into Level 1R image space. The ROI UTM coordinates are mapped back to the L1R image 
using the precision grid in order to locate the window for image pixel extraction. The procedure used 
extract the desired image pixels is as follows: 
  
For each band to be analyzed: 
 
Since target definition files may contain more than one target for the same path/row, the procedure 
loops through the targets in the target definition file: 
 

1. Each ROI polygon for the current target is examined to determine which SCAs contain usable 
pixels. 

1.1 Convert each vertex in the polygon from UTM X,Y to L1G line, sample: 
 

l1g_line = (upper_left_y – target_y) / proj_distance_y 
l1g_sample = (target_x-upper_left_x) / proj_distance_x 
 
Where: 
upper_left_y = upper left Y projection coordinate of imagery (from grid) 
upper_left_x = upper left X projection coordinate of imagery (from grid) 
proj_distance_x = projection distance of imagery in X direction (from grid) 
proj_distance_y = projection distance of imagery in Y direction (from grid) 
target_x = UTM X location of ROI polygon vertex (from target definition file) 
target_y = UTM Y location of ROI polygon vertex (from target definition file) 
l1g_line = L1G image line location corresponding to ROI vertex 
l1g_sample = L1G image sample location corresponding to ROI vertex 

  
1.2 For each SCA, map the l1g_line and l1g_sample output space (L1G) coordinates 

through the precision grid (using ols2ils) to obtain the corresponding input space (L1R)  
l1r_line and l1r_sample coordinates. 
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1.3 If any vertices fall inside the SCA, mark this SCA as active for the current target. 
2. For each SCA that contains valid pixels: 

2.1 Open the L1R image for the current band, SCA. 
2.2 Open an output pixel table file for the current target, polygon, band, SCA. 
2.3 Compute the minimum bounding rectangle (in L1R line/sample coordinates) of the 

current polygon in the current SCA. 
2.4 Loop through the MBR line/sample range: 
2.5 Perform a point-in-polygon test to determine if the current L1R line/sample falls inside 

the polygon. 
2.6 If it does not, go to the next point. 
2.7 Otherwise, use the model to compute the ground latitude/longitude of the current pixel 

using the target elevation as the height coordinate.  
2.8 Convert the latitude/longitude to UTM X/Y. 
2.9 Subtract 1 from the line number and repeat steps 2.7 and 2.8 above to compute the 

UTM X/Y coordinates of the same detector in the previous line (X1,Y1). 
2.10 Add 1 meter to the target elevation and repeat steps 2.7 and 2.8 above to compute the 

UTM X/Y coordinates of a point 1 meter higher along the same line of sight. Subtract the 
original X/Y coordinates to yield the change in X and Y per unit height:  dX/dh and dY/dh 

2.11 Compute the grid azimuth of the pixel grid:   
Iaz = atan2( X1 - X, Y1 - Y ) 

2.12 Compute the ground velocity:   
Vg = sqrt( ( X1 – X )2 + ( Y1 – Y )2 ) / line_time 

2.13 Compute the distance from the sensor to the target using the spacecraft position P 
(returned by the forward model) and the computed ground point position X:   
D = | X – P | 

2.14 Compute the line-of-sight zenith angle in the direction perpendicular to the target, using 
the target grid azimuth computed from the target centerline coordinates Taz:   

 = atan( dX/dh * cos( Taz ) – dY/dh * sin( Taz ) ) 
2.15 Compute the cosine of the OLI viewing angle, which is just the Z component of the OLI 

line-of-sight (returned by oli_findlos):   

cos() = los.z  
2.16 Compute the effective target range for scaling angular units (e.g., IFOV) to ground 

meters (see Figure 4):   

R = D cos() / cos() 
2.17 Write the band, SCA, L1R line, L1R sample, UTM X, UTM Y, Vg, Iaz, R, and the pixel DN 

value to the output pixel table file.  
 
Note that a separate output pixel table file is created for each target, polygon, band, and SCA that 
contains usable data. Sample pixel table output is shown in Table 1. 
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Figure 4:  Geometry of Scaling IFOV in Angular Units to Ground Meters 

 
Band   SCA    Line    Sample      UTM_Y            UTM_X       Velocity    Azimuth      Range       DN  
  3     1    4020.000 403.000  2900701.181185  424260.429036  6834.884661  0.220284  706065.972359  46 
  3     1    4020.000 404.000  2900753.848742  424301.915342  6834.886712  0.220284  706066.347523  48 
  3     1    4020.000 405.000  2900689.872665  424317.441281  6834.887905  0.220284  706065.348473  45 
  3     1    4021.000 403.000  2900672.948225  424254.048016  6833.106791  0.222279  706065.949158  46 
  3     1    4021.000 404.000  2900725.615771  424295.534335  6833.108760  0.222278  706066.324314  46 
  3     1    4021.000 405.000  2900661.639691  424311.060258  6833.110150  0.222279  706065.325258  46 
  3     1    4021.000 406.000  2900714.307151  424352.545791  6833.112119  0.222278  706065.701224  47 
  3     1    4021.000 407.000  2900650.331112  424368.070926  6833.113508  0.222279  706064.701945  46 
  3     1    4021.000 408.000  2900702.998484  424409.555673  6833.115477  0.222278  706065.078712  44 
  3     1    4021.000 409.000  2900639.051627  424425.086519  6833.116867  0.222279  706064.079550  44 
  3     1    4021.000 410.000  2900691.689772  424466.563981  6833.118836  0.222278  706064.456787  44 
  3     1    4021.000 411.000  2900627.742955  424482.094039  6833.120225  0.222279  706063.457398  44 
  3     1    4021.000 412.000  2900680.381013  424523.570715  6833.122195  0.222278  706063.835436  45 
  3     1    4021.000 413.000  2900616.434236  424539.099984  6833.123583  0.222279  706062.835829  45 
  3     1    4021.000 414.000  2900669.072208  424580.575875  6833.125553  0.222278  706063.214678  43 
  3     1    4021.000 415.000  2900605.119170  424596.132535  6833.126943  0.222279  706062.214534  43 
  3     1    4021.000 416.000  2900657.763357  424637.579462  6833.128911  0.222278  706062.594505  44 

Table 1:  Sample Pixel Table Output 

 

7.2.13.7.2 Phase 2. MTFPROFILE:  Create the oversampled target 
profile(s) 

The second step in the MTF characterization process is to produce an oversampled “super-
resolution” profile of each target for each image band. This is done by calculating the distance from 
each sample to the centerline of the target (preserving sign based on which side of the target the 
sample falls on), rescaling this distance from ground meters to profile samples by dividing by the 
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nominal image GSD and multiplying by the desired oversampling factor, collecting all of the samples 
that fall in each profile bin and computing a bin average DN value (after removing outliers), ordering 
the bin averages to form the output profile, and computing target average orientation angle, range, 
and ground velocity values for subsequent use mtfestimate. 
 
The profile construction procedure is as follows: 
 
Load the target definition file for the current path/row. 
 
For each target: 
Calculate the grid azimuth of the target: 

Taz = atan2( Xe – Xs, Ye – Ys ) 
Where:  Xs, Ys are the UTM coordinates of the target centerline start point 

     Xe, Ye are the UTM coordinates of the target centerline end point 
 
For each band: 
 

1. Read all of the pixel records over all SCAs and polygons, for this target and band. 
2. For each pixel record, calculate the perpendicular distance to the target: 

a. Construct the vector from the centerline start point to the pixel: 
vi =  [(Xi – Xs)   (Yi – Ys)  0]T   

b. Construct the target centerline vector: 
v’t = [(Xe – Xs)  (Ye – Ys)  0]T   

c. Normalize to form the corresponding target centerline unit vector: 
vt = v’t / | v’t |   

d. Define the Z direction unit vector: 
vz = [ 0  0  1]T       

e. Calculate the distance by taking the cross product of the pixel vector with the centerline unit 
vector, and dotting the result with the Z direction unit vector: 

Di = vz  (vi  vt)    
The dot product extracts the Z component of the cross-product vector. 
Note that this calculation preserves the sign of the distance with points to the “right” of the 
target having positive distances and points to the “left” of the target having negative 
distances. Clearly, the sign convention depends upon the definition of the centerline start 
and end points. 

f. Convert the signed distance to a bin number: 
Bi = round( Di * Os / GSD + N/2 ) 

Where: Os is the specified oversampling factor 
 GSD is the nominal GSD for this band 
 N is the specified length of the profile (number of bins) 

3. For each pixel record, compute the target orientation relative to the pixel: 

i = Iaz - Taz 
4. For each bin: 

a. Calculate the mean and standard deviation of the pixel DN values in the bin and perform 
a t-distribution outlier rejection test based upon the user-specified outlier threshold. 

i. If the DN farthest from the mean exceeds the t-distribution threshold, flag it as an 
outlier and recomputed the statistics without that point. 

ii. Continue removing the farthest point until all points pass the t-distribution outlier 
test. 
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b. Record the DN mean and standard deviation for all non-outlier points in the bin. 

5. Compute the average, mean, of the i target orientation angle values for all non-outlier points 
across all bins. 

6. Compute the average Rmean of the Ri (range) values for all non-outlier points across all bins. 
7. Compute the average Vg of the Vi (ground velocity) values for all non-outlier points across all 

bins. 
8. Write the output profile ODL file containing target name (from the target definition file), the 

target ID (number), the band number, the profile length (N), the oversampling factor (Os), the 

nominal GSD, the target azimuth (mean), the target range (Rmean), the ground velocity (Vg), the 
N-element profile data vector of mean DN values, and the N-element vector of bin standard 
deviations. 

 
Note that this procedure creates one output profile ODL file for each target and each band. A sample 
profile ODL file is shown in Figure 5. 
 

 

Figure 5:  Sample Output Profile ODL File 

7.2.13.7.3 Phase 3.  MTFESTIMATE:  Fit target and STF models to profile 
data 

The MTFESTIMATE routine consists of an initialization stage and a model parameter estimation loop.  
During the initialization phase, processing parameters are read from the input ODL parameter file, 
initial STF model parameters are read from a system table file, and the target model parameters are 
read from the target definition file. The processing parameters include arrays of flags that determine 
which variables to solve for in each iteration of the solution procedure. In addition to the STF model 
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parameters, the system table file includes simplex bounds that control the behavior of the simulated 
annealing procedure that is used to solve for the STF and target model parameters. The output report 
and trending data files are also created during the initialization phase. 
 
The model parameter estimation loop cycles through each target in the target definition file. For each 
target, the selected spectral bands are analyzed one-by-one. The MTFPROFILE routine will have 
created an oversampled target profile for each target/band combination. The best fit model 
parameters for each band and each target are found using a simulated annealing approach. Two user 
selectable implementations of the simulated annealing procedure are included, one provided by the 
GNU Scientific Library (GSL) and the other a modified version of the simplex downhill method 
described in “Numerical Recipes in C”. The latter is the heritage Landsat 7 implementation. The GSL 
implementation is substantially faster and appears to be robust, but our lack of experience with this 
software argued for retaining the heritage method as an option. 
 
The simulated annealing algorithm allows for the solution of multi-variable non-linear functions.  
Multiple iterations of the annealing process are performed. Each iteration adjusts a user specified 
subset of the model parameters to best fit the oversampled target profile data. There are two models 
of functions involved in the process, one describing the bridge target and one describing the imaging 
system transfer function. Both the target and system (STF) models are formulated in the frequency 
domain. The target and system functions are evaluated in the frequency domain. The target function 
is then multiplied by the system transfer function in the frequency domain, producing a frequency 
domain representation of the simulated target profile. The inverse Fourier Transform is found of the 
simulated target response. This result is then compared against the oversampled target data profile 
generated in phase 2. The root mean squared error between the synthesized data profile, produced 
from the models, and the measured data is used as the metric for the objective function minimization 
process in the simulated annealing procedure. 
 
The Target Model 
The bridge targets consist of one or more spans, each modeled as a rectangular pulse of a specified 
width at a specified offset from the target centerline, against a background (water) component. The 
background is allowed to be different on the two sides of the target by including an asymmetry term in 
the background model. The combined model is then the summation of the contributions from the 
individual bridge target spans and the background component. These target model components can 
be described in the frequency domain as follows: 
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Where: 
ω = spatial frequency in radians per meter, evaluated at: 
ω = Os -N/2 to (N/2 - 1) 
wi = bridge span i width (in meters) 
xi = span i offset from centerline (in meters) 
Os = oversampling factor 
GSD = nominal image ground sample distance (in meters) 
N = target sequence length in samples 
D = target sequence length in meters = N * GSD / Os 

i = span i reflectance 

w = background (water) reflectance 

 = background reflectance asymmetry (difference between bridge sides) 
sinc = sin(x)/x 

1j  
 
The total target model is then the sum of the components above: 
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Where:  
Ns = the number of spans in the target bridge model 
 

The variable target model parameters are:   
the wi span width values (one per span),  
the xi span offset values (one per span),  

the i span reflectance values (one per span),  

the w water reflectance value, and  

the  water reflectance asymmetry value. 
The target physical dimensions, wi and xi, are held fixed while the reflectance values are allowed to 
vary and are typically input into the simulated annealing simplex solution as unknown variables to 
solve for. 
 
The System Transfer Function Model 
The OLI system transfer function model contains optical and detector components. The optical model 
includes both exponential and Gaussian components. The Gaussian component models optical blur 
and is the primary element of the optical sub-model. The exponential term was used in modeling the 
Advanced  Land Imager (ALI) system transfer function and is included as a heritage element of the 
model, but is not expected to be used for OLI STF modeling. The detector model includes both 
detector dimension and integration time components. All of the model sub-components are included 
in both the along-track and across-track STF models except for the integration time component, 
which is only part of the along-track model. 
 
The optical component models are formulated in the frequency domain as follows: 
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Where: 
σ=optical blur radius (in microradians) scaled to ground meters using Rmean, the target range 
parameter determined by MTFPROFILE 
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Where: 
d=exponential decay distance (in microradians) scaled to ground meters using Rmean, the 
target range parameter determined by MTFPROFILE 

 
The detector dimension component model is formulated in the frequency domain using a sinc 
function: 
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Where 
r = detector angular dimension (in microradians) scaled to ground meters using Rmean, the 
target range parameter determined by MTFPROFILE 

 
The integration time model is also formulated using a sinc function. In this case the pulse dimension 
is the integration time scaled by the ground velocity, Vg. 
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Where 

 = detector integration time (in milliseconds) scaled to ground meters using Vg, the ground 
velocity parameter (in km/sec or m/msec) determined by MTFPROFILE 

 
The combined across-track STF model is then the combination of the optical, exponential, and 
detector dimension components. 
 

Cross-Track STF: STFx() = O(x,) C(dx,) D(rx,) 
 
Where: 

x = cross-track component of Gaussian blur 
dx = cross-track component of exponential decay 



LDCM-ADEF-001 
Version 3 

 

rx = cross-track detector dimension 
 
The along-track STF model is similar but includes the integration time component: 
 

Along-Track STF: STFa() = O(a,) C(da,) D(ra,) I(,) 
 
Where: 

a = along-track component of Gaussian blur 
da = along-track component of exponential decay 
ra = along-track detector dimension 

 = detector integration time 
 
Note that the integration time parameter has no directional index since it applies only in the along-
track direction. 
 

Synthesizing the Target Response  
The modeled target response is synthesized from the component target and STF models by 
multiplying the system transfer function by the target model, computing the corresponding space 
domain representation by taking the inverse Fourier transform, and then comparing the resulting 
modeled target response to the measured target profile. There are two problems with this. The first is 
that the target model is a one-dimensional model that applies in the direction perpendicular to the 
bridge target whereas the STF model is a two-dimensional model that is separable into along- and 
across-track terms. We must determine the effective one-dimensional response of the 2D STF in the 
direction perpendicular to the bridge. 
 
To do this, consider the relative rotation angle between the detector sampling pattern and the bridge 
target: 
 

  = Iaz - Taz 
 
Where: 
 Iaz is the detector sampling pattern UTM grid azimuth 
 Taz is the target UTM grid azimuth 
 

The average  angle for the target was computed by MTFPROFILE and is contained in the input 

oversampled profile ODL file. The STF model is formulated relative to the cross-track (x) and along-

track (a) directions, so we express this coordinate system in terms of the the target longitudinal 

(long) and transverse (trans) directions (see Figure 6): 
 

 x = trans cos - long sin 

 a = trans sin + long cos 
 
In the longitudinal direction we are interested only in the DC frequency term since we seek to 

integrate away this direction. So, setting long = 0 and trans =  we can express x and a in terms of 
the transverse direction, which is the axis of the target model: 
 

  x =  cos 

 a =  sin 
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Figure 6: Bridge Cross- -Track 

 
These expressions can then be substituted into the STF model to yield the effective 1D STF in the 
target profile direction. 
 

STFtrans() = STFx( cos) STFa( sin) 
 
The second problem mentioned above is that we need an additional model component to register the 
synthesized analytical target response to the actual profile data, in the transverse (across-bridge) 
direction. This registration component takes the form of a phase shift: 
 

  pje  P   :Phase
 

 
Where: 
p = scene dependent phase shift required to register the model to the profile data 

 
The combined model used to synthesize the target response includes the transverse (1D) STF 
model, the target model, and the phase adjustment: 
 

M() = STFx( cos) STFa( sin) T() P() 
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Substituting in the appropriate STF model components from above: 
 

M() = O(xcos) D(rx, cos) C(dx, cos) 

 O(asin) D(ra, sin) C(da, sin) I(sin) T() P() 
 

For the time being we also assume that x = a so that: 
 

 O(xcos) O(asin) = O() 
 
Substituting yields: 
 

M() = O() D(rx, cos) C(dx, cos) 

 D(ra, sin) C(da, sin) I(sin) T() P() 
 
We will undo this simplifying assumption in phase 4:  MTFPERFORM, but for this phase of the 

procedure we will transform M() to the space domain as: 
 

M(x) =  F-1{ M() } 
 
And best fit M(x) to the measured profile data by adjusting the model parameters. 
 

For the OLI system transfer function, the detector dimensions (rx, ra) and integration time () are 
known to a high degree of precision, and the exponential decay model terms (dx, da) are set to zero 

by definition. This only leaves the (single) Gaussian optics () parameter, the phase (p) parameter, 
and the target model parameters as parameters subject to variation in the simulated annealing 
solution procedure. 
 
The MTFESTIMATE model parameter solution procedure loops through each target specified in the 
target definition file. For each target we proceed as follows: 

1. Preparing data for MTF estimate 
 

1.1 Set up solution and model parameters.  Initial values for both the bridge target, and the 
along track and across track STF parameters are read from the MTF system table file. 
The initial “step” values for the simplex routine are also loaded from the system table. 
The generic default target model parameters are then replaced with the bridge-specific 
values from the target definition file. 

 
Loop on bands solving for the set of target and STF model parameters specified in the 
input ODL parameter file. 

 
2. Read target profile produced from MTFPROFILE. This includes the target orientation angle, 

range scaling and ground velocity parameters in addition to the profile itself, as shown in 
Figure 5 above. 

 
3. Perform parameter estimation. 
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3.1 Refine the bridge model parameter for background (water) by averaging DN values in 
profile generated in MTFPROFILE. 

 
Loop on number of iterations of the simulated annealing process that is to be performed. 

 
3.2 Set up bridge and system models needed for simulate annealing.  Determine the model 

parameters to be solved for each iteration of the simulated annealing process. These 
are specified as input parameters. Set the step size to be used for each parameter in 
the simulated annealing process. 

 
3.3 Determine the RMS fit for the initial model parameters. 

 
The RMS is determined from the following steps: 

 
3.3.1 Calculate the frequency domain response of the bridge target using the bridge 

model parameters (See The Target Model). 
 

3.3.2 Calculate the frequency domain response of the system using the system model 
parameters (See The System Transfer Function Model). 

 
3.3.3 Combine/multiply the target and the bridge responses, taking into account the 

phase shift parameter: 
 

    phase-jeTSTF)M(  
 

 
Where  

STF() = system modeled transfer function 

T() = bridge target modeled transfer function 

M() = synthesized bridge profile produced from modeled bridge target and 
modeled system transfer function 
phase = phase shift required to align model with data 

 
3.3.4 Compute the inverse FFT of M(ω). 

 
3.3.5    Calculate RMS between image data profile (produced from MTF profile) and 
modeled profile: 

 

  
2NPTS

0n

Image(n)nMRMS 




 
Where 
M = spatial domain transfer function of modeled target profile 
Image   = bridge profile from image data produced from MTFPROFILE 
NPTS = number of points in MTF profile 

 
3.4 Perform simulated annealing. 

 
3.5 Check to see if optical and detector model parameters are positive.  If any one of the 

parameters is not positive, take the absolute value of the parameter. 
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3.6 If necessary adjust the phase of the system transfer function to be within one half of a 

cycle of the bridge ground sample distance: 
 

The solution of system transfer function returns a phase. This phase is periodic with 
respect to the number of over-sampled bins and the ground sample distance (Nover=N/2 
for a profile length of N).  Therefore the phase can be adjusted by multiples of 
Nover*GSD (ground sample distance). 
 
 while ( PHASE >= Nover*GSD ) 
          PHASE -=  2*Nover*GSD 
         while ( PHASE < -Nover*GSD ) 
          PHASE += 2*Nover*GSD 
 
Where:  PHASE = solution for phase component of system model 

 
4. Write the results for this band to the report file. 

 
4.1 Generate the final modeled spatial domain target response (profile) using the model 
parameters produced from the simulated annealing. 

 
4.2 Write the modeled profile generated in section 4.1 to an ASCII file. 

 
5. Write the final fitted parameters to the output trending data file. Sample MTFESTIMATE 

trending output is shown in Figure 7. 
 

 

Figure 7:  Sample MTFESTIMATE Trending Output Data 
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7.2.13.7.4 Phase 4. MTFPERFORM:  Calculate OLI Spatial Performance 

The fourth and final phase of the MTF characterization process operates on the trended output 
produced by MTFESTIMATE, for a collection of bridge targets observed at different orientation 
angles. It exploits the different STF cross-sections observed by the various targets to separate out the 
OLI cross-track and along-track optical blur parameters. 
 
Recall that a single Gaussian optical blur parameter value is estimated and recorded for each target 

analyzed by MTFESTIMATE, and that this blur value (m) and the associated target azimuth (m) are 
recorded in the trending data record for each band/target. These are the Azimuth and Optics columns 
shown in the sample output table of Figure 7. Each of these optical blur observations are taken to be 
a combination of the underlying along- and across-track optical blur parameters, with the combination 
determined by the target azimuth. Thus, each target record provides an observation of the form: 
 

cos2
m 2

x + sin2
m 2

a = 2
m 

 
Where: 

 x is the across-track Gaussian optical blur parameter 

 a is the along-track Gaussian optical blur parameter 
 
Once multiple targets at different orientation angles have been measured we have a series of 

observations of this form, from which we can solve for 2
x and2

a. Note that we must also apply 
constraints so that: 
 


2

x >= 0 and2
a >= 0 

 
making this a constrained least squares problem. 
 
The unconstrained solution is: 
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If the the unconstrained solution produces 2
x >= 0 and2

a >= 0, then the unconstrained solution is 
the solution. Otherwise: 
 

If 2
x < 0 then: 
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If 2
a < 0 then: 
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The m and m values contained in the input trending records for each band to be analyzed are used 
to calculate the summations shown in the equations above. These equations are then used to solve 

for 2
x and2

a, from which we then calculate x and a. The results for each band are summarized in 
the output spatial performance report file, as shown in Figure 8. 
 

Having solved for the across-track and along-track optical blur parameters, we use these values of x 

and a to construct the full across- and along-track transfer functions STFx and STFa: 
 

Cross-Track: STFx() = O(x, ) D(rx, ) C(dx, ) 

  STFx() = exp(-2 
x

2/2) sinc(rx/2) exp(-|dx|) 
 

Along-Track: STFa() = O(a, ) D(ra, ) I(, ) C(da, ) 

  STFa()  = exp(-2 
a

2/2) sinc(ra/2) sinc(Vg/2) exp(-|da|) 
 
These models are then used to evaluate the corresponding OLI spatial performance characteristics. 
 
STF Fit Results for Band 1 
 
    Fit Based on 6 Trending Records: 
    Rec #   Year   DOY   WRS_Path   WRS_Row    Angle      Optics     Target 
       1    2000   261     022        039     0.071775    23.213     Causeway 
       2    2000   261     022        039    -0.515816    17.320     I-10_Old 
       3    2001   273     044        034    -0.975840    16.700     San_Mateo 
       4    2001   227     163        042     1.509833    20.330     King_Fahd_Causeway_W 
       5    2001   227     163        042     1.293609    19.314     King_Fahd_Causeway_C 
       6    2001   227     163        042     1.742302    21.356     King_Fahd_Causeway_E 
 
OLI STF Fitted Parameters: 
    Cross-Track Optics:   20.524 urad     Along-Track Optics:   19.430 urad 
    Cross-Track Detector: 40.863 urad     Along-Track Detector: 42.303 urad 
    Charge Diffusion:      0.000 urad     Integration Time:      3.600 msec 

 

Figure 8:  Sample MTFPERFORM Solution Summary 

 
Parameter Error Estimates 

The unconstrained least squares solution can also be used to estimate the errors in the 2
x and2

a, 
parameters determined from the solution. First, the residuals (vi) must be computed for each of the 
input trending records used in the solution: 
 

vi = 2
i - (cos2

i 
2

x + sin2
i 

2
a) 

 

 using the best-fit values of 2
x and2

a to solve for the difference between the measured blur 

values (2
i) and the corresponding modeled values (cos2

i 
2
x + sin2

i 
2
a). The residuals are then 

used to compute the variance of an observation of unit weight: 
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 where N is the number of trending record observations used in the solution and (N-2) is the 
number of degrees of freedom in the solution (number of observations minus number of parameters). 
The estimated parameter covariance matrix is then: 
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The diagonal terms of this covariance matrix are the aposteriori parameter estimate variances. Note 

that since it is the optical blur variances (2
x and2

a) that were estimated, the covariance terms apply 

to the 2 values, not the  values. 
 
To add conservatism to the performance estimates used to evaluate the OLI Key Performance 
Requirement (KPR) relating to spatial response (KPR #4), we use the covariance matrix to compute 
the 90% confidence interval bounding the best-fit optical blur parameter estimates. We then use the 
90% confidence interval limiting value that represents the best OLI spatial performance (i.e., smallest 
blur) that is consistent with the observed data to within the specified confidence. We do this by 
applying the 90% circular error scaling factor (2.146) to the estimate standard deviations, and 
subtracting the resulting value from the best fit parameter value: 
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The resulting 90% confidence values of x(90%) and a(90%) can then be used in the OLI STF model 
to compute conservative (best case) estimates for the OLI edge slope and edge extent parameters. 
Note that the fewer the available input records, the larger will be the difference between the best-fit 
results and the best case 90% confidence results. 
 
Calculating OLI Spatial Performance Parameters 
The along- and across-track OLI system transfer function models are evaluated using the profile 
sequence length (N) and oversampling parameter (Os) values specified in the MTFPERFORM input 
ODL parameter file. Note that these values need not be the same as the values used during the 
model estimation procedure. A higher resolution (larger N and Os values) model would typically be 
used at this stage to increase the fidelity of the edge response model used to determine edge slope 
and half edge extent. 
 
The along- and across-track STF models, which are formulated in sensor units, are scaled to ground 
units using the nominal Landsat altitude (705 km). They are then inverse Fourier transformed to yield 
the corresponding along- and across-track line spread functions (LSFs). These are then integrated to 
compute the along- and across-track edge spread/response functions (ESFs): 
 
 ESF(0) = LSF(0) 
  for i = 1 to N-1 
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  ESF(i) = ESF(i-1) + LSF(i) 
 
 Where: 
  ESF(i) = edge spread function at index i 
  LSF(i) = line spread function at index i 
 
We next interpolate the X locations corresponding to the 5%, 40%, 50%, 60%, and 95% edge 
response points. Since, by construction, the ESF is normalized so that the minimum value is 0 and 
the maximum value is 1, this amounts to finding the ESF indicies that straddle 0.05, 0.4, 0.5, 0.6, and 
0.95 and then linearly interpolating the exact value: 
 
 for v in {0.05, 0.4, 0.5, 0.6, 0.95} 
  i = 1 
  while i < N and ESF(i) < v 
   i = i+1 
  pos(v) = (i-1) + (v – ESF(i-1)) / (ESF(i) – ESF(i-1)) 
 
We then calculate the edge slope from the pos(0.4) and pos(0.6) values: 
 Edge Slope = Os * (0.6 – 0.4) / (pos(0.6) – pos(0.4)) / GSD 
 
We calculate the half edge extent from the pos(0.05), pos(0.5), and pos(0.95) values: 
 Low half edge extent = GSD / Os * (pos(0.5) – pos(0.05)) 
 High half edge extent = GSD / Os * (pos(0.95) – pos(0.5)) 
 Half Edge Extent = MAX( Low half edge extent, High half edge extent ) 
 
The edge slope and half edge extent values determined for each band are summarized at the end of 
the output spatial performance report file, as shown in Figure 9. Note that spatial performance 
estimates are computed using both the best-fit OLI STF parameter values and the best case 90% 
confidence interval values described above. 
 

Edge Slope and Half Edge Extent Spatial Performance by Band 

 

Band     NObs      XT_ES     XT_HEE      AT_ES     AT_HEE     ES_Spec     HEE_Spec 

  1        6      0.02338    27.451     0.02207    29.031     > 0.027      < 23.0 

  2        6      0.02317    27.709     0.02207    29.026     > 0.027      < 23.0 

  3        6      0.02301    27.924     0.02204    29.065     > 0.027      < 23.0 

  4        6      0.02273    28.287     0.02139    30.005     > 0.027      < 23.5 

  5        6      0.02245    28.652     0.02135    30.054     > 0.027      < 24.0 

  6        6      0.02379    26.953     0.02253    28.389     > 0.027      < 28.0 

  7        6      0.02399    26.708     0.02254    28.378     > 0.027      < 29.0 

  8        6      0.03813    16.955     0.03568    18.128     > 0.054      < 14.0 

  9        0      0.02399    26.708     0.02254    28.378     > 0.027      < 27.0 

 

 

 

Best Case Edge Slope and Half Edge Extent Spatial Performance by Band 

 

Band     NObs      XT_ES     XT_HEE      AT_ES     AT_HEE     ES_Spec     HEE_Spec 

  1        6      0.02540    25.112     0.02287    27.946     > 0.027      < 23.0 

  2        6      0.02516    25.370     0.02287    27.938     > 0.027      < 23.0 

  3        6      0.02480    25.775     0.02279    28.055     > 0.027      < 23.0 

  4        6      0.02432    26.318     0.02202    29.093     > 0.027      < 23.5 

  5        6      0.02384    26.890     0.02193    29.221     > 0.027      < 24.0 
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  6        6      0.02562    24.878     0.02326    27.430     > 0.027      < 28.0 

  7        6      0.02580    24.687     0.02324    27.449     > 0.027      < 29.0 

  8        6      0.04271    15.089     0.03739    17.282     > 0.054      < 14.0 

  9        0      0.02580    24.687     0.02326    27.430     > 0.027      < 27.0 

Figure 9:  Sample Spatial Performance Summary Output 

 
In the likely event that there are no trended output results for the cirrus band (band 9), the results for 
the other two short-wave infrared bands (band 6: SWIR1, and band 7: SWIR2) will be used to 
estimate cirrus performance. This is done solely for purposes of key performance requirement 
evaluation per the Key Performance Requirements Evaluation Plan (see below). To effect this, the 
cirrus band estimated edge slopes are taken to be the larger of the band 6 and band 7 results, 
whereas the cirrus band edge extents are taken to be the smaller of the band 6 and band 7 results: 
 
  Cirrus XT edge slope = MAX( SWIR1 XT edge slope, SWIR2 XT edge slope) 
  Cirrus AT edge slope = MAX( SWIR1 AT edge slope, SWIR2 AT edge slope) 
  Cirrus XT edge extent = MIN( SWIR1 XT edge extent, SWIR2 XT edge extent) 
  Cirrus AT edge extent = MIN( SWIR1 AT edge extent, SWIR2 AT edge extent) 
 

7.2.13.8 Maturity 

1. This ADD provides a completely reworked version of the algorithm. 
 
Some additional background assumptions and notes include: 

1. Bridge region of interest polygons are contained in the target definition file for each target 
WRS path/row. These polygons are designed to avoid undesirable areas such as bridge 
crossovers. 

2. L0R file name is currently used to extract acquisition date. 
3. Target model initialization parameters include; reflectance of bridge span(s) (assumed to 

be the same for all), reflectance of water, reflectance asymmetry, width of bridge span(s), 
bridge span offset(s), and GSD of bridge pixels. 

4. System transfer function initialization parameters include; optical Gaussian component, XT 
detector size, AT detector size, integration time, exponential decay (=0), and phase.  

5. Target simplex bounds include; reflectance of bridge span(s) (assumed to be the same for 
all), reflectance of water, reflectance asymmetry, width of bridge span(s), bridge span 
offset(s), and GSD of bridge pixels. 

6. System transfer function simplex bounds include; optical Gaussian component, XT detector 
size, AT detector size, integration time, exponential decay (=0), and phase. 

7. Implementation has the bridge and system models plus simplex bounds stored within a 
MTF systems file.   

8. Contents of MTF bridge characterization report: 
a. Scene acquisition date and WRS path/row 
b. For each target and for each band;  
Geometric parameters: GSD, target range, velocity, and orientation 
Target parameters: target name, number of spans, span radiances, water radiance, water 
asymmetry, span widths, span offsets 
System transfer function parameters: optical Gaussian, AT detector size, XT detector size, 
integration time, exponential decay, phase. 
Fit statistics: Root mean squared error to model. 
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7.3 TIRS Geometry Algorithms 

7.3.1 TIRS Line-of-Sight Model Creation  

7.3.1.1 Background/Introduction 

The line-of-sight (LOS) model creation algorithm gathers the ancillary data and calibration parameters 
required to support geometric processing of the input TIRS image data set; validates the image time 
codes; extracts, validates, and preprocesses the TIRS scene select mirror (SSM) telemetry contained 
in the ancillary data stream; extracts the corresponding ephemeris and attitude data from the ancillary 
data stream; performs the necessary coordinate transformations; and stores the results in a 
geometric model structure for subsequent use by other geometric algorithms. The TIRS LOS model 
creation algorithm is derived from the OLI model creation algorithm. Its implementation will be very 
similar to the corresponding OLI application and will draw on the same spacecraft model, math, and 
utility libraries. Note that the ephemeris and attitude preprocessing logic common to both sensors is 
performed by the ancillary data preprocessing algorithm to isolate the bulk of the geometric 
processing logic from the details of the incoming ancillary data stream. New attitude data processing 
logic has also been added to separate the high- and low-frequency attitude effects to allow the image 
resampling process to better correct for jitter at frequencies above the original 10 Hz algorithm design 
limit without requiring an unreasonably dense resampling grid. 

7.3.1.2 Dependencies 

The TIRS LOS Model Creation algorithm assumes that the Ancillary Data Preprocessing algorithm 
has been executed to accomplish the following: 

Validated ephemeris data for the full imaging interval have been generated 
Validated attitude data for the full imaging interval have been generated 
The ancillary data have been scaled to engineering units 

The Ancillary Data Preprocessing algorithm will generate preprocessed smoothed and cleaned 
ephemeris and attitude data streams. This provides a standard validated input for subsequent LOS 
model generation.   

7.3.1.3 Inputs 

The TIRS LOS Model Creation algorithm uses the inputs listed in the following table. Note that some 
of these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the 
values of and pointers to the input data; including data set IDs to provide unique identifiers for data 
trending). 
Algorithm Inputs 

ODL File (implementation) 

   Acquisition Type (Earth, Lunar, Stellar) (optional, defaults to Earth) 

   CPF File Name 

   Preprocessed Ancillary Data Input File Name 

   L0R/L1R File Name 

  WRS Path/Row (stored in model and used for trending) 

  Trending On/Off Switch 

  Geometric work order common characterization ID (for trending) 

  Work Order ID (for trending) 

  Optional Precision Model Input Parameters (see note 6) 

    Input Precision Model Reference Time (optional) 

    Input Precision Ephemeris Correction Order (optional) 
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    Input Precision X Correction Parameters (optional) 

    Input Precision Y Correction Parameters (optional) 

    Input Precision Z Correction Parameters (optional) 

    Input Precision Attitude Correction Order (optional) 

    Input Precision Roll Correction Parameters (optional) 

    Input Precision Pitch Correction Parameters (optional) 

    Input Precision Yaw Correction Parameters (optional) 

  CPF Contents 

    WGS84 Earth ellipsoid parameters 

    Earth orientation parameters (UT1UTC, pole wander, leap seconds) (see note 
1) 

    Earth rotation velocity 

    Speed of light 

    TIRS to ACS reference alignment matrix/quaternion 

    Spacecraft center of mass (CM) to TIRS offset in ACS reference frame (new) 

    High frequency attitude data cutoff frequency (Hz) 

    Scene select mirror calibration parameters (new) (see Table 1 below) 

    Focal plane model parameters (Legendre coefficients) 

    TIRS detector delay table (including whole pixel deselect offsets) (see note 10) 

    Nominal L0R fill (per band/SCA) 

    Nominal TIRS frame time nominal_frame_time (14.2857143 msec) 

    Nominal TIRS integration time 

    Image time code outlier thresholds delta_time_tolerance (DTIME_TOL) and 
time_outlier_tolerance (OUTLIER_TOL) (see note 3) 

    SSM encoder outlier threshold (see note 7) 

  Preprocessed Ancillary Data Contents 

    Attitude Data 

        Attitude data UTC epoch: Year, Day of Year, Seconds of Day 

        Time from epoch (one per sample, nominally 50 Hz) 

        ECI quaternion (vector: q1, q2, q3, scalar: q4) (one per sample) 

        ECEF quaternion (one per sample) 

        Body rate estimate (roll, pitch, yaw rate) (one per sample) 

        Roll, pitch, yaw estimate (one per sample)  

    Ephemeris Data  

        Ephemeris data UTC epoch:  Year, Day of Year, Seconds of Day 

        Time from epoch (one per sample, nominally 1 Hz) 

        ECI position estimate (X, Y, Z) (one set per sample) 

        ECI velocity estimate (Vx, Vy, Vz) (one set per sample) 

        ECEF position estimate (X, Y, Z) (one set per sample) 

        ECEF velocity estimate (Vx, Vy, Vz) (one set per sample) 

  L0R/L1R Data Contents 

    Image Time Codes (one per line) 

    Integration Time 

    Scene Select Mirror Telemetry Packets (from Ancillary Data, see Table 2 
below) 

        TIRS Ancillary Data Time Code (one per 1 Hz frame) 

        Mirror Encoder Readout (24 bits, in counts) (20 samples per 1 Hz frame) 
(see note 9) 

    Detector Alignment Fill Table (see note 2) 

 

7.3.1.4 Outputs 

TIRS LOS Model (additional detail is provided in Table 3 below) 

  WGS84 Earth ellipsoid parameters 

  Earth Orientation Parameters (for current day) from CPF 

  Earth rotation velocity 



LDCM-ADEF-001 
Version 3 

 

  Speed of light 

  TIRS to ACS reference alignment matrix/quaternion 

  Spacecraft center of mass to TIRS offset in ACS reference frame 

  SSM model parameters (Telescope alignment matrix and preprocessed SSM 
angles) 

  Focal plane model parameters (Legendre coefs) 

  Detector delay table (including whole pixel deselect offsets) 

  Nominal detector alignment fill table (from CPF) 

  L0R detector alignment fill table (from L0R) 

  ECI J2000 spacecraft ephemeris model (original and corrected) 

  ECEF spacecraft ephemeris model (original and corrected) 

  Spacecraft attitude model (time, roll, pitch, yaw) (orig and corr) (see note 4) 

  High frequency attitude perturbations (roll, pitch, yaw) per image line (jitter table) 

  Image time codes (see note 5) (in seconds) 

  Integration Time (in seconds) 

  Sample Time (in seconds) 

  WRS Path/Row 

Model Trending Data 

  WRS Path/Row 

  Acquistion Date/Time 

  Geometric work order common characterization ID 

  Work Order ID  

  Image start UTC time (year, day of year, seconds of day) 

  Computed image frame time (in seconds) 

  Number of image lines 

  Number of out of limit image time codes 

  Number of out of limit SSM time codes 

  Number of out of limit SSM encoder measurements 

7.3.1.5 Options 

Trending On/Off Switch 
Optional precision model input parameters can be used to force model corrections. 

7.3.1.6 Prototype Code 

 
Input to the executable is an ODL file; output is a HDF4 formatted TIRS model file. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse  –msse2 
 
The following text is a brief description of the main set of modules used within the prototype with each 
module listed along with a very short description. It should be noted that not all library modules are 
referenced in the explanations below. The modules within the main create directory of the prototype 
are discussed and any library modules that were determined to be important to the explanation of 
either results, input parameters, or output parameters. Note that the modules in the main “create” 
directory are the same as the corresponding OLI routines. The TIRS-specific differences reside in the 
library routines. 
 
model_create – Main procedure that retrieves the input parameters and invokes the model generation 
and model output logic. 
 
getpar – Retreives the user-provided ODL parameters. 
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oli_zero_model – Library routine that initializes the model structure. Adapted from the corresponding 
OLI routine. Note that since many of the geometric model routines involve substantial reuse of 
heritage OLI code, many have not been renamed. This made it possible to leave the model creation 
driver routines unchanged. 
 
get_path_row_l0ra  - Designed to retrieve the WRS path and row numbers from the L0R data. In the 
baseline algorithm these are ODL input parameters but they should ultimately be extracted from the 
Level 0R data directly. This unit is a placeholder for the time being. 
 
oli_run_model – Library routine that loads the CPF, L0R, and preprocessed ancillary data into the 
model structure. 

 
oli_get_cpf – Library routine that reads the CPF. Largely reuse from the corresponding OLI 
CPF input routine with new TIRS SCENE_SELECT_MIRROR group added. 
 

tirs_get_scene_select_mirror – Library routine that reads the new TIRS 
SCENE_SELECT_MIRROR calibration parameter group from the CPF. 

 
oli_get_model_sensor_params – Library routine that loads the sensor section of the model 
structure using data from the CPF and the L0R frame header. Adapted from corresponding 
OLI routine. 
 
oli_get_model_image_params – Library routine that loads the image section of the model 
structure using data from the CPF, the L0R line headers, and the L0R detector offset fields. 
This unit also validates the image line time codes. Adapted from corresponding OLI routine. 
 
tirs_get_ssm_from_l0r – Library routine that reads and preprocesses the TIRS scene select 
mirror (SSM) telemetry extracted from the L0R data, and loads it into the TIRS geometric 
model. 
 

tirs_align_ssm_data – Library routine that aligns the TIRS SSM encoder telemetry 
samples with the 1 Hz ancillary data frames, so that there are 20 complete samples per 
frame. 
 
tirs_check_ssm_data – Library routine that quality checks the TIRS SSM telemetry time 
codes and encoder angle data. 
 
tirs_smooth_ssm_data – Library routine that applies a moving window smoother to the 
TIRS SSM encoder data. 

 
oli_get_model_earth_params – Library routine that loads the Earth model parameters from the 
CPF. Reuse of OLI routine. 
 
oli_get_ancillary_pre – Library routine that loads the attitude and ephemeris model sections 
using data from the preprocessed ancillary data file. Reuse of OLI routine. 
 
oli_build_jitter_table – Library routine that splits the attitude data from the ancillary data into 
low- and high-frequency streams, interpolates the high frequency data to match the TIRS line 
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times, stores this per image line high frequency attitude data in the jitter table structure, and 
replaces the original combined attitude data stream with the low-frequency stream. 
 

remez – Library routine that uses the Remez exchange algorithm to synthesize the 
weights (taps) of a low pass finite impulse response digital filter based on input filter size 
and cutoff frequency parameters. GNU Public License code written by Jake Janovetz, 
formerly of UIUC, which is available online at his site: http://www.janovetz.com/jake/ 
and more specifically: 
http://www.janovetz.com/jake/remez/remez-19980711.zip 

 
l8_correct_attitude – Library routine that applies the user-input precision model attitude corrections (if 
any). 
 
l8_convert_ephem – Library routine that applies the user-input precision model ephemeris corrections 
(if any). 
 
oli_put_model – Library routine that writes the TIRS model structure to the output HDF model file. 
Adapted from corresponding OLI routine. 

7.3.1.7 Procedure 

The TIRS LOS model is stored as a structure and is created from information contained in the Level 
0R or Level 1R image data, the CPF, and the Ancillary data. The model is subsequently used along 
with the CPF to create a resampling grid.  Data present in the model structure includes satellite 
position, velocity, and attitude, line-of-sight (LOS) angles, timing references, scene select mirror 
position, precision correction information (if any), and the software version. The TIRS LOS model is 
also used in several characterization and calibration routines for mapping input line/sample locations 
to geographic latitude/longitude. 
 
The TIRS LOS model may be thought of in two parts, an instrument model that provides a line-of-
sight vector for each TIRS detector (and, hence, each image line/sample), and a spacecraft model 
that provides spacecraft ephemeris (position and velocity) and attitude as a function of time. These 
models are linked by the image time stamps that allow each Level 0R or Level 1R image sample to 
be associated with a time of observation. The spacecraft portion of the model is common to the OLI 
LOS model. 
 
Instrument Model 
The arrangement of the bands and SCAs on the TIRS focal plane is shown in Figure 1. The model 
treats every band of every SCA independently. This is done by defining a set of 3rd

 order Legendre 
polynomials (see maturity note #2) for each band of each SCA. Unlike the OLI, the TIRS detectors 
are arranged in a two-dimensional array with two rows of that array being downlinked for each 
spectral band. One of the downlinked rows is primary and the other, redundant row is only used to 
replace bad pixels in the primary row. The TIRS LOS Legendre polynomials represent a theoretical 
“nominal” set of detectors that are best-fit to the primary row of detectors. This approach treats any 
replaced detectors as though they were aligned with the primary detectors for purposes of sensor 
LOS generation. This is a simplification of the OLI approach which also must account for even/odd 
detector stagger. In the TIRS case, this stagger is effectively set to zero. This approach explicitly 
models any offsets caused by detector replacement, and the sub-pixel deviations of each detector 
from its nominal (Legendre best fit) location, for correction during image resampling. This leads to 
three detector types: nominal, actual, and exact. A nominal detector is calculated from the Legendre 
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polynomials. An actual detector corrects the nominal detector location for the nominal (whole pixel) 
pixel select offsets. Like the OLI, since individual detectors may be deselected/replaced, these offsets 
are detector dependent. An exact detector has the actual correction applied but also includes the 
specific individual (sub-pixel) detector offsets. The Legendre polynomials and a table of detector 
offset values are stored in the CPF. 
 
There is a slight angular difference between the line of sight vectors or angles associated with the 
primary and any replaced detectors.  If the nominal LOS, generated using the 3rd order Legendre 

model, is nominal, the look angles for the actual and exact detectors are: 
 

x_actual = x_nominal +  round(detector_shift_x) * IFOV 

y_actual = y_nominal +  round(detector_shift_y) * IFOV 
 

x_exact = x_nominal +  detector_shift_x * IFOV 

y_exact = y_nominal +  detector_shift_y * IFOV 
 

 
Figure 1:  TIRS Focal Plane Layout 

The detector_shift_x and detector_shift_y values are the detector-specific offsets stored in the CPF 
detector delay tables. These offsets include both the whole-pixel deselect/replacement offsets and 
the fractional-pixel detector placement effects, and must be rounded to extract the integer portion. 
Note that the integer portion of the detector_shift_y value is always zero since the deselect effects are 
applicable only in the X direction. Also note that the integer portion of the detector_shift_x values will 
also all be zero in the event that no primary detectors are bad. 
 
The nominal LOS is used in most line-of-sight projection applications. The actual LOS is used in 
conjunction with the actual image time (see below) to model the errors introduced by trading time 
(sample delay) for space (detector offset) for purposes of correcting the nominal LOS model. The 
exact LOS is generally used only for data simulation and other analytical purposes rather than in the 
geometric correction model, as the sub-pixel portion of the detector delay is applied directly in the 
image resampler rather than being included in the LOS model. 
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Sample Timing 
The TIRS provides a time stamp with each image line collected. These time stamps make it possible 
to relate the image samples (pixels) to the corresponding spacecraft ephemeris and attitude data. 
The TIRS time stamps are contained in a line header that precedes each image line. The TIRS line 
header contents are shown in Figure 2. Several items in this figure are worthy of particular note. First, 
the time stamp associated with a data frame is recorded at the beginning of the detector integration 
period. Second, the line header includes the integration time (TIRS does not use a separate frame 
header) and identifies the detector rows selected for downlink for each band and each SCA. This 
includes the dark band which is not included in the TIRS geometric model. The line header fields 
other than the time code should be static within an imaging interval. 

 
Figure 2:  TIRS Line Header Contents 

 
Note that having the time code define the start of detector integration is different than the OLI where 
the time code represents the end of integration. This has the effect of making the integration time 
correction a positive adjustment to the pixel time for TIRS rather than a negative adjustment, as is the 
case for the OLI.  
 
Also note that the TIRS line header is composed of 12-bit data words, like the other TIRS “pixels”, 
where the most significant 4 bits are all zero. The assumption here is that Level 0 processing will treat 
the line header words the same way that it handles TIRS pixel data and repackage the 12-bit fields 
into 16-bit data words. If instead, Level 0 processing strips off the extra 4 bits from the line header 
fields, then the line header preprocessing step mentioned below, will not be necessary. 
 
One further complication to the problem of assigning times to image samples is the fact that the Level 
0R/1R input imagery may include fill pixels inserted to achieve nominal primary and replaced detector 
alignment. This fill insertion allows the geometrically unprocessed 0R/1R imagery to be viewed as a 
spatially contiguous image without detector misalignments. The amount of detector alignment fill 
present will be indicated in the L0R/L1R image data (this is the purpose of the detector alignment fill 
table input noted above) so that the association of image samples with their corresponding time 
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stamps can be adjusted accordingly. The assumption here is that, like OLI data, image fill will not be 
used to achieve nominal SCA or band alignment for TIRS data. 
 
Due to the potential for deselected/replaced detectors, the nominal and actual times associated with a 
given pixel may not be the same. The actual time reflects the time that the current detector was 
actually sampled whereas the nominal time reflects the time at which the idealized detector 
represented by the TIRS LOS model would have been sampled.  
 
If the current position within the image is given as a line and sample location, the two different “types” 
of times for TIRS pixels are calculated by: 
 

l0r_fill_pixels = round(detector_shift_x) + nominal_fill_pixels 
time_index = line_number - l0r_fill_pixels 
if ( time_index < 0 ) time_index = 0 
if (time_index > (num_time_stamps - 1)) time_index = num_time_stamps - 1 
 
actual_time = line_time_stamp[time_index] + integration_time/2 
                            + (line_number - l0r_fill_pixels - time_index) * TIRS_sample_time 
 
nominal_time = actual_time + round(detector_shift_x) * TIRS_sample_time 

 
where: 

 line_number is the zero-referenced TIRS image line number (N). 

 nominal_fill_pixels is the amount of detector alignment fill to be inserted at the beginning of 
pixel columns that correspond to nominal detectors; that is, those detectors with a delay 
value of zero that are the basis for the Legendre polynomial LOS model. This value comes 
from the CPF and will be zero if there are no bad detectors to replace. 

 l0r_fill_pixels is the total amount of detector alignment fill to be inserted at the beginning of 
the pixel column associated with the current detector. It includes both the 
nominal_fill_pixels and the detector-specific delay fill required to align deselected/replaced 
detectors. 

 num_time_stamps is the total number of time codes (image lines) in the image. It is tested 
to ensure that time_index, the line_time_stamp index, does not go out of bounds. 

 detector_shift_x is the amount of detector offset for the current detector from the TIRS LOS 
model detector delay table. It is rounded to the nearest integer pixel because time offsets 
can only occur in whole line increments. 

 
The detector_shift_x parameter is the detector-specific along-track offset as recorded in the CPF and 
subsequently stored in the LOS model detector delay table. It is rounded to the nearest integer so as 
to include the effects of even/odd detector stagger and detector deselect but not the detector-specific 
sub-pixel offsets. The L0R/L1R data can be accessed by SCA making the association of sample 
number with detector index more straightforward. Note that, like OLI, the TIRS Level 0R data 
organizes the image samples from all 3 TIRS SCAs so that the samples are numbered left-to-right for 
all SCAs. This convention is also followed in the CPF detector offset tables. There are 640 samples 
per SCA for each spectral band. 
 
Note that when fill is used to align replaced detectors the spatial difference between the nominal and 
actual look vectors is approximately compensated by the time difference between tnominal and tactual. 
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TIRS Scene Select Mirror Model 
The TIRS scene select mirror (SSM) redirects the lines-of-sight from the TIRS telescope, which is 
oriented with its optical axis nominally in the +X direction, toward either:  1) the nadir Earth view; or 2) 
the space view port; or 3) the internal black body. It is the Earth view case that is of interest to the 
geometric processing models. Figure 3 shows the SSM and TIRS telescope in relationship to the 
TIRS coordinate system, in which the telescope optical axis defines the +X axis. The TIRS coordinate 
system is nominally aligned with the spacecraft coordinate system (+X toward the direction of flight, 
+Z toward nadir, +Y completing a right-handed coordinate system).  
 

The SSM angle, , is defined as the angle between the SSM normal and the SSM axis of rotation. 

This angle is nominally /4 radians (45 degrees). The SSM angle is a parameter of the SSM system 
that would be stored in the Calibration Parameter File (CPF). 
Define a scene select mirror coordinate system, nominally parallel to the TIRS coordinate system, 
with the +X axis parallel to the SSM axis of rotation (Xssm), the +Y axis in the direction of the cross 
product of the mirror normal vector nssm and Xssm, and the +Z axis completing a right handed 
coordinate system.  
 
The mirror axis of rotation and mirror normal are: 

 

Xssm = [
 
 
 
]  nssm =  [

        
 

       
] 

 

To include the effect of SSM rotation about its axis, rotate nssm about Xssm by an angle ( – 0) where 

0 is the SSM encoder angle at the nominal nadir pointing angle and  is the actual SSM encoder 

angle reported in the TIRS ancillary data. The mirror normal as a function of  is: 
 

nssm() = [

   
                      
                     

] [
        

 
       

]  [

        

                 

                
] 

 

The nominal nadir pointing angle 0 would be a SSM calibration parameter stored in the CPF. The 

measured encoder angle as a function of time, t, would be reported in the 1 Hz TIRS ancillary data 
stream, with 20 samples provided in each 1 Hz TIRS ancillary data packet. Any time delay between 
the actual encoder sample time(s) and the corresponding ancillary data packet time code would have 

to be accounted for, so this time delay, t, is included as a parameter in the CPF. 
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Figure 3:  Scene Select Mirror Line-of-Sight Redirection 

 
 
In the TIRS telescope coordinate system, the LOS emerging from the telescope, ltele, is: 
 

 ltele =  [

 
         
         

] 

 

 where: XT is the across-track LOS angle (from the Legendre polynomial model) 

  AT is the along-track LOS angle (from the Legendre polynomial model) 
 
To account for misalignments between the SSM and the TIRS telescope, rotate ltele about the X axis 

by an angle r, about the Y axis by an angle p, and about the Z axis by an angle y: 
 

  teleSSM ypr lMl  ,,
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The telescope misalignment angles, r, p, and y, are calibration parameters stored in the CPF.

 

 

The LOS vector is reflected off the SSM by multiplying it by the matrix P(): 
 

 P() = I – 2 nSSM() nT
SSM() 

 
And the resulting reflected LOS is: 
 

 lTIRS() = P() lSSM = [I – 2 nSSM() nT
SSM()] M(r,p,y) ltele 

 

Define  ̂ =  – 0, and  = /4 +, where  is the departure from the ideal mirror angle.  
 
The corresponding reflection matrix, P, becomes: 
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For an ideal SSM,  = 0, so the ideal reflection matrix, P0( ̂), becomes: 
 

P0( ̂) = [
      ̂     ̂

     ̂      ̂     ̂     ̂
    ̂     ̂     ̂      ̂

]  

 

Which for nadir pointing ( ̂=0) reduces to:   
 

P0( ) = [
   
   
   

] 

 

For a perfectly aligned SSM, r = p = y = 0, so: 
 

 lTIRS(0) = P0( ) ltele =  [
         
         

 

] 

 
Note that this matches the nadir-pointing LOS formulation used for the OLI. To minimize the 
differences between the standard nadir-pointing (OLI) LOS model and the SSM reflected (TIRS) LOS 
model, we formulate the SSM effect as a rotation applied to a nadir-pointing LOS vector as follows: 
 

 Noting that:  P0( ) P0( ) = I 
 

lTIRS() = [I – 2 nSSM() nT
SSM()] P0( ) P0( ) M(r,p,y) P0( ) P0( ) ltele 

 

lTIRS() = [P0( ̂,) P0(0)] [P0( ) M(r,p,y) P0( )] lTIRS(0) 
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The TIRS LOS, lTIRS(), can thus be written as the ideal nadir-pointed LOS , lTIRS(0), rotated by the 

telescope alignment matrix, M’(r,p,y) and reflected by the SSM matrix, P’( ̂,): 
 

lTIRS() = P’( ̂,) M’(r,p,y)lTIRS(0) 
 

where: 
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For an ideal SSM, the product of the reflection and alignment rotation matrices, P’0( ̂,0) M’(0,0,0),  
reduces to: 
 

M0( ̂) = P’0( ̂,0) M’(0,0,0) = [
    ̂      ̂  

    ̂     ̂      ̂      ̂
     ̂     ̂     ̂     ̂

], and M0(0) = I  

 

Noting that  ̂, , r, p, and y are all close to zero, it can be shown that the  mirror angle offset is 

approximately equivalent to a pitch misalignment of 2. Using this approximation we can write the 
TIRS LOS transformation equation as the product of a reflection matrix, that is a function of only the 

mirror rotation angle , and a static telescope alignment matrix: 
 

lTIRS() ≈ M0( ̂) M’(r,p+2,y)lTIRS(0) 
 

In practice, the SSM reflection matrix M0( ̂) will be close to I so it will be difficult to distinguish 
telescope misalignments, modeled by M’, from TIRS instrument misalignments, and corrections to 
any prelaunch telescope alignment parameters will be absorbed by the TIRS alignment angles 
estimated on-orbit. For this reason we do not anticipate performing on-orbit calibration for the SSM 
parameters. The TIRS SSM calibration parameters are summarized in Table 1. Note that since the 
primary (side A) and redundant (side B) SSM encoders are not perfectly aligned, the encoder values 
that correspond to nadir pointing will not be exactly the same. Thus, the nominal nadir encoder angle, 

0, will be equal to either A or B depending on the mirror side/encoder in use. The mirror side in use 
will be indicated in the TIRS ancillary data. 
 

Parameter Symb
ol 

Nominal 
Value 

Source 

Mirror Angle  /4 radians Fixed constant 

Mirror Angle Deviation  0 Prelaunch characterization 

Nadir Pointing Angle / 
Encoder Origin (Side 
A) 

A 0 Defined value – establishes 
reference for TIRS alignment 
calibration 
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Nadir Pointing Angle / 
Encoder Origin (Side 
B) 

B 0 Defined value – establishes 
reference for TIRS alignment 
calibration 

Telescope Roll Offset r 0 Prelaunch characterization 

Telescope Pitch 
Offset 

p 0 Prelaunch characterization 

Telescope Yaw Offset y 0 Prelaunch characterization 

Encoder Time Offset t 0 Prelaunch characterization 

Table 1:  TIRS Scene Select Mirror Model Calibration Parameters 
 
Spacecraft Model 
The spacecraft ephemeris and attitude models are constructed from the input preprocessed ancillary 
data by extracting the ancillary data that span the current image. Both ECI and ECEF versions of the 
ephemeris data are retained in the model structure to avoid the need to repeatedly invoke the 
ECI/ECEF coordinate system conversion. The ALIAS heritage roll-pitch-yaw representation of the 
attitude model is retained in the model structure though a quaternion representation may be used in a 
future algorithm revision (see note 4). 
 
Prepare TIRS LOS Model Sub-Algorithm 
This function gathers the information from the preprocessed ancillary data and the Level 0R/1R TIRS 
image and ancillary data needed to process model data and run the TIRS LOS model. Though it has 
the same overall purpose and function as the heritage OLI oli_run_model unit, new logic is required to 
handle the TIRS SSM telemetry information. The spacecraft (preprocessed ancillary data) sections 
are the same as the OLI model. 
 
The main steps are: 

7. Load the image time codes and convert to seconds since spacecraft epoch. 
8. Determine the image time window. 
9. Validate/smooth the image time codes. 
10. Extract the integration time from the Level 0R/1R image line header data. 
11. Extract and preprocess the SSM telemetry from the Level 0R ancillary data. 
12. Extract the associated ephemeris and attitude data from the preprocessed ancillary data 

stream. 
13. Preprocess the input attitude data into a low-frequency stream, used for basic geometric 

modeling, and a high-frequency stream, used as a fine correction in the image resampler. This 
preprocessing was added to improve the ability of the geometric correction system to 
compensate for jitter disturbance frequencies above 10 Hz. 

 
The input preprocessed ancillary data are stored in an HDF file. The attitude and ephemeris ancillary 
data streams each have an epoch time identifying the UTC date/time reference. Within these data 
streams, each attitude or ephemeris observation in the HDF file has a corresponding time offset 
relative to the epoch. This incoming ancillary data stream spans the entire imaging interval containing 
the image data represented in the Level 0R/1R input data. In creating the model we identify and 
extract the ancillary data sequence required to process the current image data. 
 
The input Level 0R/1R image data are also packaged in HDF files that include the image samples for 
each band and SCA and the time codes assigned to each image line by the TIRS instrument. As 
shown in figure 2 above and figure 4 below, these spacecraft time codes are provided by the TIRS in 



LDCM-ADEF-001 
Version 3 

 

CCSDS T-Field format which includes days since epoch (16-bit integer), milliseconds of day (32-bit 
integer) and microseconds of millisecond (16-bit integer) fields: 

 
Figure 4: TIRS Time Code Format 

 
The baseline algorithm assumes that Level 0 processing will preserve these time codes in their 
original form, as days, milliseconds, and microseconds since the spacecraft epoch. Since they are 
derived from the spacecraft clock, the image time codes will be based on the same epoch used by 
the ancillary data (e.g., TAI seconds from J2000). Like all fields in the TIRS line header, the time 
codes are packaged in 12 bit fields with only the low order 8 bits containing valid data (see figure 2). 
Any initial line header preprocessing steps necessary to extract the 8 valid data bits from each line 
header data word are assumed to have been performed as part of Level 0Rp generation. 
 
Process Image Time Codes 
The image time codes are loaded from the input HDF Level 0R/1R data set. Deselected/replaced 
detector alignment fill will be inserted into the Level 0R/1R imagery as described above, if necessary, 
so the image lines each contain samples collected at times that may be offset from the time specified 
by the corresponding time code. The relationship between these time codes, the TIRS integration 
time, and the pixel center times has already been described above. The assumption here is that the 
L0Rp data will contain one time code per image line, excluding any fill lines, or a nominal 2071 time 
codes per scene. The image files themselves may be up to 30 lines longer to accommodate the 
redundant row deselect/replacement detector-alignment fill pixels. Simulated scenes may also be 
longer to provide the additional scene-to-scene overlap needed to support interval stitching. 
 

9. Convert the time code to seconds from spacecraft epoch: 
Line_time = TC_Day*86400 + TC_MSec/1000 + TC_Micro/1e6 
Note that an IEEE 754 double precision (64-bit) number with a 52-bit fraction should provide 
sufficient precision to represent time differences from 01JAN2000 to 01JAN2050 with 
microsecond accuracy (1.6e15 microseconds < 2^51). 

10. Validate and correct the image time codes as follows: 
a. Loop through the time codes from 1 to N-1, where N is the number of image data 

frames/time codes, and test the difference between the current and previous time codes 
against the nominal frame time from the CPF using the #define tolerance DTIME_TOL. 
The first of two consecutive time codes that are within the tolerance is the first valid time 
code. The DTIME_TOL value is a constant in the prototype code but it would be better 
for it to be a CPF parameter. 

b. Initialize the TIRS clock model by setting the least squares variables to zero:  A00 = A01 
= A11 = L0 = L1 = 0 

i. Since the normal equation matrix, A, is symmetric, A10 = A01 so it is not computed 
separately. 

ii. Add the first valid time code observation by adding 1 to A00. This is all that is 
required since, by definition, the index difference and time difference (see below) 
are zero at the first valid point. 

c. For each subsequent time code: 
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i. Compare the time code difference to a larger outlier tolerance (OUTLIER_TOL) 
chosen to bound the possible drift in the TIRS clock relative to the spacecraft 
clock (currently set to 50 microsec). The OUTLIER_TOL value is a constant in 
the prototype code but it would be better for it to be a CPF parameter. 

ii. If the time code difference is within the outlier range, add the current time to a 
least squares linear TIRS clock model: 

1. num = current index – first valid index 

2. time = current time – first valid time 
3. Accumulate: 

a. Valid point count: A00 += 1 

b. Index difference: A01 += num 

c. Squared index diff: A11 += num*num 

d. Time difference: L0 += time 

e. Time diff*index diff: L1 += num*time 
d. Once all time codes have been analyzed, solve for the linear TIRS clock model 

parameters: 
i. determinant = A00*A11 – A01*A01 
ii. If abs(determinant) <= 0.0 return an error 
iii. Offset = first valid time + (A11*L0 – A01*L1) / determinant 
iv. Rate = (A00*L1 – A01*L0) / determinant 

e. Use the correction model to replace bad time codes: 
i. For each time code: 

1. Calculate the corresponding model time as: 
Mtime = Offset + (current index – first valid index) * Rate 

2. Calculate the actual time – model time difference. 
Diff = abs( time code – Mtime ) 

3. Test the difference against DTIME_TOL 
4. If the difference exceeds DTIME_TOL, replace the current time code with 

the model value, Mtime 
f. If no valid time codes were found, return an error. 
g. Calculate the average observed frame time, delta_time, by subtracting the first 

valid/corrected time code from the last valid/corrected time code and dividing by the 
number of time codes minus one. 

h. Store delta_time in the model. 
11. Compute the image start time:  image_start = line_time[0] 
12. Ensure that the ancillary data ephemeris covers the image: 

a. Convert the ephemeris epoch to TAI seconds from spacecraft epoch: 
i. Load the leap second table from the CPF. 
ii. Search the leap second table for the last entry that is not later than the 

ephemeris epoch. 
iii. Add the total leap second count for that entry to the UTC date/time to yield TAI 

date/time. 
iv. Subtract the spacecraft TAI epoch to compute ephem_start in TAI seconds since 

the spacecraft epoch. 
b. Check the beginning of the ephemeris interval against the image start time (which is 

also TAI seconds since the spacecraft epoch): 
If (image_start – ephem_start) < 4 seconds 
Then report error “Ephemeris data does not cover the image” and exit 
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c. Check the end of the ephemeris interval against the image stop time: 
ephem_stop = ephem_start + ephem_time[M-1] where M is the number of ephemeris 
data entries. 
image_stop = image_start + delta_time*(N-1) 
If (ephem_stop – image_stop) < 4 seconds 
Then report error “Ephemeris data does not cover the image” and exit 

d. Note that the 4 second overlap threshold would be a good thing to put in a #define 
statement as suggested below. 

13. Repeat step 4 using the ancillary attitude data in place of the ephemeris data. 
14. Compute the image start UTC epoch by converting image_start to UTC as described under 

“Convert Spacecraft Time Code to UTC” in the Ancillary Data Preprocessing ADD. This epoch 
will be stored as: Year, Day of Year, Seconds of Day. 

15. Make sure the epoch is consistent with the ancillary data: 
a. If image_year > ephem_year or image_day > ephem_day 

Then image_year = ephem_year 
image_day = ephem_day 
image_seconds = image_seconds + 86400 

This ensures that all computations for a given imaging interval are based on the same day 
and, hence, on the same UT1UTC, pole wander, and leap second corrections. 

16. Subtract the image start time from the line time codes so that the times are seconds from 
image start. 

17. Store the image start UTC epoch (image_year, image_day, image_seconds) and the image 
offset times in the model structure. 

18. Report/trend the results of the time code processing including: 
a. WRS Path/Row (input parameters) 
b. Image UTC epoch (year, day, seconds of day) 
c. L0R ID (input parameter) 
d. Work order ID (input parameter) 
e. Computed frame time (delta_time) 
f. Number of replaced time codes (bad_image_time_count) 

 
Extract the integration time field from the Level 0R/1R image line header data. There will be one 
value for each image line. Convert the integration time from the first valid TIRS line header record to 
units of seconds and store in the model structure. 
 
Extract and Process SSM Data 
To populate the SSM model portion of the TIRS geometric model it is necessary to construct two 

elements:  the SSM alignment matrix M’(r,p+2,y) which is a function of the SSM alignment 
parameters from the CPF; and a sequence of SSM pointing angles and associated times. The SSM 
pointing angles are computed using the SSM telemetry data contained in the Level 0R ancillary data. 
The TIRS ancillary data group is provided every second. The relevant contents of the TIRS ancillary 
data group are shown in Table 2. Each 1 Hz group contains a time code and twenty-one 24-bit 
resolution SSM encoder samples. 
 

Field Size Contents 

Day 16 bits Days since spacecraft epoch 

Milliseconds 32 bits Milliseconds of day 

Microseconds 16 bits Microseconds of millisecond 

SSM Position 1- 24 bits 24-bit resolution SSM encoder readout 
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21 

Table 2:  TIRS Scene Select Mirror Ancillary Data 
 
A twenty-first sample is included, even though the encoder is sampled at 20 Hz, to ensure that 
encoder samples do not accumulate in the ancillary data output buffer. This means that the twenty-
first sample will likely contain zeros in both the high order and low order words. Due to variations in 
the encoder data generation and ancillary buffer output timing, the high- and low-order encoder data 
words can become misaligned, and one or both of the data words in sample #21 will be non-zero. 
This condition must be detected and corrected by the SSM data processing logic. 
 
Retrieve the SSM alignment angle and mirror angle deviation parameters from the CPF and construct 
the SSM alignment matrix, M’, using the equations above. Store the resulting alignment matrix in the 
SSM model. Determine which mirror control electronics (MCE) side (A or B) is active by performing a 
majority vote on the MCE bits (bits 0 and 1) of the elec_enabled_flags status word. If the number of 
status words with bit 1 set exceeds the number with bit 0 set, make the SSM reference angle equal to 
the CPF side B mirror nadir angle. Otherwise, use the side A value. 
 
Quality check the entire TIRS SSM telemetry set as follows: 

1. Validate the SSM telemetry time codes: 
a. Find the first valid time code as the first time code for which the time difference between 

it and the following time code is the nominal 1.0 second sampling interval, to within a 
pre-defined tolerance. 

b. Use the valid time code to correct all previous time codes using the nominal sampling 
interval. 

c. Use the valid time code to check all subsequent time codes using the nominal sampling 
interval. Any time codes failing the sampling interval tolerance are corrected using the 
previous valid sample time and the nominal sampling interval. 

2. Due to the asynchronous SSM telemetry generation and ancillary data assembly processes, 
the SSM encoder samples will sometimes be improperly aligned with the 1 Hz ancillary data 
frames. The encoder telemetry generation logic can run either faster or slower than nominal, 
leading to variations in the number of samples accumulated in the output buffer between 1 
second buffer read operations. Due to these variations in the encoder sample timing, any given 
ancillary data frame may contain from 19 to 21 encoder samples. The TIRS ancillary data 
assembly logic was modified to read (and output) 21 samples for each frame to ensure that 
any extra encoder samples do not accumulate in the encoder telemetry buffer. Furthermore, 
the upper 16 bits and lower 16 bits of each encoder value are buffered separately, so a given 
frame may have partial encoder samples (only upper 16 or only lower 16). The following logic 
is designed to align the upper and lower data words of the SSM telemetry encoder samples in 
each ancillary data record: 

a. If encoder sample 20 is zero and encoder sample 21 is zero 
i. If this is the last ancillary record, set sample 20 equal to sample 19 
ii. Otherwise set sample 20 equal to sample 1 from the next record. 

b. If the high 16-bits of sample 20 are zero: 
i. If the high 16-bits of sample 21 are non-zero, move the bits from sample 21 to 

sample 20. 
ii. Otherwise, move the high 16-bits from the first sample in the next record to 

sample 20, and move all the high order words in the next record up one sample 
(setting the 21st sample to zero). If the current record is the last record, copy 
sample 19 into sample 20. 
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c. If the low 16-bits of sample 20 are zero: 
i. If the low 16-bits of sample 21 are non-zero, move the bits from sample 21 to 

sample 20. 
ii. Otherwise, move the low 16-bits from the first sample in the next record to 

sample 20, and move all the low order words in the next record up one sample. If 
the current record is the last record, copy sample 19 into sample 20.  

d. If sample 21 is equal to zero, go to the next record. 
e. If only the high 16-bits of sample 21 are zero, and this is not the last record, move all 

the high order words in the next record up one sample. 
f. If only the low 16-bits of sample 21 are zero, and this is not the last record, move all the 

low order words in the next record up one sample. 
3. Extract the first 20 samples in each record for subsequent processing. Note that this method 

discards extra samples and fills missing samples by duplicating either the next or the previous 
sample. 

4. Validate the 24-bit SSM telemetry encoder readings: 
a. Find the first valid encoder reading as the first reading for which the difference between 

it and the SSM reference angle (nominal nadir pointing angle for the current MCE side, 
determined above) is less than the quality tolerance specified in the CPF. 

b. Use the valid angle to replace all previous 24-bit encoder readings. 
c. Use the valid angle to check and, if necessary, replace all subsequent 24-bit encoder 

readings, by comparing each value to the previous, valid/corrected, value. 
5. Although an anomaly with the SSM encoder that occasionally rendered the upper 14 bits of the 

read out invalid, was observed during subsystem level test, this behavior has not been seen in 
the integrated TIRS instrument. Due to the low probability of this being a problem, no special 
logic has been added to handle this case. Instead, standard outlier detection and correction 
logic will be relied upon to correct this problem if it occurs. 

 
The quality-checked TIRS ancillary data groups are examined to find the range of samples that 
correspond to the TIRS image.  

1. Scan through the TIRS ancillary data, and convert each time code to seconds from spacecraft 
epoch. 

2. Find the last ancillary data record with a time code that is earlier than the TIRS image start 
time. This is the first TIRS ancillary data packet to extract. 

3. Find the first ancillary data record with a time code that is later than the TIRS image stop time. 
This is the last TIRS ancillary data packet to extract. 

4. Extract the SSM (mirror control electronics or MCE) telemetry fields and time codes for the 
ancillary data records covering the TIRS image. 

For each extracted SSM telemetry group: 
1. Convert the TIRS ancillary data time code to seconds from spacecraft epoch and find the 

difference between the ancillary data time and the TIRS image start time. 
2. Add the SSM encoder time offset (from the CPF) to the sample time so that it represents the 

time of the first SSM encoder sample. 
3. Compute the sample times for the remaining samples by adding increments of 0.05 seconds to 

the previous sample time. 
4. Load the SSM encoder samples into signed 32-bit integer variables for subsequent 

manipulation. 
5. Scale the encoder counts to radians and subtract the SSM reference angle (set as described 

above): 

a. Angle = 2*pi*Sample_Value/0x01000000 – 0 
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b. If Angle > pi Then Angle -= 2*pi 
c. If Angle < -pi Then Angle += 2*pi 

Note:  These angles should all be close to zero for Earth viewing. 
6. Add the 20 computed times (from image start) and the 20 SSM angles to the SSM model. 

 
Smooth the SSM angles as follows: 

1. For each SSM angle: 
a. Find the previous two and next two original data points, or the closest four points if two 

cannot be found before and after. 
b. Compute the average of the current point and the four closest points. 
c. The smoothed value is the mean of the current point value and the 4 closest points. 

2. Store the smoothed sequence of SSM angles in the SSM model. 
 
The baseline TIRS geometric algorithms assume no significant temperature dependence in either the 
SSM or in TIRS alignment. We do assume that the temperature telemetry present in the TIRS 
ancillary data will be recorded in the trending database (for radiometric purposes) so that pointing 
temperature sensitivities could be studied on-orbit (see note #8). 
 
Extract Ancillary Ephemeris and Attitude Data 
The subset of ancillary ephemeris and attitude data needed to span the image data are extracted 
from the input preprocessed ancillary data stream and stored in the model structure. Extra ancillary 
data, nominally 4 seconds, is required before and after the image start/stop times to ensure model 
continuity from scene to scene within an imaging interval. This ancillary data overlap time parameter 
could be stored in a #define statement as it would not be expected to change once established. 
 
The ephemeris data extraction/subsetting procedure is as follows: 

7. Compute the time offset from the ephemeris epoch time to the desired ephemeris start time for 
this image. Note that since the image epoch has been adjusted to fall in the same day as the 
ephemeris epoch this can be done using the seconds of day fields only. 

ephem_start = image_seconds – ancillary_overlap – ephem_seconds 
Noting that image_seconds and ephem_seconds are the seconds of day fields from the image 
and ephemeris epoch times, respectively. 

8. Loop through the ephemeris sample times to find the last entry that does not exceed 
ephem_start. This is the ephemeris start index (eph_start_index). 

9. Compute the time offset from the ephemeris epoch time to the desired ephemeris stop time for 
this image. 

ephem_stop = image_seconds + line_time[N-1] + ancillary_overlap – ephem_seconds 
N is the number of image lines, and N-1 is the index of the last image line time. 

10. Loop through the ephemeris sample times to find the first entry that exceeds ephem_stop. This 
is the ephemeris stop index (eph_stop_index). 

11. Compute a new ephemeris UTC epoch for this image: 
imgeph_year = ephem_year 
imgeph_day = ephem_day 
imgeph_seconds = ephem_seconds + ephem_samp_time[eph_start_index] 

12. Load the ECI and ECEF ephemeris samples from eph_start_index to eph_stop_index 
(inclusive) into the model structure, adjusting the sample times so that they are offset from the 
UTC epoch computed in step 5. 

 
The attitude data extraction/subsetting procedure is as follows: 



LDCM-ADEF-001 
Version 3 

 

8. Compute the time offset from the attitude epoch time to the desired attitude start time for this 
image. Note that since the image epoch has been adjusted to fall in the same day as the 
ancillary data (ephemeris and attitude) epochs this can be done using the seconds of day 
fields only. 

att_start = image_seconds – ancillary_overlap – att_seconds 
Noting that image_seconds and att_seconds are the seconds of day fields from the image and 
attitude epoch times, respectively. 

9. Loop through the attitude sample times to find the last entry that does not exceed att_start. 
This is the attitude start index (att_start_index). 

10. Compute the time offset from the attitude epoch time to the desired attitude stop time for this 
image. 

att_stop = image_seconds + line_time[N-1] + ancillary_overlap – att_seconds 
11. Loop through the attitude sample times to find the first entry that exceeds att_stop. This is the 

attitude stop index (att_stop_index). 
12. Compute a new attitude UTC epoch for this image: 

imgatt_year = att_year 
imgatt_day = att_day 
imgatt_seconds = att_seconds + att_samp_time[att_start_index] 

13. For Earth-view acquisitions, load the roll-pitch-yaw samples from att_start_index to 
att_stop_index (inclusive) into the model structure, adjusting the sample times so that they are 
offset from the UTC epoch computed in step 5. 

14. For lunar/stellar acquisitions, convert the ECI quaternion samples from att_start_index to 
att_stop_index (inclusive) to ECI roll-pitch-yaw values, as described below, and store the 
computed roll-pitch-yaw values in the model structure, adjusting the sample times so that they 
are offset from the UTC epoch computed in step 5. 

 
 
 
Converting ECI Quaternions to Roll-Pitch-Yaw 
For lunar and stellar acquisitions, the ECI attitude representation is stored in the model structure. In 
the baseline model, this is done by converting the ECI quaternions to roll-pitch-yaw values relative to 
the ECI axes. This is one of the motivations for considering a transition to using a quaternion attitude 
representation in the model in the future. 
 
The ECI quaternions are converted to roll-pitch-yaw values as follows: 

4. Compute the rotation matrix corresponding to the  ECI quaternion values: 
MACS2ECI = 
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5. Compute the corresponding ACS to ECI roll-pitch-yaw values: 
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Note that in implementing these calculations it is important to use the ATAN2 rather than 
the ATAN arctangent implementation in order to retain the correct quadrants for the Euler 
angles. This is not a concern in Earth-view imagery where the angles are always small, but 
becomes an issue for these lunar/stellar ACS to ECI angles. 

6. Store the ECI roll-pitch-yaw values in the model attitude data table. 
 
At the completion of this sub-algorithm the model structure contains the image frame time stamps, the 
multispectral and panchromatic sample and integration times, the ancillary ephemeris data, in both 
ECI and ECEF representations, covering the image, and the ancillary attitude data covering the 
image. 
 
Jitter Correction Data Preprocessing 
Jitter correction preprocessing operates on the roll-pitch-yaw attitude data stream extracted from the 
spacecraft ancillary data to separate the low frequency spacecraft pointing effects from the higher 
frequency jitter disturbances. The low frequency pointing model is used for line-of-sight projection and 
other geolocation processing while the high frequency jitter effects are applied as per-line corrections 
during image resampling. To implement this frequency separation in the line-of-sight model the 
original attitude sequence is passed through a low pass filter with a cutoff frequency defined as a 
parameter in the CPF. This cutoff frequency will nominally be in the 1 Hz to 10 Hz range. The value 
ultimately selected for this cutoff frequency will depend upon the actual disturbance profile observed 
in the spacecraft attitude data. The high frequency data stream should be limited in magnitude to sub-
pixel (ideally sub-half-pixel) effects, but the lower the cutoff frequency can be, the sparser (and 
smaller) the TIRS resampling grid can be made in the line (time) dimension.  
 
The low pass filtered version of the attitude sequence is differenced with the original data to construct 
the complementary high pass data sequence. The high pass sequence is then interpolated at the 
TIRS image line times to provide a table containing high frequency roll-pitch-yaw corrections for each 
image line. This jitter table is stored in the TIRS line-of-sight model. The original attitude sequence in 
the line-of-sight model is replaced with the low pass filtered sequence to avoid double counting the 
high frequency effects. This process is depicted in figure 5. 
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Figure 5:  Jitter Correction Table Generation Data Flow 

 
The jitter table construction processing sequence is as follows: 

7. Extract a copy of the original attitude data sequence from the TIRS line-of-sight model.  
8. Retrieve the low pass filter cutoff frequency from the CPF. 
9. Design a low pass filter with the desired cutoff frequency and apply it to the attitude data. 

a. Use the cutoff frequency and attitude data sampling time to compute the size of the 
desired filter as follows: 

i. Compute the normalized cutoff frequency (the ratio of the cutoff frequency to the 
attitude data sampling frequency): 

n_cutoff = cutoff_frequency / attitude_sample_frequency 
   Note that this is the same as: 

n_cutoff = cutoff_frequency * attitude_sample_time 
ii. Compute the number of samples per cycle at the cutoff frequency: 

 Nsamp = 1 / n_cutoff 
iii. Multiply the number of samples per cycle by 3 and add 1 to yield the desired filter 

size: 
FSize  = 3*Nsamp + 1 

iv. If this results in an even filter size, add one: 
If ( FSize modulo 2 == 0 ) FSize = FSize + 1 

b. Use the Remez exchange algorithm to design the filter and generate the filter weights. 
The standard Parks-McClellan finite impulse response (FIR) digital filter design method 
uses the Remez exchange algorithm (ref. Theory and Application of Digital Signal 
Processing, Rabiner and Gold, Prentice-Hall, 1975). A C implementation of this 
algorithm called remez.c, authored by Jake Janovetz at the University of Illinois, is 
available under the GNU Public License. This implementation specifies the desired (low 
pass, in this case) filter response using the following parameters: 

i. Filter size (number of taps) – FSize computed in item a. above. 
ii. Number of frequency bands to use – 2, one pass band (low frequency) and one 

stop band (high frequency). 
iii. Band frequency bounds – 0 to the normalized cutoff frequency (n_cutoff) for the 

pass band and 1.5*n_cutoff to 0.5 (normalized Nyquist frequency) for the stop 
band. 

iv. Desired band gains – 1 for pass band (low) and 0 for stop band (high). 
v. Band weights (how tightly to constrain the actual filter response to the design 

filter response in each band) – 1 for pass band and 10 for stop band. 
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vi. Filter type – BANDPASS (the low pass filter is a special case of the more general 
BANDPASS filter type supported by the remez algorithm. 

c. Make sure the synthesized filter is normalized (weights sum to 1) by adding the filter tap 
values and dividing each tap by the total. 

sum = Σ h[i]   where h[i] are the FSize filter taps. 
h’[i] = h[i] / sum for i = 1 to FSize. 

d. Convolve the filter with the roll-pitch-yaw attitude data one axis at a time: 
 half_size = FSize / 2 

for index = 0 to num_rpy – 1 
 low_roll[index] = low_pitch[index] = low_yaw[index] = 0 
   for ii = -half_size to half_size 
  if ( index + ii < 0 ) j = -index – ii 
  else if ( index + ii < num_rpy ) j = index + ii 
  else j = 2*num_rpy – index - ii – 1 
 low_roll[index] += roll[j]*h[ii+half_size] 
 low_pitch[index] += pitch[j]*h[ii+half_size] 
    low_yaw[index] += yaw[j]*h[ii+half_size] 

10. Subtract the low pass filtered sequences from the original sequences to extract the high 
frequency portion of the data, and transfer any residual bias (non-zero mean value) from the 
imaging portion of the high frequency sequence to the low frequency sequence: 

roll_bias = pitch_bias = yaw_bias = 0 
att_pts = 0 
for index = 0 to nrpy–1 
 high_roll[index] = roll[index] – low_roll[index] 
 high_pitch[index] = pitch[index] – low_pitch[index] 
 high_yaw[index] = yaw[index] – low_yaw[index] 
 if ( image_start_time < attitude_time[index] < image_stop_time ) 
  roll_bias += high_roll[index] 
  pitch_bias += high_pitch[index] 
  yaw_bias += high_yaw[index] 
  att_pts += 1 
roll_bias = roll_bias / att_pts 
pitch_bias = pitch_bias / att_pts 
yaw_bias = yaw_bias / att_pts 
for index = 0 to nrpy-1 
 high_roll[index] -= roll_bias 
 low_roll[index] += roll_bias 
 high_pitch[index] -= pitch_bias 
 low_pitch[index] += pitch_bias 
 high_yaw[index] -= yaw_bias 
 low_yaw[index] += yaw_bias 

11. Interpolate the high frequency sequence values at the TIRS line sampling times to create the 
model jitter table: 

For each TIRS image line = 0 to number of lines: 
 Compute the line sampling time as: 
  index = line 

    line_time = line_time_stamp[index] 
    + integration_time/2 

   Convert to time from attitude epoch: 
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    line_time += image_epoch – attitude _epoch 
Interpolate high frequency roll-pitch-yaw values at this time using four point 
Lagrange interpolation: 

Compute starting index for interpolation:  
 index = floor(line_time / attitude_sample_time) – 1 
 Compute the fractional sample offset to the line time: 
 w = line_time / attitude_sample_time – index – 1 
 Compute the Lagrange weights: 
 w1 = -w * (w – 1) * (w – 2) / 6 
 w2 = (w + 1) * (w – 1) * (w – 2) / 2 
 w3 = -w * (w + 1) * (w – 2) / 2 
 w4 = (w + 1) * w * (w – 1) / 6 

Interpolate: 
roll = high_roll[index]*w1 + high_roll[index+1]*w2 
       + high_roll[index+2]*w3 + high_roll[index+3]*w4 
pitch = high_pitch[index]*w1 + high_pitch[index+1]*w2 
       + high_pitch[index+2]*w3 + high_pitch[index+3]*w4 
yaw = high_yaw[index]*w1 + high_yaw[index+1]*w2 
       + high_yaw[index+2]*w3 + high_yaw[index+3]*w4 

12. Replace the original model attitude data sequence with the low pass filtered attitude data 
sequence. 

 
Note that if TIRS and OLI processing is combined, the attitude filtering and high-pass/low-pass 
separation logic should be common, but the two sensors would still require their own jitter tables 
since these tables are based on the image line times, which are different for TIRS and OLI. 
 
Process LOS Model Sub-Algorithm 
This function loads the LOS Legendre polynomial coefficients and other model components from the 
CPF, and performs additional processing on the attitude and ephemeris information in the LOS model 
structure. It invokes the following sub-algorithms. 
 
Read CPF Model Parameters Sub-Algorithm 
This function loads model components from the CPF. In the heritage ALIAS implementation some of 
these model components either did not exist (e.g., instrument offset from spacecraft center of mass) 
or were used for image resampling but not LOS model computations (e.g., detector offset table) and 
so, were not included in the model. These are included in the TIRS model to make it self-contained 
for purposes of line-of-sight computations. 
 
CPF parameters loaded into the geometric model include: 

7. Earth orientation parameters – the UT1UTC and pole wander (x,y) parameters for the current 
day are stored in the model to avoid the necessity of repeatedly looking them up in the CPF. 

8. TIRS offset from spacecraft center of mass – a 3-vector that captures the small offset, in 
spacecraft body coordinates, between the TIRS instrument, where images are captured, and 
the spacecraft center of mass, the position of which is reported in the ancillary ephemeris data, 
making it possible to translate the ephemeris data to the TIRS. Technically, this would be the 
vector from the spacecraft center of mass to the center of the TIRS entrance pupil. Note that 
this formulation assumes that the spacecraft on-board GPS data processing includes the GPS 
to spacecraft center of mass (CM) offset and that the spacecraft is, in fact, reporting CM 
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positions not GPS antenna positions. If the ephemeris represents the GPS antenna location 
then we would need to know the spacecraft CM to GPS antenna offset as well. 

9. TIRS to attitude control system (ACS) alignment matrix – a 3-by-3 matrix that captures the 
relative orientation of the TIRS coordinate system to the ACS coordinate system, making it 
possible to rotate the TIRS instrument-space line-of-sight vectors into the ACS reference 
system. In the heritage ALIAS system this was actually represented in the CPF by an ACS to 
instrument rotation matrix which was inverted for each LOS model invocation. Whichever 
convention is used in the CPF, the LOS model should store the TIRS-to-ACS rotation matrix. 

10. TIRS line-of-sight Legendre polynomials – a set of 8 coefficients (4 along-track and 4 across-
track) for each band on each SCA. Each set of 4 forms a 3rd order Legendre polynomial that is 
used to evaluate a nominal LOS angle (along- or across-track) for the detectors in that band on 
that SCA. This differs from the heritage implementation which used a 2nd order model (see the 
Read LOS Vectors Sub-Algorithm description below). 

11. TIRS detector delay table – a table consisting of two values (along- and across-track) per 
detector reflecting the offset of each actual detector from its nominal location (as modeled by 
the 3rd order Legendre polynomials – see below). In the heritage ALIAS implementation these 
were small sub-pixel offsets that were applied in the image resampling procedure. With the 
TIRS, this table will also contain any offsets due to detector deselect/replacement (i.e., the 
operational use of a detector from one of the redundant rows). This table is needed in those 
LOS projection algorithms that utilize either actual (whole pixel offsets) or exact (full sub-pixel 
offsets) detector locations. 

 
Read LOS Vectors Sub-Algorithm 
This function retrieves the line of sight vectors from the CPF. The line of sight vectors are stored as 
sets of 3rd

 order Legendre polynomial coefficients. There is a unique set of 8 coefficients for each 
band of each SCA, 4 for the along-track polynomial and 4 for the across-track polynomial. These 
values are read from the CPF and stored in the LOS model. The polynomials are used to compute 
along- and across-track viewing angles for each nominal detector. 
 
Initialize the Precision Model Sub-Algorithm 
This function initializes the precision LOS correction model parameters. If the optional precision 
model input parameters are provided, those values are used. In the normal case, those parameters 
are absent and the correction model is initialized as follows: 

Set the precision correction reference time to the center of the scene: 
 t_ref = line_time[N/2]   where: N is the number of time codes in the image 
Set the ephemeris correction model order to zero: eph_order = 0 
Set both ephemeris X correction parameters to zero: 
 x_corr[0] = 0.0, x_corr[1] = 0.0 
Set both ephemeris Y correction parameters to zero: 
 y_corr[0] = 0.0, y_corr[1] = 0.0 
Set both ephemeris Z correction parameters to zero: 
 z_corr[0] = 0.0, z_corr[1] = 0.0 
Set the attitude correction model order to zero: att_order = 0 
Set all three attitude roll correction parameters to zero: 
 roll_corr[0] = 0.0, roll_corr[1] = 0.0, roll_corr[2] = 0.0 
Set all three attitude pitch correction parameters to zero: 
 pitch_corr[0] = 0.0, pitch_corr[1] = 0.0, pitch_corr[2] = 0.0 
Set all three attitude yaw correction parameters to zero: 
 yaw_corr[0] = 0.0, yaw_corr[1] = 0.0, yaw_corr[2] = 0.0 
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Note that these parameters are used to compute the corrected ephemeris and attitude data 
sequences which are also stored in the model. The parameters themselves are included in the model 
primarily to document the magnitude of the corrections applied and to facilitate more advanced uses 
of the model creation logic. For example, it is sometimes useful to be able to force a particular model 
bias (e.g., a roll angle) into a model that is to be used for data simulation (see note 6). So, though not 
strictly necessary for operational data processing, these parameters aid in anomaly resolution, data 
simulation, and algorithm development. In normal operations, these initial correction parameters are 
all zero and the "corrected" attitude and ephemeris data sequences are identical to the "original" 
attitude and ephemeris data prior to the execution of the LOS model correction algorithm. 
Subsequent algorithms (e.g., LOS projection) operate on the corrected data. 
 
Correct Attitude Sub-Algorithm 
This function applies the ACS/body space attitude corrections computed by the LOS/precision 
correction procedure to the attitude data sequence. It outputs a parallel table of roll-pitch-yaw values 
with the precision corrections applied. In the model creation context the precision corrections are zero 
so the two sets of attitude data are identical. Though applying the precision corrections to construct 
the corrected attitude sequence could be said to be overkill for model creation (since the corrections 
are nominally zero at this point) this capability is required for LOS model correction and is used here 
to support the use of the model creation algorithm for data simulation and anomaly resolution as it 
makes it possible to force initial biases into the model. This sub-algorithm will also be used by the 
LOS/precision correction algorithm to create the precision model. Note that the formulation is 
somewhat different for Earth-view scenes (Acquisition Type = Earth) than it is for lunar and stellar 
observations. 
 
Earth Scenes 
For Earth-view scenes the sequence of transformations required to convert a line-of-sight in the TIRS 
instrument coordinate system, generated using the Legendre polynomials, is: 
 

xECEF = MORB2ECEF MACS2ORB MPrecision MTIRS2ACS MSSM() MTele2SSM xTIRS 
 

where:  xTIRS  is the Legendre-derived instrument LOS vector 
MTele2SSM is the TIRS telescope alignment matrix described above 

MSSM() is the SSM reflection matrix, described above, which is a function of 
SSM angle 
MTIRS2ACS is the TIRS to ACS alignment matrix from the CPF 
MPrecision is the correction to the attitude data computed by the LOS/precision 
correction procedure 
MACS2ORB is the spacecraft attitude (roll-pitch-yaw) 
MORB2ECEF is the orbital to ECEF transformation computed using the ECEF 
ephemeris 
xECEF is the LOS vector in ECEF coordinates 
 

Since TIRS will occasionally be viewing off-nadir and it is more natural to model attitude errors in the 
ACS/body coordinate system than in the orbital coordinate system, the order of the MACS2ORB and 
MPrecision rotations have been reversed for LDCM as compared to the heritage Landsat/EO-1 
implementation. The impact is minimal in the model and LOS projection but becomes more important 
for the LOS/precision correction algorithm. 
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This new sub-algorithm pre-computes the MACS2ORB MPrecision combination and stores the 
corresponding corrected roll-pitch-yaw attitude sequence in the model structure. This approach has 
several advantages: 

7. It streamlines the application of the model for LOS projection by removing the step of explicitly 
applying the precision correction. 

8. It allows for the use of a more complex correction model in the future since the application of 
the model is limited to this unit. Note that the Earth-view attitude correction model consists of 
the following model parameters: 

Precision reference time: t_ref in seconds from the image epoch (at the center of the 
image time window) 
Attitude model order:  att_order = 1 
Roll bias and rate corrections: roll_corr[] = roll_bias, roll_rate 
Pitch bias and rate corrections: pitch_corr[] = pitch_bias, pitch_rate 
Yaw bias and rate corrections: yaw_corr[] = yaw_bias, yaw_rate 

This model is dealt with in more detail in the line-of-sight correction algorithm description. 
9. Retaining both the original and corrected attitude sequences in the model make the model self-

contained and will make it unnecessary for the LOS/precision correction algorithm to access 
the preprocessed ancillary data. 

The disadvantage is that it doubles the size of the attitude data in the model structure. 
 
The construction of the corrected attitude sequence proceeds as follows: 
 For each point in the attitude sequence j = 0 to K-1: 

10. Compute the rotation matrix corresponding to the jth roll-pitch-yaw values: 
MACS2ORB = 
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11. Compute the precision correction at the time (t_att = att_seconds + att_time[j]) 
corresponding to the attitude sample: 

a. 



att_order

i

indsimage_secot_reft_attictionroll_corre
0

)(*][roll_corr  

b. 



att_order

i

indsimage_secot_reft_attiectionpitch_corr
0

)(*][pitch_corr  

c. 



att_order

i

indsimage_secot_reft_attitionyaw_correc
0

)(*][yaw_corr  

Note that only the seconds of day fields are needed for the attitude and image epochs as they 
are constrained to be based on the same year and day. 
12. Compute the rotation matrix corresponding to roll_correction (r), pitch_correction (p), and 

yaw_correction (y) (MPrecision) using the same equations presented in step 1 above. 
13. Compute the composite rotation matrix:  M = MACS2ORB MPrecision 
14. Compute the composite roll-pitch-yaw values: 



LDCM-ADEF-001 
Version 3 

 

 







































0,0

0,11

0,2

1

2,2

1,21

M

M
tanyaw'

Msinpitch'

M

M
tanroll'

 

15. Store the composite roll’-pitch’-yaw’ values in the jth row of the corrected attitude data table. 
 
Lunar and Stellar Scenes 
Though there is no TIRS requirement for lunar or stellar data processing, this capability is retained to 
maintain compatibility with the OLI geometric model. For celestial (lunar or stellar) observations the 
sequence of transformations required to convert a line-of-sight in the TIRS instrument coordinate 
system, generated using the Legendre polynomials, is: 
 

xECI = MACS2ECI MPrecision MTIRS2ACS MSSM() MTele2SSM xTIRS 
 

where:  xTIRS  is the Legendre-derived instrument LOS vector 
MTele2SSM is the TIRS telescope alignment matrix described above 

MSSM() is the SSM reflection matrix, described above, which is a function of 
SSM angle 
MTIRS2ACS is the TIRS to ACS alignment matrix from the CPF 
MPrecision is the correction to the attitude data computed by the LOS/precision 
correction procedure 
MACS2ECI is the spacecraft attitude in the ECI frame derived from the ECI 
quaternions in the preprocessed ancillary data 
xECI is the LOS vector in ECI coordinates 
 

The advantage of modeling the precision attitude corrections in ACS rather than orbital coordinates 
becomes apparent here, since the orbital frame is not used in the lunar case. 
This sub-algorithm pre-computes the MACS2ECI MPrecision combination and stores the corresponding 
corrected attitude sequence (as roll-pitch-yaw values relative to ECI) in the model structure. Another 
difference between the Earth-view and lunar/stellar models is in the formulation of the precision 
model. The lunar attitude correction model adds an acceleration term to the Earth-view correction 
model parameters: 

Precision reference time: t_ref in seconds from the image epoch (nominally near the center of 
the image time window) 
Attitude correction model order:  att_order = 2 
Roll bias, rate, and acceleration corrections: roll_corr[] = roll_bias, roll_rate, roll_acceleration 
Pitch bias, rate, and acceleration corrections: pitch_corr[] = pitch_bias, pitch_rate, 
pitch_acceleration 
Yaw bias, rate, and acceleration corrections: yaw_corr[] = yaw_bias, yaw_rate, 
yaw_acceleration 

Due to the different orders of the Earth-view and lunar correction models, this model is stored as an 
array in the model structure along with a field defining the model order. The precision model is dealt 
with in more detail in the line-of-sight correction algorithm description. 
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The processing steps to construct the corrected attitude sequence is the same for lunar/stellar 
acquisitions, although the interpretation of the roll-pitch-yaw values is slightly different, and proceeds 
as follows: 
 For each point in the attitude sequence j = 0 to K-1: 

6. Compute the rotation matrix corresponding to the jth  ECI roll-pitch-yaw values: 
MACS2ECI = 

cos( ) cos( ) sin( ) sin( ) cos( ) cos( ) sin( ) sin( ) sin( ) cos( ) sin( ) cos( )

cos( ) sin( ) cos( ) cos( ) sin( ) sin( ) sin( ) cos( ) sin( ) sin( ) sin( ) cos( )

sin( ) sin( ) cos( ) cos( ) cos( )

p y r p y r y r y r p y

p y r y r p y r p y r y

p r p r p

 

  



















 

16. Compute the precision correction at the time (t_att = att_seconds + att_time[j]) 
corresponding to the attitude sample: 

a. 
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Note that only the seconds of day fields are needed for the attitude and image epochs as they 
are constrained to be based on the same year and day. 
7. Compute the rotation matrix corresponding to roll_correction (r), pitch_correction (p), and 

yaw_correction (y):  
MPrecision = 
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8. Compute the composite rotation matrix:  M = MACS2ECI MPrecision 
9. Compute the composite ACS to ECI roll-pitch-yaw values: 
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Note that in implementing these calculations it is important to use the ATAN2 rather than 
the ATAN arctangent implementation in order to retain the correct quadrants for the Euler 
angles. This is not a concern in Earth-view imagery where the angles are always small, but 
becomes an issue for these lunar/stellar ACS to ECI angles. 

10. Store the composite roll’-pitch’-yaw’ values in the jth row of the corrected attitude data table. 
 
Correct Ephemeris Sub-Algorithm 
The heritage ALIAS function converts the ephemeris information (position and velocity) from the Earth 
Centered Inertial (ECI J2000) system to the Earth Centered Earth Fixed (ECEF) system and applies 
the ephemeris corrections computed in the LOS/precision correction procedure to both ephemeris 
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sets. Since both ECI and ECEF representations of the ephemeris are now provided by the ancillary 
data preprocessing algorithm, the first portion of the heritage algorithm is no longer necessary (or 
could be reused in the ancillary data preprocessing algorithm). Though applying the precision 
corrections to construct the corrected ephemeris sequence could be said to be overkill for model 
creation (since the corrections are nominally zero at this point) this capability is required for LOS 
model correction and is used here to support the use of the model creation algorithm for data 
simulation and anomaly resolution as it makes it possible to force initial biases into the model. This 
sub-algorithm will also be used by the LOS/precision correction algorithm to create the precision 
model. 
 
The precision correction parameters are stored in the LOS model in the spacecraft orbital coordinate 
system as three position (x_bias, y_bias, z_bias) corrections and three velocity (x_rate, y_rate, 
z_rate) corrections that, like the attitude corrections, are relative to t_ref.  These values must be 
converted to the ECEF and ECI coordinate systems.  Once the precision correction is determined in 
the ECEF/ECI coordinate system, the ECEF/ECI ephemeris values can be updated with the precision 
parameters. 
 
Loop on LOS model ephemeris points j = 0 to N-1 
 
        Compute the precision correction: 

 
Calculate delta time for precision correction: 

dtime = ephem_seconds + ephem_time[j] – t_ref – image_seconds 
 

Calculate the change in X, Y, Z due to precision correction.  Corrections are in terms of 
spacecraft orbital coordinates. 
 

dx orb = model precision x_corr[0] + model precision x_corr[1] * dtime 
dy orb = model precision y_corr[0] + model precision y_corr[1] * dtime 
dz orb = model precision z_corr[0] + model precision z_corr[1] * dtime 

  
where: 

 model precision x_corr[0] = precision (orbital) update to X position 
 model precision y_corr[0] = precision (orbital) update to Y position 
 model precision z_corr[0] = precision (orbital) update to Z position 
 model precision x_corr[1] = precision (orbital) update to X velocity 
 model precision y_corr[1] = precision (orbital) update to Y velocity 
 model precision z_corr[1] = precision (orbital) update to Z velocity 

 
Construct precision position and velocity “delta” vectors. 
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Calculate the orbit to ECF transformation [ORB2ECEF] using ECEF ephemeris (See the 
ancillary data preprocessing ADD for this procedure). 
 
Transform precision “delta” vectors to ECEF. 
 

    

    dvorbORB2ECEFdvef

dorbORB2ECEFdef





 

 
 

Adjust ECEF ephemeris by the appropriate “delta” precision vector and store the new 
ephemeris in the model.  These ephemeris points will be used when transforming an input 
line/sample to an output projection line/sample. 
 

dvecf velocityecef ephemeris velocityef model

decfpostion ecef ephemerispostion ef model




 

where:  
All parameters are 3x1 vectors 
ephemeris ecef values are the interpolated one-second ephemeris values in 
ECEF coordinates 

 
Calculate the orbit to ECI transformation [ORB2ECI] using ECI ephemeris. 

 
Transform precision “delta” vectors to ECI. 
 

    

    dvorbORB2ECIdveci

dorbORB2ECIdeci





 

 
 
Adjust ECI ephemeris by the appropriate “delta” precision vector and store the new ephemeris 
in the model.  These ephemeris points will be used with lunar/stellar observations. 
 

dveci velocityeci ephemeris velocityeci model

decipostion eci ephemerispostion eci model




 

where:  
All parameters are 3x1 vectors 
ephemeris eci values are the interpolated one-second ECI ephemeris  

 
Move Satellite Sub-Algorithm 
This function computes the satellite position and velocity at a delta time from the ephemeris reference 
time using Lagrange interpolation. This is a utility sub-algorithm that accesses the model ephemeris 
data to provide the TIRS position and velocity at any specified time. Since the model ephemeris 
arrays are inputs to this sub-algorithm it will work with either the ECI or ECEF ephemeris data. 
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Table 3 below summarizes the contents of the TIRS LOS model structure. The estimated size of this 
structure is approximately 1.5 megabytes. 
 

LOS Model Structure Contents 

Satellite Number (8) 

Format Version Number (for documentation and backward compatibility) 

WRS Path 

WRS Row (may be fractional) 

Acquisition Type (Earth, Lunar, Stellar) 

Earth Orientation Parameters 

  UT1UTC Correction (in seconds) 

  Pole Wander X Correction (in arc seconds) 

  Pole Wander Y Correction (in arc seconds) 

Image Model 

  Number of image lines 

  Image UTC epoch:  image_year, image_day, image_seconds 

  For each line:  frame time offset (in seconds) from image epoch 

  For each line:  roll, pitch, yaw high frequency jitter correction (in radians) 

  Nominal alignment fill table (from CPF) one value per band per SCA (in 
pixels) 

  Detector alignment fill table (from L0R/L1R) one value per detector (in pixels) 

Sensor Model 

  TIRS to ACS reference alignment matrix [3x3] 

  Spacecraft center of mass to TIRS offset in ACS reference frame [3x1] in 
meters 

  Integration Time in seconds 

  Computed Sample Time in seconds 

  Number of SCAs (3) 

  Number of Bands (4) 

  Along-Track IFOV in radians 

  Across-Track IFOVs (MS and pan) in radians 

  Number of Detectors per SCA in each Band (4x1 array) 

  Focal plane model parameters (Legendre coefs) [NSCAxNBANDx2x4] (in 
radians) 

  Detector delay table [NSCAxNBANDx2xNDET] (in pixels) 

Scene Select Mirror Model 

  Telescope to SSM alignment matrix [3x3] 

  Number of SSM encoder angles 

  Time from image epoch (one per sample, nominally 20 Hz) (in seconds) 

  SSM angle (one per sample) (in radians) 

Ephemeris Model 

  Scene ephemeris data UTC epoch:  imgeph_year, imgeph_day, 
imgeph_seconds 

  Number of ephemeris samples 

  Time from epoch (one per sample, nominally 1 Hz) (in seconds) 

  Original ECI position estimate (X, Y, Z) (one set per sample) (in meters) 

  Original ECI velocity estimate (Vx, Vy, Vz) (one set per sample) (in 
meters/sec) 

  Original ECEF position estimate (X, Y, Z) (one set per sample) (in meters) 

  Original ECEF velocity estimate (Vx, Vy, Vz) (one set per sample) (in 
meters/sec) 

  Corrected ECI position estimate (X, Y, Z) (one set per sample) (in meters) 

  Corrected ECI velocity estimate (Vx, Vy, Vz) (one set per sample) (in 
meters/sec) 

  Corrected ECEF position estimate (X, Y, Z) (one set per sample) (in meters) 

  Corrected ECEF velocity estimate (Vx, Vy, Vz) (one set per sample) (in 
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meters/sec) 

Attitude Model 

  Scene attitude data UTC epoch: imgatt_year, imgatt_day, imgatt_seconds 

  Number of attitude samples 

  Time from epoch (one per sample, nominally 50 Hz) (in seconds) 

  Original Roll, pitch, yaw estimate (one per sample) (in radians) 

  Corrected Roll, pitch, yaw estimate (one per sample) (in radians) 

Precision Correction Model 

  Precision reference time (t_ref) seconds from image epoch 

  Ephemeris correction order: eph_order (0 none, 1 for Earth-view and 
lunar/stellar) 

  X correction model: x_bias, x_rate  (meters, meters/sec) 

  Y correction model: y_bias, y_rate  (meters, meters/sec) 

  Z correction model: z_bias, z_rate  (meters, meters/sec) 

  Attitude correction order: att_order (0 none, 1 for Earth, 2 for lunar/stellar) 

  Roll correction model:  roll_bias, roll_rate, roll_acc (rad, rad/sec, rad/sec
2
) 

  Pitch correction model: pitch_bias, pitch_rate, pitch_acc (rad, rad/sec, 
rad/sec

2
) 

  Yaw correction model: yaw_bias, yaw_rate, yaw_acc (rad, rad/sec, rad/sec
2
) 

Table 3:  TIRS LOS Model Structure Contents 
 
Note that in the precision correction model only the correction model array elements up to att_order 
are valid. For example, for Earth-view scenes att_order = 1 and roll_corr[0] = roll_bias, roll_corr[1] = 
roll_rate and roll_corr[2] is not used. 

7.3.1.8 Maturity 

Though much of the OLI model creation algorithm was reusable for TIRS there are several areas 
where changes were necessary: 

1. The TIRS SSM telemetry is extracted from the ancillary data stream, quality checked, and 
smoothed. The SSM model is a new component that has been added to the TIRS LOS model. 
Known issues with the performance of the SSM encoder may necessitate the development of 
additional correction logic to account for errors in the high-order encoder bits (see also note #7 
below). This is not included in the current baseline. 

2. Analysis of the TIRS optical model has shown that the 2nd order Legendre polynomial model 
used to generate OLI lines-of-sight will not be adequate for TIRS. This is due primarily to the 
larger field of view of the TIRS SCAs. Since each SCA covers a larger portion of the 
instrument’s field of view, it is subject to more of the optical distortion variations that occur 
across the field of view. Initial analysis indicates that a 3rd order Legendre model will capture 
the nominal TIRS detector lines of sight for each band and each SCA with sufficient fidelity. 
The TIRS detector line-of-sight model has been updated accordingly. 

3. Some features of the OLI instrument (e.g., odd-even detector offset) are not relevant for TIRS 
but are retained, with appropriate calibration parameters set to zero, to maintain commonality 
across the models. 

4. Temperature measurements at the TIRS mount points and in the scene select mirror 
mechanism may allow the inclusion of temperature dependent effects in the TIRS to ACS (and 
TIRS to OLI) alignment and/or the SSM model. This is not included in the baseline model but 
we do assume that the relevant temperature telemetry is trended (see note #8 below). 

7.3.1.9 Notes 

Some additional background assumptions and notes include: 
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1. The static precession, nutation, and sidereal time parameters needed to convert Earth 
Centered Inertial J2000 to/from WGS84 Earth Fixed are built into the software rather than 
being provided as input data. The dynamic terms (UT1UTC correction, polar wander) are 
provided in the CPF. For LDCM, the CPF has been expanded to include a leap second table to 
allow for converting spacecraft TAI-reference time codes to UTC. This TAI to UTC time 
conversion and the ECI/ECEF conversion algorithm are discussed in the ancillary data 
preprocessing algorithm description document. 

2. While it seems to be generally agreed that the TIRS Level 0R/Level 1R data will not use fill 
pixels to nominally align bands and/or SCAs, it may include fill pixels to achieve nominal 
detector-to-detector alignment in the case where bad detectors are replaced from the 
redundant detector row. Since this is an existing capability in the heritage OLI logic, the 
L0R/L1R detector alignment fill table input identified in the input table will be retained as the 
mechanism for the Level 0R/1R data to identify the number of any fill pixels used. In practice, it 
may be preferable to keep the TIRS L0R in strict time order (with no fill) even if dead detector 
replacement is performed. 

3. The "thresholds and limits" parameters, stored either in system tables or the database for L7 
and ALI, will be included in the CPF for LDCM. This will make date specific changes, e.g., due 
to a change in the nominal orbit during early- or late-mission operations, easier to manage. 

4. The current algorithm baseline is to use the heritage attitude model roll-pitch-yaw 
representation. This could be updated in a future revision to use a quaternion representation. 
This is the motivation for including both quaternion and roll-pitch-yaw representations of the 
attitude data sequence in the output from the ancillary data preprocessing algorithm.  

5. This algorithm includes a simple image time code validation/smoother function to fix errors 
and/or smooth out quantization effects in the downlinked time codes. This may not be 
necessary or it may need to be more elaborate depending on the reliability of the TIRS time 
codes. 

6. The baseline algorithm prototype implementation allows the precision correction model 
parameters to be provided as optional input parameters. This would not be used for 
operational data processing and these parameters would not ordinarily be provided, with their 
values defaulting to those set in the Initialize the Precision Model sub-algorithm. Having such 
an R&D capability to force model corrections at model creation time can prove useful in 
applications such as data simulation and anomaly resolution. 

7. The reliability of the SSM encoder telemetry is unknown. As a contingency, the baseline model 
includes a quality check and smoothing logic to allow for SSM encoder data preprocessing. 
The quality check is based on a threshold check that ensures sample-to-sample consistency. 
The threshold is a CPF parameter. A check for consistency with a nominal value may also be 
required. 

8. The baseline model does not include any temperature dependent effects in either the SSM or 
in the overall TIRS alignment. The temperature telemetry provided in the TIRS ancillary data 
would provide a means for investigating any such dependencies on orbit. This algorithm 
assumes that the TIRS temperature telemetry will be collected and trended by the radiometric 
processing algorithms and would therefore be available, if needed, for future implementation of 
temperature-based calibration adjustments. 

9. The SSM encoder position is provided at a 20 Hz sampling rate even though the SSM 
telemetry packets are generated at 1 Hz. Each packet contains 20 samples, with each sample 
representing one 24-bit encoder read out. 

10. The TIRS detector deselect mechanism and detector offset geometry differ from the OLI 
versions but the same correction logic can be applied. In the OLI case, adjacent redundant 
detectors are switched on in place of the defective primary detectors causing the active 
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detector location to be shifted in the along-track direction. This shift is in addition to the normal 
even/odd detector offset. For TIRS, there is no even/odd offset and instead of having individual 
redundant detectors that must be switched on individually, an entire redundant row of 
detectors is downlinked for each band. Detector replacement is performed in Level 0 
processing where the samples from defective primary detectors are swapped with the samples 
from the corresponding detector in the redundant row. The net result is that TIRS detectors will 
have an integer detector offset of either 0, for detectors from the primary row, or whatever the 
line offset happens to be between the primary and redundant detector rows, for detectors that 
are replaced/deselected. Since the selection of primary and redundant rows will be made 
separately for each band on each SCA, these offsets can vary from SCA-to-SCA but will be 
constant within a given band on a given SCA. 



LDCM-ADEF-001 
Version 3 

 

  
 

7.3.2 TIRS Line-of-Sight Projection/Grid Generation 

7.3.2.1 Background/Introduction 

The line-of-sight (LOS) projection and grid generation algorithm uses the TIRS LOS model, created 
by the TIRS LOS model creation algorithm, to calculate the intersection of the projected lines-of-sight 
from selected TIRS detector samples (pixels) with an Earth model (WGS84). The spacecraft position 
and pointing, TIRS instrument alignment and offset information, TIRS scene select mirror (SSM) 
angle, and image timing data contained in the LOS model are used to construct the LOS for an 
individual TIRS detector at a particular sample time. We then calculate the location where that line of 
sight intersects the Earth’s surface, as defined by the WGS84 Earth ellipsoid or a specified elevation 
above or below that ellipsoid. LOS intersections for an array of detector samples that span each TIRS 
SCA and spectral band are computed at the WGS84 ellipsoid surface as well as at a range of 
elevation levels selected to span the actual terrain elevations found in the image area. The resulting 
array of projected lines-of-sight forms a three-dimensional grid of input (Level 1R) image pixel 
line/sample to output space (Level 1G) mappings that can be used to interpolate input/output pixel 
mappings for intermediate points. The resulting ability to rapidly compute input/output mappings 
greatly facilitates image resampling. 
 
The TIRS LOS projection and grid generation algorithm can also work in an “inertial direction” mode 
in which the output space is in angular units with respect to a set of reference inertial directions. This 
mode is used to process lunar data wherein the inertial coordinates (declination and right ascension) 
of the moon, computed from a planetary ephemeris, are used as the reference to define the output 
image frame. In this case the lines-of-sight are computed in inertial coordinates but are not projected 
to the Earth’s surface. This mode of operation is not specifically required for TIRS imagery, but the 
capability is retained in this algorithm to maintain compatibility with the corresponding OLI algorithm, 
to facilitate future convergence. 
 
Concerns about the temporal (line direction) grid density that would be required to adequately capture 
attitude deviations (jitter) at frequencies above 10 Hz motivated the addition of new grid functionality 
to support high frequency image correction at image resampling time. Specifically, jitter sensitivity 
coefficients were added to each grid cell to allow the high frequency attitude data in the TIRS line-of-
sight model jitter table to be converted to corresponding input image space line/sample offsets. These 
coefficients are used by the resampler to compute high frequency line/sample corrections that refine 
the output-to-input space image coordinate mappings provided by the grid. This allows the grid to 
model only lower frequency effects making a sparser grid sampling in the time (line) direction 
possible. 
 
Due to layout of the TIRS focal plane, there is an along-track offset between the spectral bands within 
each SCA, an along-track offset between the outboard (odd) and inboard (even) SCAs, and a 
reversal of the band ordering in adjacent SCAs. This leads to an along-track offset in the imagery 
coverage area for a given band between odd and even SCAs as well as an offset between bands 
within each SCA. To create more uniform image coverage within a geometrically corrected output 
product, the leading and trailing imagery associated with these offsets is trimmed (at image 
resampling time) based on image active area bounds stored in the grid. 
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The TIRS LOS projection and grid generation algorithm is derived from the corresponding OLI 
algorithm. Its implementation is very similar to the oligrid application. 

7.3.2.2 Dependencies 

The TIRS LOS projection and grid generation algorithm assumes that the TIRS LOS model creation 
algorithm has been executed to construct and store the TIRS LOS model. 

7.3.2.3 Inputs 

The TIRS LOS projection and grid generation algorithm and its component sub-algorithms use the 
inputs listed in the following table. Note that some of these “inputs” are implementation conveniences 
(e.g., using an ODL parameter file to convey the values of and pointers to the input data). 
 
Algorithm Inputs 

ODL File (implementation) 

   CPF File Name 

   TIRS LOS Model File Name 

   DEM File Name 

   Reference Grid File (optional) (for transferring framing parameters) 

   Reference Band (optional) (reference grid band to use) 

   Output Image Framing Parameters: 

      WRS Path for path-oriented scene framing (not necessarily the LOS model path) 

      WRS Row for path-oriented scene framing (not necessarily the LOS model row) 

      Map Projection (UTM, SOM, PS) 

      UTM Zone (use 0 to have code compute the zone) 

      Map Projection Parameters 

      Output Pixel Size(s) 

      Output Image Orientation 

      Frame Type (e.g., MINBOX) 

      Frame Bounds (e.g., corner coordinates, image size) 

   Grid Options: 

      Bands to Grid 

CPF file contents 

     Maximum detector offset for each band 

    Thresholds and Limits (replaces System Table) 

       Grid Density (line/sample/height) 

       Default (WGS84) Spheroid and Datum Codes 

TIRS LOS Model file contents (see TIRS LOS Model Creation ADD for details) 

    WGS84 Earth Model Parameters 

     Earth Angular Velocity (rotation rate) in radians/second 

     Speed of light (in meters/second) 

    Acquisition Type (Earth, Lunar, Stellar) 

    TIRS to ACS reference alignment matrix 

    Spacecraft CM to TIRS offset in ACS reference frame (new) 

    SSM model (Telescope alignment matrix and time-indexed SSM angles) 

    Focal plane model parameters (Legendre coefs) 

    Detector delay table 

    Smoothed ephemeris at 1 second intervals (original and corrected) 

    Low-pass filtered attitude history (original and corrected) 

    High frequency attitude perturbations (roll, pitch, yaw) per image line (jitter table) 

    Image time codes 

    Integration Time 

    Nominal detector alignment fill table 

    L0R detector alignment Fill Table 

DEM file contents 
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    Min and Max Elevation 

NOVAS Planetary Ephemeris file contents 
(Note:  The NOVAS ephemeris file name is provided via an environment variable.) 

    JPL Ephemeris Table (DE405) for celestial bodies (i.e., the moon) (see note 1) 

7.3.2.4 Outputs 

TIRS Grid (see Tables 1 and 2 below for detailed grid structure contents) 

  Grid Header (WRS path/row, acquisition type) 

  Output Image Framing Information (corner coordinates, map projection) 

  Image active area latitude/longitude bounds (for each band) 

  Grid Structure Information (number of bands/SCAs) 

  Grid Structures (one per SCA, per band) 

      Band number 

      Image dimensions (line/sample) 

      Pixel size 

      Grid cell size (image lines/samples per cell) 

      Grid dimensions (# rows/# columns/# Z-planes) 

      Z-plane zero reference and height increment 

      Arrays of input line/sample grid point coordinates 

      Arrays of output line and sample grid point mappings 

      Arrays of even/odd offset coefficients (2 per grid cell) 

      Arrays of forward (input/output) mapping polynomials (8 per grid cell per Z-plane) 

      Arrays of inverse (output/input) mapping polynomials (8 per grid cell per Z-plane) 

      Arrays of roll-pitch-yaw jitter line sensitivity coefficients (3 per grid cell per Z-plane) 

      Arrays of roll-pitch-yaw jitter sample sensitivity coefficients (3 per grid cell per Z-
plane) 

      Rough mapping polynomials (one set per Z-plane) 

7.3.2.5 Options 

A NOVAS planetary ephemeris file (JPL DE405) must be provided when the Acquisition Type (in the 
LOS model) is Lunar. The DE405 file path is provide in the JPLDE405 environment variable. 
 

7.3.2.6 Prototype Code 

 
Input to the executable is an ODL file; output is a HDF4 formatted resampling grid file. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse –msse2 
 
The following text is a brief description of the main set of modules used within the prototype with each 
module listed along with a very short description.  It should be noted that not all library modules are 
referenced in the explanations below.   The modules within the main oligrid directory of the prototype 
are discussed and any library modules that were determined to be important to the explanation of 
either results, input parameters, or output parameters. 
 
 
oligrid 
Main driver for generating the resampling grid.  Calls modules to retrieve user parameters, establish 
the output image frame extent, and populate the grid structure with appropriate input to output, and 
output to input, mapping parameters. 
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get_parms 
This routine opens the input ODL parameter file, reads the grid parameters, closes the parameter file, 
and returns the parameters.  Also will read the DEM, if the DEM is given as an input parameter, and 
determine the elevation extent within the DEM file.  This elevation extent will then be used for 
establishing the z-plane parameters within the grid structure. 
 
oli_get_model 
Reads the OLI geometric model file and populates data within the OLI geometric model structure. 
 
read_num_ls_l0ra 
This routine extracts the number of image lines from the Level 1R image and the number of samples 
per band per SCA from the sensor model portion of the LOS model.  The routine then returns the 
number of lines and samples for the input band numbers. These values, along with the grid cell size, 
will be used to determine grid point locations.  The number of lines and samples will be returned in 
their respective arrays, in band-referenced order.  This is similar to the manner in which the grid is 
stored.  Thus the nlines and nsamps arrays must be of size nbands.  
 
det_num_grid_ls 
This routine will determine the number of input points to be stored in the grid according to the grid 
sampling rate or grid cell size chosen. 
 
validate_utm_zone 
This routine validates the UTM zone that was entered as an ODL parameter. The scene center 
longitude will be used for this verification. The nominal UTM zone to use is computed from the scene 
center longitude but the projection may be forced to an adjacent zone using input parameters. In 
particular, each WRS path/row may be preassigned to a UTM zone so that the same zone is always 
used for scenes near UTM zone boundaries. This should not introduce a zone offset greater than 1. 
The validation is performed by computing the UTM zone in which the scene center falls and then 
determining whether the input UTM zone (if any) is within one zone of the nominal zone. 
 
oli_malloc_grid 
Allocates memory for the grid based on image size and output elevation extent. 
 
setup_jpl_solarsystem 
Initializes JPL routines needed to determine position of the moon.  Only used for lunar acquisitions. 
 
calc_active_area 
This routine determines the bounds of that portion of the output image frame that contains actual OLI 
imagery, excluding "ragged" band/SCA edges. The resulting active area bounds for each spectral 
band are stored in the grid for subsequent use by the image resampling logic. 
 
north_up 
This routine will determine the frame in output space for the north-up product.  The actual frame is based on the 

output band's pixel size, but the frame is the same for every band. The method used to determine the scene 

corners depends on whether the corners were user input (PROJBOX) or calculated by projecting the Level 1R 

image corners (MAXBOX) but the framing logic is essentially the same in each case. Once given as input, or 

computed, the latitude/longitude scene corners are converted to the defined map projection, the extreme X and 

Y coordinates are found, and these extreme points are rounded to a whole multiple of the pixel size.  
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calc_stellar_size 
Determines the output image extent for a stellar acquisition.  Extent is based on SCA corners. 
 
calc_lunar_size 
Determines the output image extent for a lunar acquisition.  Extent is based on either all of the SCA 
corners for all bands or only the SCA that contains the moon. 
 
point_in_polygon 
Simple point in a polygon check.  Used with lunar process for determining if the moon lies within a 
SCA.  
 
oli_moonpos_ls 
Given a Level 1R line and sample location this module calculates the relative line of sight between 
the moon and satellite sensor.   
 
oli_moonpos 
Given a Julian day, this routine calculates the moon’s position.  Calls the JPL NOVAS libraries to 
determine the moon’s position.  Coordinates are given in terms of ECI true-of-date. 
 
maxbox 
This routine determines the frame in output space for the maxbox north-up product. Image framing is 
based on maximum image extent derived from SCA corners. 
 
path_oriented 
This routine will provide a path-oriented projection that is framed to a nominal WRS scene. The user 
specifies only the projection, pixel size, and the path and row of the scene.  
 
det_grid_ls 
Given the number of grid lines and samples that will be sampled in the input imagery, this routine 
calculates where each grid cell point will fall in the input Level 1R image.  These grid cell points will 
fall at integer locations in the input imagery. 
 
exx_mapedg 
This routine calculates the minimum and maximum projection coordinates for given upper left and 
lower right latitude, longitude coordinates. 
 
pad_corners 
This routine pads the input corners by a defined factor of the pixel size. The x/y min and max values 
are input for the corner locations.  These values are padded by PADVAL * the pixel size.   
 
calc_center_and_rotation_angle 
This routine will return the scene center and rotation angle for a nominal WRS scene.  The WRS path and row 

of the input scene and the projection parameters are needed as input.  Note: The WRS_Lat and WRS_Long are 

the Center_Lat_Long that need to be returned from this routine.  The Heading angle is the WRS rotation angle, 

i.e., the image orientation relative to geodetic north. 

 
calc_path_oriented_frame 
Given the center point and rotation angle, this function will calculate the image corner coordinates in 
an SOM or UTM product.  It also calculates the first-order polynomial coefficients which map output 
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line/sample coordinates to their corresponding output projection coordinates. This routine will 
determine the frame in output space for the path-oriented product.  The frame is calculated for each 
band, but the frame must be the same for every band.   
 
angle_to_map 
This routine will convert the WRS rotation angle (from geodetic north) to a frame orientation angle in map 

coordinates.  The orientation angle will be retained in the grid structure.   

 
path_maxmin_box 
This routine will provide a path-oriented product whose frame is large enough to contain all bands 
(maxbox).  
 
calc_path_oriented_maxbox_frame 
This routine calculates the path-oriented frame for the maxbox approach.  
 
make_grid 
This routine establishes the input to output mappings. It invokes make_grid_point for each point to 
compute the mapping, and then invokes make_grid_sensitivity for each point to compute the jitter 
sensitivity coefficients. 
 
make_grid_point 
Calculates the input to output space mapping for a single grid point. Calls oli_forward_model to 
perform input space location to output space location mappings.  
 
make_grid_sensitivity 
Calculates the roll-pitch-yaw to input space line/sample jitter sensitivity coefficients for one grid point. 
Calls oli_forward_model_pert while varying the spacecraft attitude, the input space line number, and 
input space sample number to determine the corresponding output space sensitivity. It then finds the 
input space offsets that provide the same effect in output space as a given attitude perturbation, 
yielding the input space correction needed to compensate for a unit jitter disturbance for each 
spacecraft axis. 
 
oli_init_lunar_projtran 
Initializes the position of the moon with respect the lunar acquisition.  Needed for oli_lunar_projtran. 
 
oli_forward_model 
For a given a Level 1R line, sample, band and SCA location, propagates the forward (geometric) 
model to determine a latitude and longitude for the specified point.  
 
oli_forward_model_pert 
A variant of oli_forward_model that accepts an additional input roll-pitch-yaw attitude perturbation 
array. This perturbation is added to the spacecraft attitude interpolated from the OLI LOS model at 
the time corresponding to the input space line/sample point being projected. This capability is used by 
make_grid_sensitivity in determining the jitter sensitivity coefficients. 
  

oli_findtime 
This function finds the time into the scene given the Level 1R line, sample, and band. The input 
sample number is 0-relative and relative to the SCA. 
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oli_findlos 
This function finds the line of sight vector in sensor coordinates, using the Legendre polynomial LOS 
model stored in the LOS model. 
 
oli_findatt 
This function computes the attitude, or roll, pitch, yaw, for a given time. 
 
oli_findjit 
This function is invoked by oli_forward_model when the input detector type parameter is set to 
EXACT. This is currently only used by the OLI L0Rp data simulator. This unit uses the input time to 
extract the high frequency attitude correction from the jitter table in the OLI LOS model, so that it can 
be added to the low frequency spacecraft attitude result in oli_forward_model. This unit is not invoked 
by grid generation processing, where the detector type is NOMINAL, but as part of the forward line-of-
sight model, it is described here for completeness. 
 
l8_movesat 
This function computes the satellite position and velocity at a delta time from the ephemeris reference 
time using Lagrange interpolation. 
 
l8_attitude 
This function finds the line of sight vector from the spacecraft to a point on the ground by transforming 
the line of sight vector in sensor coordinates to perturbed spacecraft coordinates. 
 
geo_center_mass_corr 
Adjusts the observation vector according to the spacecraft center of mass. 
 
geo_corr_vel_aberr 
Adjusts line of sight vector for velocity aberration. 
 
geo_findtarpos 
This function finds the position where the line of sight vector intersects the Earth's surface.  Used only 
for Earth based acquisitions. 
 
geo_corr_light_travel_time 
Adjusts target location according to the light travel time.  Used only for Earth based acquisitions. 
 
geo_centh2det 
This function converts between geocentric and geodetic coordinates.  Used only for Earth based 
acquisitions. 
 
exx_cart2sph 
Convert between cartesian and spherical coordinates.  For grid generation, applies only towards 
stellar and lunar acquisitions. 
 
exx_projtran 
This function converts coordinates from one map projection to another.  The transformation from 
geodetic coordinates to the output map projection depends on the type of projection selected.  The 
mathematics for the forward and inverse transformations for the Universal Transverse Mercator 
(UTM), Polar Stereo Graphic, and the Space Oblique Mercator (SOM) map projections are handled 
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by U.S Geological Survey’s (USGS) General Cartographic Transformation Package (GCTP), which 
may be obtained at http://edcftp.cr.usgs.gov/pub/software/gctpc/. 
 
oli_lunar_projtran 
Calculates the output line and sample location given the right ascension and declination angles 
associated with the sensor line-of-sight vector of a lunar acquisition.  Serves as the equivalent 
exx_projtran for a lunar based acquisition. 
 
 
exx_proj_err 
This function reports projection transformation package errors. The function receives a GCTP error 
code and prints the correct error message. 
  
gctp 
Map projections are handled by U.S Geological Survey’s (USGS) General Cartographic 
Transformation Package (GCTP), which may be obtained at 
http://edcftp.cr.usgs.gov/pub/software/gctpc/. 
 
xxx_eval 
Applies a polynomial at a given point. 
 
calc_map_coefs 
This routine calculates the bilinear mapping coefficients for each grid cell. Coefficients are calculated 
for mapping from input location to output location (forward mapping) and for mapping from output 
location to input location (inverse mapping).  A separate mapping function is used for lines and 
samples.  This equates to four mapping functions.  A set of four mapping functions is calculated for 
each grid cell, for each SCA, for every band, and for every elevation plane that is stored in the grid. 
 
exx_calc_forward_mappings 
This function, given grid points in both input and output space, uses the Calculate Map Coefficients algorithm 

described in the Procedure section to generate the mapping polynomial coefficients needed to convert from a 

line/sample in input space (satellite) to one in output space (projection).  It generates these coefficients for every 

cell in the grid. 

 

exx_calc_inverse_mappings 
This function, given grid points in both input and output space, uses the Calculate Map Coefficients 
algorithm described in the Procedure section to generate the mapping polynomial coefficients needed 
to convert from a line/sample in output space (projection) to one in input space (satellite).  It 
generates these coefficients for every cell in the grid. 
 
calc_rough_map_coefs 
This routine will find the rough mapping coefficients for the grid.   
 
oli_grid_cell_poly 
This utility function calculates a "rough" mapping of output to input lines/samples. The coefficients 
returned from this function are used as a rough estimate of an inverse model.   
 
calc_det_offsets 

tp://edcftp.cr.usgs.gov/pub/software/gctpc/
ftp://edcftp.cr.usgs.gov/pub/software/gctpc/
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This function computes the detector offset values and stores linear mapping coefficients associated 
with detector offsets in the grid structure.   
 
oli_all_ols2ils 
This utility routine maps an output space line/sample back into its corresponding input space 
line/sample.  This is done using the "rough" polynomial from the grid to determine an initial guess at 
an input space line and sample.  From this initial guess a grid cell row and column is calculated and 
the inverse coefficients for that cell are retrieved from the grid.  These coefficients are used to 
determine an exact input space line and sample (in extended space). 
 

oli_findgridcell 
This utility function finds the correct grid cell that contains the output line/sample location. It finds the 
correct grid cell containing the output pixel by first determining the set of grid cells to be checked.  It 
then calls a routine to perform a "point in polygon" test on each of these grid cells to determine if the 
pixel does indeed fall within that grid cell. 

7.3.2.7 Procedure 

The LOS Projection algorithm uses the TIRS LOS model created by the TIRS LOS Model Creation 
algorithm to relate TIRS image pixels to ground locations or, in the case of lunar/stellar images, to 
ECI directions. The LOS model contains several components including: Earth orientation parameters, 
an image model (validated image time codes), a sensor model (including SSM angles), an ephemeris 
model, and an attitude model. The Level 1R image line/sample location is used to compute a time of 
observation (from the image model), a LOS vector (from the sensor model), the spacecraft position 
(from the ephemeris model) at the time of observation, and the spacecraft attitude (from the attitude 
model) at the time of observation. The LOS vector is projected to the Earth's surface, either the 
topographic surface at a specified elevation (e.g., derived from an input Digital Elevation Model), or 
the WGS84 ellipsoid surface, to compute the ground position associated with that Level 1R image 
location. This LOS projection procedure relating an input image location to an output ground location 
is referred to as the forward model. In image resampling, we typically need to find the Level 1R input 
space line/sample location corresponding to a particular Level 1G output space location so that the 
corresponding image intensity can be interpolated from the Level 1R data. This "inverse model" 
computation must be performed for every pixel in the output Level 1G product. To make this 
computation efficient, we create a table, or grid, of input/output mappings, parameterized by height, 
for use by the TIRS image resampling algorithm. Both the forward model and grid generation 
procedures are described in this algorithm description document. 
 
The Geometric Grid 
The geometric grid provides a mapping from input Level 1R line/sample space to output Level 1G 
line/sample space. As such, it incorporates not only the sensor LOS to Earth intersection geometry 
captured by the forward model, but also the output image framing information, such as scene corners, 
map projection, pixel size, image orientation, and the bounds of the active image area for each band. 
The gridding procedure generates a mapping grid that defines a transformation from the instrument 
perspective (input space) to a user specified output projection on the ground (output space).  This 
output frame may be map-oriented (north-up) or path-oriented for Earth-view acquisitions. 
Alternatively, the user may specify a previously generated grid file such that this grid’s scene framing 
information is used for the generation of the new grid.  Celestial (lunar/stellar) acquisitions use an 
output frame based on inertial right ascension and declination coordinates. Once the frame is 
determined in output space, the input space is gridded. Then the grid in input space is mapped to the 
output space using the forward model. Transformation coefficients to transform a grid cell from input 
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to output space are determined, as well as coefficients to transform a grid cell from output to input 
space. 
 
The concept behind creating this resampling grid is to define only a sparse set of points for the 
relationship between an input line and sample location to output line and sample location (see Figure 
1). Four grid points define a grid cell. A grid cell is defined as a rectangle in input space but will be 
distorted when mapped to the output space. The sampling of points between grid cell points is 
chosen such that any two points defining a grid cell and a line in input space will map to a line in 
output space. Therefore every grid cell defines a bilinear mapping between the input and output 
space and vice versa. The method of only mapping and storing a small set of input points is much 
more efficient than trying to map points individually by invoking the LOS model for each point. This is 
especially the case since a rigorous implementation of the inverse model would have to be iterative. 

Figure 1:  The 3D grid structure stores the output space line/sample coordinates 
corresponding to an array of input space line/sample/height coordinates. 
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Figure 2: Forward and Inverse Mapping Using the Grid 

 
The LOS projection grid contains projection information and three groups of mapping coefficients—
one for mapping each grid cell from output space to input space (inverse), a second for mapping each 
grid cell from input space to output space (forward), and third that gives an approximation or “rough” 
mapping of output space to input space. The first two mappings are described by a set of bilinear 
polynomials. The input space is represented by a line and sample location while the output space is 
represented by a line and sample location along with a Z component, where Z represents elevation. 
The output lines and samples can in turn be converted to X, Y projection space location by using the 
output image’s upper left projection coordinate and pixel size information in the grid header. Figure 2 
shows how one input grid cell is mapped to a number of output grid cells, each grid cell representing 
a different elevation. 
 
The number of grid cells is dependent on the line and sample size of each grid cell in the input image, 
elevation maximum, elevation minimum, and elevation increment. The input space is made up of 
evenly spaced samples and lines, values are associated with integer locations and can be indexed by 
an array of values: input_line[row] and input_sample[column]. Row refers to the index number, or row 
number, associated with the line spacing while column refers to the index number, or column number, 
associated with the sample spacing. The output lines and samples typically do not fall on integer 
values (see Figure 3). This creates a two dimensional array of indices for output line and sample 
locations. Adding elevation indices produces a three dimensional array for output line and sample 
locations. The output lines and samples are then indexed by output_line[z][row][column] and 
output_sample[z][row][column] where Z refers to an elevation value. The row and column are the 
indices associated with the gridding of the raw input space. Since there is a mapping polynomial for 
each grid cell, the mapping polynomial coefficients are indexed by the same method as that used for 
output lines and samples; i.e. there are z*row*column sets of mapping coefficients. 
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Figure 3: Mapping integer locations to “non-integer” locations 

 
If a grid is being generated for a non-terrain corrected image (i.e., no correction for relief is being 
applied) then the index for z is set such that zelev=0 = zero elevation.  Note that zelev=0 does not 
necessarily have to be the first index in the array since there could be values for negative elevations.  
If the grid is being generated for a terrain corrected image, then the indexes zn and zn+1 are used such 
that the elevation belonging to the output location falls between the elevations associated with the 
indexes n and n+1.  When performing an inverse mapping for a terrain corrected image, two sets of 
input lines and samples are calculated from the polynomials for n and n+1.  The actual input line and 
sample is interpolated between these lines and samples. 

 
Example: 
 
Output line/sample has r = row, c = col and z=n, n+1. If the inverse mapping coefficients are a 
and b for line and sample respectively then: 
           

input_linen        = bilinear(an,output_line,output_sample) 
input_samplen   = bilinear(bn,output_line,output_sample) 
input_linen+1        = bilinear(an+1,output_line,output_sample) 
input_samplen+1 = bilinear(bn+1,output_line,output_sample) 

 
bilinear is the bilinear mapping function (described below) for each grid cell. 
 
If e is the elevation for the output line and sample location then the weights used to interpolate 
between the two input line/sample locations are: 
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en, en+1 and e are the elevations associated with zn , zn+1 , and the output line and sample 
respectively.  
 
The final line/sample location is found from: 
 

input_line      = wn * input_linen      + wn+1 * input_linen+1 
input_sample = wn * input_samplen + wn+1 * input_samplen+1 

 
The grid must contain a zero elevation plane. If the input minimum elevation is greater than zero it is 
set to zero. If the input maximum elevation is less than zero it is set to zero. 
 
Given the elevation maximum, minimum, and increment determine the number of z planes and the 
index of the zero elevation plane. Adjust the minimum and maximum elevations to be consistent with 
the elevation increment. 
 
The number of z planes is determined from: 
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The subsequent grid interpolation logic assumes that there are at least 2 z planes so the number of z 
planes is set to 2 if the calculation above results in fewer than 2 planes. This can only happen if the 
minimum and maximum elevations are both zero. 
 
The plane for an elevation of zero is then found at: 
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The new minimum and maximum elevation due to the values calculated above are: 
 

 increment elevation *zminimum elevation 0elev  

incrementelevation *)z1z ofnumber (maximumelevation 0elev  

 
LOS Projection/Grid Generation Procedure Overview 
The LOS Projection/Grid Generation procedure is executed in five stages:  

6. Data Input - First, the required inputs are loaded. This includes reading the processing 
parameters from the input ODL parameter file, loading the TIRS LOS model from its HDF file, 
reading static gridding parameters from the CPF, and loading the elevation data from the DEM. 

7. Scene Framing - The parameters of the output image space are computed based on the scene 
framing scheme specified in the input ODL file or are loaded from a previously generated grid 
file. This includes calculating bounds for the active image area that excludes the leading and 
trailing SCA imagery, and using one of several available methods for determining the Level 1G 
scene corners. The scene framing parameters are stored in the grid structure for eventual 
inclusion in the geometric metadata for the Level 1G product. 

8. Grid Definition - The grid parameters are established to ensure adequate density in the space 
(sample), time (line), and elevation (z-plane) dimensions. The required data structures are 
allocated and initialized. 

9. Grid Construction - The forward model is invoked for each grid intersection to construct the 
array of input space to output space mappings. A separate grid structure is created for each 
SCA and each band. The grid mapping polynomial coefficients are computed from the input 
space to output space mapping results for each grid cell. Once the basic grid mappings are 
defined, the forward model is invoked with small attitude perturbations about each axis in order 
to evaluate the sensitivity of the input space to output space mapping to small attitude 
deviations. The resulting sensitivity coefficients are stored with each grid cell for subsequent 
use in computing high frequency jitter corrections during image resampling. Figure 4 shows a 
data flow for the creation and use of these new coefficients. 

10. Finalize and Output Grid - Derived grid parameters such as the global rough mapping 
coefficients, are added to the grid structure, and the entire structure is written to a disk file. 
This also includes evaluating the small, but significant, parallax effects caused by the time 
delay between adjacent primary and (replaced) redundant detectors as they sample the same 
along-track location. These effects are modeled in the grid as along- and across-track 
sensitivity coefficients that are scaled by the output point elevation and the even/odd detector 
offset, which can vary by pixel for TIRS (due to detector deselect/replacement). This parallax 
effect is not as pervasive in TIRS as compared to OLI since the primary TIRS detectors are not 
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arranged with even/odd detector stagger as is the case for OLI. The parallax correction is 
retained in the TIRS grid to account for bad detector replacement (when a primary row 
detector is replaced by the corresponding redundant row detector) and to maintain 
compatibility with the OLI grid. 

  

Figure 4:  Jitter Correction Data Flow 

 
Figure 5 shows a block diagram for the TIRS LOS Projection algorithm. 
 
Stage 1 - Data Input 
The data input stage involves loading the information required to perform grid processing. This 
includes reading the framing parameters for the output scene from the ODL file, reading grid 
structural parameters from the CPF, loading the TIRS LOS model structure in preparation for invoking 
the forward model, and reading the DEM to determine the elevation range for the image. 
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Figure 5:  Line-of-Sight Projection Block Diagram 

 
Stage 2 - Scene Framing 
Framing the output image space involves determining the geographic extent of the output image to be 
generated by the resampler. This geographic extent of the output image space is referred to as the 
output space “frame,” and is specified in output image projection coordinates. There are five different 
methods that are used to determine the output frame for Earth-viewing acquisitions. Note that the fifth 
method is new for TIRS and is not really a “framing method” in the same sense. Logic that supports 
scene framing for celestial (lunar and stellar) scenes using a maximum bounding rectangle (maxbox) 
approach based on inertial LOS declination and right ascension coordinates, is retained in the code 
reused from the corresponding OLI algorithm, but this capability is not required for TIRS so it is only 
described briefly below. These methods use the calculated coverage bounds of each band/SCA in 
different ways, with some excluding the leading and trailing SCA imagery based on a calculated 
active image area, and some including the leading/trailing imagery so as to preserve all available 
input pixels (e.g., for calibration purposes). Thus, the calculation of the active image area for each 
band is the first step in scene framing. 
 
Calculating the Active Image Area 
The along-track offsets between spectral bands and even/odd SCAs create an uneven coverage 
pattern when projected into output image space. In order to provide a more regular output image 
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coverage boundary, we define a rectangular active image area that excludes the excess trailing 
imagery from even SCAs and the excess leading imagery from odd SCAs. This active area is used 
for the minbox framing methods which seek to limit the output product area to provide consistent, 
contiguous coverage, but are ignored for maxbox framing methods, where all available imagery is 
desired. 
 
The active image area is computed by constructing 8 critical SCA corner points, labeled C1 through 
C8 in Figure 6 below. This figure depicts the current understanding of the TIRS field of view 
orientation with respect to object space, but the algorithm described here will work so long as the 
SCAs are numbered sequentially across the field of view, in either direction. Points C1 and C2 define 
the top edge of the active area, C3 and C4 the right edge, C5 and C6 the bottom edge, and C7 and 
C8 the left edge. Note that points C4 and C5 are the same (the lower right corner of SCA01) as are 
points C6 and C7 (the lower left corner of SCA03). The forward model projects these 8 line/sample 
locations to object space, computing the latitude/longitude coordinates of the WGS84 ellipsoid 
intersection for each point. 

  
Figure 6:  Active Image Area Construction 

 
The corner point assignments are made automatically by examining the SCA across-track and along-
track Legendre coefficients to determine:  1) whether SCA01 is on the left (+Y) or right (-Y) side of the 
scene; 2) whether even or odd SCAs lead; and 3) whether the sample number increases in the –Y or 
+Y direction. If the across-track Legendre constant term (coef_y0) for SCA01 is positive then it is the 
left-most SCA and SCA03 is the right-most. If the along-track Legendre constant term (coef_x0) for 
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SCA01 is greater than that for SCA02, then the odd SCAs lead. If the across-track Legendre linear 
term (coef_y1) for SCA01 is negative, then the sample number increases in the –Y direction. 
 
Having determined the orientation of the SCAs, we assign the top edge to the left-most leading SCA 
upper left (UL) corner and the right-most leading SCA upper right (UR) corner, the right edge to the 
right-most SCA UR and lower right (LR) corners, the bottom edge to the right-most trailing SCA LR 
corner and left-most trailing SCA lower left (LL) corner, and the left edge to the left-most SCA LL and 
UL corners. As shown in the figure, for the TIRS:  C1 = SCA02 (left-most leading SCA) UL, C2 = 
SCA02 (right-most leading SCA) UR, C3 = SCA01 (right-most SCA) UR, C4 = SCA01 (right-most 
SCA) LR, C5 = SCA01 (right-most trailing SCA) LR, C6 = SCA03 (left-most trailing SCA) LL, C7 = 
SCA03 (left-most SCA) LL, and C8 = SCA03 (left-most SCA) UL. Note that these assignments are 
based on the current TIRS SCA ordering of SCA-B = SCA01, SCA-C = SCA02, and SCA-A = SCA03, 
and could change if the SCA numbering system is revised. If this were to happen, the change would 
be reflected in the Legendre coefficients, so the logic described here would automatically 
compensate. 
 
The geodetic latitudes computed by the forward model are converted to geocentric longitudes using: 

 = arctan( (1-e2) tan() ) 

 where:  = geocentric latitude 

   = geodetic latitude 
  e2 = WGS84 ellipsoid eccentricity squared 

 

This creates a set of 8 geocentric latitude/longitude (i, i) pairs, one for each “critical” corner, noting 
that geocentric longitude is equal to geodetic longitude. 
 
Use the geocentric latitude/longitude to construct a geocentric unit vector for each corner: 
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Note that these vectors are inherently normalized. 
 
Construct vectors normal to the top, right, bottom, and left edge great circles by taking cross products 
of the corner vectors: 
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Construct corner vectors from the edge vectors: 
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The top and bottom edges are next checked against all of the SCA corners to ensure that any 
curvature in the SCA field angle pattern is accounted for. This is done to suppress residual SCA edge 
“raggedness”. 
 
Adjust the top edge: 
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Construct a vector in the plane of the top edge great circle: 
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Initialize the minimum “out of plane” distance:  amin = 1 
For each SCA: 

For the two upper corners:  UL (0,0) and UR (ns-1,0): 
Use the forward model to project the corner. 
Convert the geodetic latitude to geocentric latitude as above. 
Construct a geocentric unit vector, Xi, as above. 
Project the unit vector onto the Xg and XT vectors and compute the ratio: 
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If ai < amin 
amin = ai 
Xmin = Xi 

Next corner 
Next SCA 
 
If amin < 0 then the innermost corner lies inside the current active area and we need to adjust 
the top edge: 
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And update the top corner vectors using the adjusted edge vectors: 

 
LT

LT
UL

XX

XX
X




  

TR

TR
UR

XX

XX
X




  

 
 
 
Adjust the bottom edge: 

Construct a vector in the plane of the bottom edge great circle: 
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Initialize the minimum “out of plane” distance:  amin = 1 
For each SCA: 

For the two lower corners:  LL (0,nl-1) and LR (ns-1,nl-1): 
Use the forward model to project the corner. 
Convert the geodetic latitude to geocentric latitude as above. 
Construct a geocentric unit vector, Xi, as above. 



LDCM-ADEF-001 
Version 3 

 

Project the unit vector onto the Xg and XB vectors and compute the ratio: 
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If ai < amin 
amin = ai 
Xmin = Xi 

Next corner 
Next SCA 
 
If amin < 0 then the innermost corner lies inside the current active area and we need to adjust 
the bottom edge: 
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And update the bottom corner vectors using the adjusted edge vectors: 
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Convert the four corner vectors to the corresponding geodetic latitude/longitude: 

 = atan2( X.y, X.x ) 

 = atan2( X.z, 22 X.yX.x  ) 

 = atan( tan(  ) / (1-e2) ) 
 
The four latitude/longitude corners are the bounds of the active image area. 
 
Once the active image area bounds are calculated, the output product frame is determined using one 
of the following methods: 
 
Method 1: PROJBOX  

The user defines the upper-left and lower-right corner coordinates of the area of interest in 
target map projection coordinates. These coordinates are then projected to the output 
projection coordinate system using the Projection Transformation Package (see the Projection 
Transformation sub-algorithm below). This usually results in a non-rectangular area so a 
minimum-bounding rectangle is found (in terms of minimum and maximum X and Y projection 
coordinates) in the resulting output space. This minimum-bounding rectangle defines the 
output space frame. The output image pixel size is then applied to the projection space to 
determine the number of lines and samples in the output space. This creates an output image 
that is map projection north-up. 

 
Method 2:  MINBOX 

The image active areas for each band, calculated previously, are converted to the specified 
output map projection coordinate system and used in a minimum bounding rectangle 
computation to create an output image frame that includes the active area for each band. The 
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computed (latitude/longitude) active area corners are maintained in the grid for subsequent 
use by the image resampler, so that the output product image will not include leading/trailing 
SCA imagery. 
 

Method 3:  MAXBOX  
The four corners of each SCA in each band are projected to the Earth. The maximum and 
minimum latitude and longitude found across all SCAs and all bands are used to establish the 
output scene frame in the manner described above for the PROJBOX method. This creates an 
output frame that contains all input pixels from all bands. The previously calculated image 
active areas are ignored in this process, and the band active area corners are all set equal to 
the output product corners. Leading and trailing SCA imagery is thereby not excluded from 
MAXBOX framed products. 
 

Method 4: PATH 
The user specifies a path oriented Landsat product in either the SOM or UTM projection.  In 
this case, the framing coordinates are not user-specified. For a standard PATH scene, the 
frame is a preset number of lines and samples based on the Landsat WRS scene size and the 
maximum rotation needed to create a path-oriented product. For PATH_MAXBOX scenes the 
MAXBOX logic described above is applied to the path-oriented scene to ensure that the output 
frame contains all input pixels from all bands. For PATH_MINBOX the MINBOX logic 
described above is applied to the path-oriented scene so that the image active areas control 
the bounds of the path-oriented frame. 

 
Method 4: TRANSFER 

The output image framing information is transferred from an input reference grid file. This will 
be the primary method used for framing TIRS images as the product frame will be computed 
based on the OLI image footprint and then transferred to the TIRS grid. This method would be 
used if the optional reference grid and reference band parameters are provided as inputs. Note 
further that this framing method would not be required in the operational implementation if the 
OLI and TIRS bands are combined in a common grid structure with a common output frame. 
 

The scene framing logic uses the following sub-algorithms/routines: 
 
a) Validate UTM Zone 
This routine validates the UTM zone that was entered as an ODL parameter. The scene center 
longitude will be used for this verification. The nominal UTM zone to use is computed from the scene 
center longitude but the projection may be forced to an adjacent zone using input parameters. In 
particular, each WRS path/row may be preassigned to a UTM zone so that the same zone is always 
used for scenes near UTM zone boundaries. This should not introduce a zone offset greater than 1. 
The validation is performed by computing the UTM zone in which the scene center falls and then 
determining whether the input UTM zone (if any) is within one zone of the nominal zone. 
 
Shift the scene center longitude to put it in the range 0-360 degrees: 
SC_long = mod( SC_long + 540, 360 ) 
 where: SC_long is the scene center longitude in degrees 
 
Compute the nominal UTM zone (note that UTM zones are six degrees wide): 
SC_zone = (int)floor( SC_long/6 ) + 1 
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See if the input zone is within one zone of the nominal zone: 
if ( abs( input_zone - SC_zone ) < 2 or (60 - abs( input_zone - SC_zone )) < 2 ) 
then input_zone is valid. 
 
b) North Up Framing 
This routine will determine the frame in output space for the north-up product.  The actual frame is based on the 

optimal band's pixel size, but the frame is the same for every band. The method used to determine the scene 

corners depends on whether the corners were user input (PROJBOX) or calculated by projecting the Level 1R 

image corners (MINBOX, MAXBOX) but the framing logic is essentially the same in each case. Once input or 

computed, the latitude/longitude scene corners are converted to the defined map projection, the extreme X and 

Y coordinates are found, and these extreme points are rounded to a whole multiple of the pixel size. The north-

up framing methods are each described in the following sub-algorithms. 

 
b.1) Map Edge/PROJBOX Framing  
Calculates the minimum and maximum projection coordinates for given upper left and lower right 
latitude, longitude coordinates. 

o Calculate min/max coordinates along east edge of output area by computing 
latitude/longitude to map x/y projections for a series of points from (minimum latitude, 
maximum longitude) to (maximum latitude, maximum longitude). 

o Calculate min/max coordinates along west edge of output area by computing 
latitude/longitude to map x/y projections for a series of points from (minimum latitude, 
minimum longitude) to (maximum latitude, minimum longitude). 

o Calculate min/max coordinates along south edge of output area by computing 
latitude/longitude to map x/y projections for a series of points from (minimum latitude, 
minimum longitude) to (minimum latitude, maximum longitude). 

o Calculate min/max coordinates along north edge of output area by computing 
latitude/longitude to map x/y projections for a series of points from (maximum latitude, 
minimum longitude) to (maximum latitude, maximum longitude). 

Note that since lines of constant latitude and/or longitude may be curved in map projection space, the 
extreme map x/y points may not correspond to the four PROJBOX corners. 
 
b.2) Minbox/Maxbox Framing Determine the frame in output space for the minbox or maxbox north-
up product. The actual frame is determined based on the optimal band's pixel size, but the frame is 
the same for every band. 
 
b).2.1 Minbox Framing  Calculate the MINBOX frame bounds using the active area corner points for each 

band. 

6. Call projtran (see below) to get the output map projected x/y, for each active area corner point for each 

image band. 

 

7. Find the minimum and maximum output proj x/y from the full set of active area corner points. 

 

8. Pad the min and max output projection x/y to make them a multiple of pixsize.  

 

9. Fill in the corners for the grid in the order of UL, LL, UR, LR and Y/X coords. 

UL = min x, max y 

UR = max x, max y 

LL = min x, min y 

LR = max x, min y 
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10. Find the number of lines and samples for the grid, for each specified band number. 

lines = (max y - min y)/pixsize + 1 

samples = (max x - min x)/pixsize + 1 

 

b).2.2 Maxbox Framing  Calculate the MAXBOX product frame bounds using the projected corners of each 

band/SCA. 

1. Find the four image corners in input space for each SCA and band.  
UL - (1, first_pixel) 

UR - (1, last_pixel) 

LL - (NLines, first_pixel) 

LR - (NLines, last_pixel) 

 

2. Call the forward model (see below) to get the output lat/long, for each corner point. 

 

3. Call projtran (see below) to get the output map projected x/y, for each corner point. 

 

4. Find the minimum and maximum output proj x/y from the full set of corner points. 

 

5. Pad the min and max output projection x/y to make them a multiple of pixsize.  

 

6. Fill in the corners for the grid in the order of UL, LL, UR, LR and Y/X coords. 

UL = min x, max y 

UR = max x, max y 

LL = min x, min y 

LR = max x, min y 

 

7. Find the number of lines and samples for the grid, for each specified band number. 

lines = (max y - min y)/pixsize + 1 

samples = (max x - min x)/pixsize + 1 

     

8. Call projtran to convert the map projection Y/X coordinates of the output product corners to 

latitude/longitude. 

  

9. Replace the active area corner coordinates for each band with the converted output product corner 

coordinates. 

 

b.2.3) Pad Corners Pad the input corners by a defined factor of the pixel size. The x/y min and max 
values are input for the corner locations.  These values are padded by PADVAL * the pixel size.  The 
newly padded x/y min and max values are returned, replacing the original values. 

ixmin = int (Xmin/(PADVAL*pixsize)) 

Xmin = ixmin*PADVAL*pixsize 

ixmax = int (Xmax/(PADVAL*pixsize))+1 

Xmax = ixmax*PADVAL*pixsize 

iymin = int (Ymin/(PADVAL*pixsize)) 

Ymin = iymin*PADVAL*pixsize 

iymax = int (Ymax/(PADVAL*pixsize))+1 

Ymax = iymax*PADVAL*pixsize 
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c) Path Oriented Framing 
Provide a path-oriented projection that is framed to a nominal WRS scene. The projection, pixel size, 
and the path and row of the scene must be defined.  
 
c.1) Calculate Center and Rotation Angle  
Calculate the scene center and rotation angle for a nominal WRS scene.  The WRS path and row of the input 

scene and the projection parameters are needed as input.  The nominal WRS scene center lat/long and rotation 

angle for the given projection are returned. The algorithm has the following steps: 

 

Convert input angles to radians: 

Inclination_Angle_R = Pi / 180 * Inclination_Angle 

Long_Path1_Row60_R = Pi / 180 * Long_Path1_Row60 

 

Compute the Earth's angular rotation rate: 

earth_spin_rate = 2 * Pi / (24 * 3600) 

 

Note:  We use the solar rotation rate rather than the sidereal rate in order to account for the orbital precession 

which is designed to make the orbit sun synchronous. Thus, the apparent Earth angular velocity is the inertial 

(sidereal) angular velocity plus the precession rate which, by design, is equal to the solar angular rate. 

 

Compute the spacecraft's angular rotation rate: 

SC_Ang_Rate = 2 * Pi * WRS_Cycle_Orbits / (WRS_Cycle_Days*24*3600) 

 

Compute the central travel angle from the descending node: 

Central_Angle = (Row - Descending_Node_Row)/Scenes_Per_Orbit*2*Pi 

 

Compute the WRS geocentric latitude: 

WRS_GCLat = asin( -sin(Central_Angle) * sin(Inclination_Angle_R) ) 

 

Compute the longitude of Row 60 for this Path: 

Long_Origin = Long_Path1_Row60_R - (Path-1) * 2*Pi/WRS_Cycle_Orbits 

 

Compute the WRS longitude: 

Delta_Long = atan2( tan(WRS_GCLat)/tan(Inclination_Angle_R), 

cos(Central_Angle)/cos(WRS_GCLat) ) 

WRS_Long = Long_Origin - Delta_Long - Central_Angle * 

Earth_Spin_Rate / SC_Ang_Rate 

 

Make sure the longitude is in the range +/- Pi: 

While ( WRS_Long > Pi ) 

WRS_Long = WRS_Long - 2*Pi 

While ( WRS_Long < -Pi ) 

WRS_Long = WRS_Long + 2*Pi 

 

Compute the scene heading: 

Heading_Angle = atan2( cos(Inclination_Angle_R)/cos(WRS_GCLat), 

-cos(Delta_Long)*sin(Inclination_Angle_R) ) 

 

Convert the WRS geocentric latitude to geodetic latitude: 
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WRS_Lat = atan( tan(WRS_GCLat) * (Semi_Major_Axis/Semi_Minor_Axis) * 

(Semi_Major_Axis/Semi_Minor_Axis) ) 

 

Convert angles to degrees: 

WRS_Lat = WRS_Lat * 180 / Pi 

WRS_Long = WRS_Long * 180 / Pi 

Heading_Angle = Heading_Angle * 180 / Pi 

 

Round WRS lat/long off to the nearest whole arc minute: 

WRS_Lat = round( WRS_Lat*60 ) / 60 

WRS_Long = round( WRS_Long*60 ) / 60 

 

c.2) Calculate Path Oriented Frame  
Calculate the center point and rotation angle, and the image corner coordinates in an SOM or UTM 
projection.  Also calculate the first-order polynomial coefficients which map output line/sample 
coordinates to their corresponding output projection coordinates. Determine the frame in output space 
for the path-oriented product.  Calculate the frame for each band.  The frame must be the same for all 
bands.   
 
c.2.1) Angle to Map  
Convert the WRS rotation angle (from geodetic north) to a frame orientation angle in map coordinates.  The 

following is an algorithm to compute this: 

 

Convert the WRS scene center latitude/longitude to map projection x/y (X1, Y1) using the projtran routine. 

 

Add 1 microradian (0.2 seconds) to the WRS scene center latitude and convert this point to map projection x/y 

(X2, Y2). 

 

Compute the azimuth of this line in grid space as the arctangent of (X2-X1)/(Y2-Y1).  This is the grid azimuth 

of geodetic north at the WRS scene center. 

 

Add this angle to the WRS rotation angle to give the grid heading. A standard framed scene puts the satellite 

direction of flight at the bottom of the scene, so the scene orientation angle is the grid heading + or - 180 

degrees.  If the grid heading is <0 then subtract 180 degrees.  If the grid heading is >0 then add 180 degrees.  

This is the scene orientation angle to use with the WRS scene center. 

 

c.2.2) Path-oriented Minbox/Maxbox Frame  
Calculate the path oriented frame that is large enough to contain all bands. 
 
c).2.2.1. Calculate Path-oriented Minbox Frame 
Calculate path-oriented frame for the minbox approach.    

5. Compute the map projection coordinates of the four image active area corners for each band 
as described in step 1 of Minbox Framing. 

6. Offset and rotate the scene corners to the path oriented frame using the WRS scene center 
map projection coordinates (X1, Y1) and orientation angle: 

a. X' = (X - X1) cos(angle) - (Y - Y1) sin(angle) + X1 
b. Y' = (X - X1) sin(angle) + (Y - Y1) cos(angle) + Y1 

7. Compute the minbox frame as described in steps 2-4 of Minbox Framing. 
8. Convert the rotated minbox corners back to the unrotated map projection coordinate system: 
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a. X =  (X' - X1) cos(angle) + (Y' - Y1) sin(angle) + X1 
b. Y = -(X' - X1) sin(angle) + (Y' - Y1) cos(angle) + Y1 

 
c.2.2.2) Calculate Path-oriented Maxbox Frame 
Calculate path-oriented frame for the maxbox approach.    

1. Compute the map projection coordinates of the four image corners as described in steps 1-3 of 
Maxbox Framing. 

2. Offset and rotate the scene corners to the path oriented frame using the WRS scene center 
map projection coordinates (X1, Y1) and orientation angle: 

a. X' = (X - X1) cos(angle) - (Y - Y1) sin(angle) + X1 
b. Y' = (X - X1) sin(angle) + (Y - Y1) cos(angle) + Y1 

3. Compute the maxbox frame as described in steps 4-7 of Maxbox Framing. 
4. Convert the rotated maxbox corners back to the unrotated map projection coordinate system: 

a. X =  (X' - X1) cos(angle) + (Y' - Y1) sin(angle) + X1 
b. Y = -(X' - X1) sin(angle) + (Y' - Y1) cos(angle) + Y1 

5. Call projtran to convert the map projection Y/X coordinates of the output product corners to 

latitude/longitude. 

6. Replace the active area corner coordinates for each band with the converted output product corner 

coordinates. 

 
d) Transfer Framing 
Open and read the framing information from an input reference grid file. The map projection, image 
size, image bounds, pixel size, and other framing parameters are copied from the specified band in 
the reference grid instead of being computed using one of the other methods described above. This 
method will be used to transfer OLI scene frames to the corresponding TIRS data. 
 
e) Celestial Acquisitions 
Celestial acquisitions use the same framing logic as Earth acquisitions (namely maxbox) but the 
output space coordinate systems are sufficiently different to merit separate discussion. For both lunar 
and stellar acquisitions the output space is defined in terms of directions in inertial space, defined by 
the ECI J2000 right ascension and declination of the TIRS look vectors. In the case of stellar 
acquisitions, the output space "projection" uses the ECI J2000 right ascension and declination 
directly. For lunar acquisitions the output coordinate system is modified to use the LOS right 
ascension and declination offset from the lunar right ascension and declination at the time of 
observation. This creates a slowly rotating coordinate system that tracks the moon and is the reason 
for having a planetary ephemeris file as an input to this algorithm. These differences emerge in the 
forward model computations for celestial acquisitions where the LOS intersection logic used for Earth 
acquisitions is replaced by operations on the inertial lines-of-sight (after conversion to inertial right 
ascension and declination angles), with the resulting map projection x/y coordinates used in the 
Earth-view algorithms replaced by right ascension and declination (or delta-right ascension and delta-
declination). The same maxbox framing logic applied to the x/y map projection coordinates in Earth-
view acquisitions is then applied to these angular celestial coordinates.  
 
Stage 3 - Grid Definition 
The grid definition stage determines the required size of the grid, allocates the grid structure, and 
computes the input space (Level 1R) line/sample locations for each grid cell. 
 
a) Determine Number of Grid Input/Output Lines/Samples 
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This routine will determine the number of input points to be stored in the grid according to the grid 
sampling rate or grid cell size chosen. 
 
Loop through each band stored in the grid 
 

Loop through each SCA stored in the grid. 
   

Calculate the number of lines and samples stored in the grid according to the size of each grid 
cell and the size of the input image to be processed.  Store the number of grid lines and 
samples calculated in the grid. 
 
Calculate number of times grid cell size divides into Level 1R imagery 
 

 

1
direction sample size cell grid

SCAper  detectors ofnumber 
samples  gridnumber  

1
direction line size cell grid

lines image ofnumber 
lines  grid ofnumber  





 

     where: 
 number of image lines = number of lines in Level 1R (LOS model) 
 number of detectors per SCA = number of samples per SCA (LOS model) 
 grid cell size line direction = number of lines in one grid cell 
 grid cell size sample direction = number of samples in one grid cell 

 
If the grid cell size in the line direction does not divide evenly into the number of lines in the 
Level 1R then increment the number of grid lines by one.   
 
If the grid cell size in the sample direction does not divide evenly into the number of samples in 
the Level 1R then increment the number of grid samples by one. 

 
b) Determine Grid Lines/Samples 
Given the number of grid lines and samples that will be sampled in the input imagery, this routine 
calculates where each grid cell point will fall in the input Level 1R image.  These grid cell points will 
fall at integer locations in the input imagery. 
 
Loop through each band that is stored in the grid 
 
 Loop through each SCA stored in the grid 
 
  Initialize first grid cell line location to zero relative. 

 
 input line location grid cell0 = 0 

 
Loop until the grid cell line location is greater than or equal to the number of Level 1R 
lines, incrementing each new grid cell line location by the appropriate grid cell size in 
the line direction for the current band and SCA. 

 
input line location grid celln = input line location grid celln-1  

+ grid cell size line direction 
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 Set last grid cell line location to the last line in Level 1R image. 
 

input line location grid celllast = number of lines in Level 1R imagery 
 

Initialize first grid cell sample location to zero relative. 
 

input sample location grid cell0 = 0 
 

Loop until the grid cell sample location is greater than or equal to the number of Level 1R 

samples, incrementing each new grid cell sample location by the appropriate grid cell size in the 

sample direction for the current band and SCA. 

 

input sample location grid celln = input sample location grid celln-1  
                            + grid cell size sample direction 

  
Set last grid cell sample location to the last sample in Level 1R image. 
input sample location grid celllast = number of samples in Level 1R imagery  

 

Stage 4 - Grid Construction 
Once the grid structures are created (one per SCA per band) the forward model is evaluated at every 
grid intersection, that is, for every Level 1R line/sample location at every elevation plane. The forward 
model computes the WGS84 latitude/longitude coordinates associated with each input 
line/sample/height point. These latitude/longitude positions are then converted to output space 
line/sample by projecting them to map x/y, computing the offsets (and rotation if path-oriented) from 
the upper-left scene corner, and scaling the offsets from meters to pixels using the pixel size. 
 
a) Make Grid 
This routine creates the geometric mapping grid in output space.  
  

Given the number of grid lines and samples that will be sampled in the input imagery, loop on each 
band of each SCA, loop on number of z-planes, loop on number of input grid lines and samples 
calculating the corresponding output line and sample location. For each input line, sample location, 
and elevation, the instrument forward model function is called. This forward model function is outlined 
in the steps below. Additional detail on the sub-algorithms which comprise the forward model is 
provided in the subsection titled "Forward Model" later in this document.  
 
The forward model uses the TIRS LOS model structure and the CPF to map an input line and sample 
location to an output geographic location. These are the steps that are performed whenever 
calculating an output geodetic latitude and longitude from an input line and sample by invoking the 
instrument “forward model.” The GCTP function can then be used to transform the geographic 
latitude and longitude to a map projection X and Y coordinate. If the output image has a “North up” 
orientation, then the upper left projection coordinate of the output imagery and the output pixel size 
can be used to transform any projection coordinate to an output line and sample location. If the map 
projection space is in a rotated projection space, such as having a satellite path orientation, then a 
transformation handling rotation is established between projection space and output pixel location. 
This transformation is then used in converting projection coordinates to output pixel line and sample 
locations.  
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The process listed below is performed on all bands, all elevation planes, and all SCAs present in the 
grid. The detector type used in the process is nominal (see the TIRS LOS Model Creation ADD for a 
discussion of detector types). The list explains the actions taken if a detector type other than nominal 
is chosen, so that it can be referenced later. 
 
Loop on number of input grid lines. 
 

Loop on number of input grid samples. 
 
Read the input space (Level 1R) line/sample coordinate for this grid point. 

 
Loop on the number of elevation planes. 

 
Compute the height of the current elevation plane: 
 

 incrementelevation_*)zz(height 0elev  

 
 where: 
  z is the index of the current z-plane and 
  zelev=0 is the index of the zero elevation z-plane. 
 
Invoke the forward model to compute the corresponding ground position latitude/longitude 
for this point. The general steps of the forward model are described here and are presented 
in more detail below. 

 
Find Time 
Find the nominal time of input sample relative to the start of the imagery. This procedure is 
described in the TIRS LOS Model Creation ADD and is repeated below in the Find Time 
sub-algorithm description. 
 
Find TIRS LOS 
Find the TIRS LOS vector for the input line/sample location using the Legendre polynomial 
coefficients and the scene select mirror angle as described below in the Find TIRS LOS 
sub-algorithm. 
 
Find Attitude 
Calculate the spacecraft attitude corresponding to the LOS, i.e. for the line/sample location, 
at the time computed above, using the Find Attitude sub-algorithm described below. Note 
that for Earth acquisitions the roll-pitch-yaw attitude sequence in the LOS model is relative 
to the orbital coordinate system whereas for celestial (lunar/stellar) acquisitions the LOS 
model roll-pitch-yaw sequence is with respect to the ECI J2000 coordinate system. The 
operations applied by the Find Attitude sub-algorithm are the same in either case. 
 
Find Ephemeris 
Calculate satellite position for line/sample using Lagrange interpolation. Reference the 
move_sat sub-algorithm described in the TIRS LOS Model Creation ADD and repeated 
below. Note that for Earth acquisitions the move_sat sub-algorithm is provided with the 
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corrected ECEF ephemeris data from the LOS model whereas for celestial (lunar/stellar) 
acquisitions it will be passed the corrected ECI ephemeris. 
 
Rotate LOS to ECEF (Earth-view) or ECI (Celestial) 
Use the TIRS alignment matrix in the TIRS LOS model to convert the LOS vector from 
sensor to ACS/body coordinates. Then apply the interpolated roll, pitch, and yaw to the 
LOS to convert ACS/body to orbital (Earth-view) or ECI (celestial). If Earth-view, use the 
ephemeris to construct the orbital to ECEF rotation matrix and use it to transform LOS to 
ECEF. The procedure for Earth-view scenes is described in the Attitude sub-algorithm 
below. For celestial acquisitions, the procedure is complete once the LOS has been rotated 
to ECI using the roll-pitch-yaw perturbation matrix. 
 
Spacecraft Center of Mass to TIRS Offset Correction 
Adjust the spacecraft position for the offset between the spacecraft center of mass and the 
TIRS instrument. This offset, in spacecraft body coordinates, is stored in the LOS model 
structure. First, convert the offset from spacecraft body frame to ECEF using the attitude 
perturbation matrix (body to orbital) and the orbital to ECEF matrix: 
 

    TIRS to CMbody onperturbatiTIRS  toCM orbital   

 
    TIRS  toCM orbitalORB2ECEFTIRS  toCM ECEF   

 
Add the offset to the ECEF spacecraft position vector. This correction is not used for 
celestial (lunar/stellar) acquisitions. 
 
 
Correct LOS for Velocity Aberration 
The relativistic velocity aberration correction adjusts the computed LOS (ECEF for Earth-
view and ECI for celestial) for the apparent deflection caused by the relative velocity of the 
platform (spacecraft) and target. The preparatory computations are somewhat different for 
Earth-view and celestial acquisitions due to the differences in target velocity. 
 

Earth-view Case 
The LOS intersection sub-algorithm described below (see Find Target Position) is 
invoked with an elevation of zero to find the approximate ground target position. The 
ground point velocity is then computed as: 
 

Vg =  × Xg 

 
where: 
 Vg =  ground point velocity 
 Xg = ground point ECEF position 

  = Earth rotation vector = [ 0      0      e ]
T 

 e = Earth rotation rate in radians/second (from CPF) 
 
The relative velocity is then: 
 
V = Vs - Vg 
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where Vs is the spacecraft ECEF velocity from the ephemeris data. 
 
Correcting the Earth-View LOS 
The LOS vector is adjusted based on the ratio of the relative velocity vector to the 
speed of light (from the CPF): 
 

c

c
V

l

V
l

l





  where: l = uncorrected LOS and l' = corrected LOS 

 
Note that in this case the LOS velocity aberration correction is negative since we are 
correcting the apparent LOS to the true (aberration corrected) LOS. The correction is 
positive if we are computing the apparent LOS from the true (geometrical) LOS (see 
lunar case below). 
 
Celestial (Lunar/Stellar) Case 
Both lunar and stellar acquisitions use the spacecraft inertial velocity from the 
ephemeris data as the relative velocity. This is justified by the use of a lunar ephemeris 
(using the Naval Observatory's NOVAS-C package) that returns apparent places. The 
apparent location of the moon is already corrected for light travel time (see below) and 
velocity/planetary aberration due to the motion of the moon around the Earth. Thus, the 
residual aberration is due only to the motion of the spacecraft relative to the Earth. 
Thus, for both lunar and stellar acquisitions: 
 
V = Vs 
 
where Vs is the spacecraft ECI velocity from the ephemeris data. 

 
Correcting the Celestial LOS 
For stellar acquisitions, the LOS is corrected for aberration in the same manner as for 
Earth-view scenes. For lunar acquisitions, rather than correct the LOS vector, we adjust 
the apparent location of the moon. The lunar vector is thus adjusted based on the ratio 
of the relative velocity vector to the speed of light (from the CPF) as: 
 

c

c
V

l

V
l

l





  where: l = uncorrected LOS and l' = corrected LOS 

 
The correction is positive in this case since we are computing an apparent location 
rather than correcting one. 

 
LOS Intersection 
For Earth-view acquisitions, intersect the LOS in ECEF with the Earth model as described 
in the Find Target Position sub-algorithm below. This yields the geodetic latitude, longitude, 
and height of the ground point. 
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For celestial acquisitions, convert the ECI LOS to right ascension (RA) and declination () 
angles: 
 

)(tan

)(tan

22

1

1

yx

z

x

y
RA











 

where the ECI los vector is [ x  y  z ]T. 
 
Correct Ground Position for Light Travel Time 
Since the light departing the ground point takes a finite time to arrive at the TIRS sensor, 
there is a slight discrepancy in the corresponding time at the ground point and at the 
spacecraft. Since the LOS intersection logic assumed that these times were the same, a 
small correction can be made to correct for this light travel time delay. 
 
Given the ECEF positions of the ground point and the spacecraft, compute the light travel 
time correction as follows: 
 

Compute the distance from the ground point to the spacecraft: 

gs XX d  

where:  
 Xs is the spacecraft ECEF position and 
 Xg is the ground point ECEF position. 

 
Compute the light travel time using the speed of light (from CPF): 

c

d
ltt   

 
Compute the Earth rotation during light travel: 

θ = ltt * e     where e is the Earth angular velocity from the CPF. 
 
Apply the light travel time Earth rotation: 

gg XX















 



100

0cossin

0sincos





 

where: 
 Xg' is the corrected ECEF position 
 Xg is the uncorrected ECEF position 

 
Convert the corrected ECEF position to geodetic latitude, longitude and height. 
 

Note that the light travel time correction for lunar observations due to the difference 
between the Earth-moon distance and the spacecraft-moon distance is neglected. This is 
justified by the fact that that the lunar angular rate is less than 3 microradians per second 
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and the maximum LTT difference is about 25 milliseconds making the magnitude of this 
effect less than 0.1 microradians. 

 
Convert Position to Output Space Line/Sample 
The angular geodetic (latitude/longitude) or celestial (RA/declination) coordinates must be 
converted to the corresponding output space line/sample coordinate to complete the input 
space to output space mapping. 
 
For Earth-view acquisitions this is accomplished as follows: 
 
Calculate the map projection X/Y for the geodetic latitude and longitude. 
 
Convert map X/Y coordinate to output line/sample location: 
 

If the output map projection is of a path-oriented projection then the X/Y coordinate is 
transformed to output space with a bilinear transformation. 

 

YXbYbXbbsample

YXaYaXaaline

****

****

3210

3210




 

where: 
ai = polynomial coefficients that map X/Y to an output line location 
bi = polynomial coefficients that map X/Y to an output sample location 
X,Y = map projection coordinates  

 
The polynomial transformation is set up to handle the rotation involved in rotating a 
“Map North” projection to Satellite of “Path” projection (i.e. one that has the output line 
coordinate system more closely aligned with the along flight path of the satellite). 
 
If the output map projection is not path-oriented, but “North up,” the relationship 
between X/Y and output line/sample does not involve any rotation and the following 
equation is used: 

 

X  size  pixel

Xleft  upper  X
sample

Y  size  pixel

YYleft  upper  
line







 

 
   where: 

upper left Y = upper left Y projection coordinate of output image 
upper left X = upper left X projection coordinate of output image 
pixel size Y = output pixel size in Y coordinates 
pixel size X = output pixel size in X coordinates 

 
Note that these line and sample pixel coordinates are (0,0) relative (i.e., the center of 
the upper left pixel is at line,sample 0,0). 
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For lunar acquisitions, the right ascension and declination angles derived from the inertial 
LOS are offset from the nominal lunar inertial position to establish an output frame that 
"tracks" the apparent location of the moon. This is done as follows: 
 

a) Compute the apparent ECI J2000 position of the moon. 
5. Use the input JPL lunar ephemeris data in the NOVAS-C package to compute 

the ECI true-of-date (ECITOD) apparent location of the moon at the time 
corresponding to the current LOS (lxx_moonpos). This apparent location is 
provided as an ECITOD vector (i.e., including both direction and distance).  

6. Apply the nutation and precession corrections (see Ancillary Data Preprocessing 
ADD for additional information) to convert the ECITOD vector to ECI J2000. 

7. Subtract the current spacecraft ECI J2000 position vector from the lunar ECI 
J2000 vector to compute the spacecraft-lunar vector. 

8. Compute the apparent (parallax corrected) right ascension, declination, and 
spacecraft-lunar distance from the spacecraft-lunar vector (by invoking 
exx_cart2sph. 

 
b) Compute the differences between the LOS right ascension and declination and the 
apparent lunar right ascension and declination. 
 
c) Normalize the nominal angular pixel size by the ratio of the current spacecraft-moon 
distance (computed above) and the nominal spacecraft-moon distance. The nominal 
distance is computed at the acquisition center time. 
 psizecurrent = psizenominal * distancenominal / distancecurrent 

 
d) Divide the angular distances computed in b) above by the normalized pixel size 
computed in c) above. This yields the moon-relative line/sample coordinate. This is the 
coordinate space in which lunar images are framed, so the offset between these 
coordinates and the lunar scene upper left corner coordinates yields the output space 
line/sample for the current grid point. 
 

For stellar acquisitions, the right ascension and declination angles derived from the inertial 
LOS are used directly. The offsets relative to the scene upper left corner (in right 
ascension/declination space) are computed and divided by the angular pixel size to compute 
output space line/sample coordinates. 
 

One additional note regarding the celestial acquisition scene framing is in order. Since right 
ascension, like longitude, increases eastward, and declination, like latitude, increases northward, 
and given that celestial images are looking "up" rather than "down", the right ascension-x, 
declination-y coordinate system is left-handed. This can lead to the moon being apparently 
inverted left-to-right in the output image. This is not important for the applications (e.g., band 
registration characterization) in which the lunar images are to be used. If "anatomically correct" 
lunar images are required, some changes to the framing logic may be necessary. 

 
The line and sample location calculated is stored in the grid structure.  This line/sample location is 
then the output location for the corresponding input line/sample and the current elevation (current grid 
line/sample input locations).   
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b) Calculate Jitter Sensitivity Coefficients  The forward model is invoked multiple times at each 
grid intersection to compute the effect that small attitude perturbations about each spacecraft axis 
have on the input space to output space line/sample mapping. This is done at each grid point as 
follows: 

Save the current grid point input line/sample as in_line/in_samp and the current grid point output 
line/sample as line0/samp0. 
For each spacecraft axis (roll-pitch-yaw) : 

9. Perturb the attitude about the selected axis by 1 microradian. 
10. Use the forward model to compute the output line/sample corresponding to the current 

input line/sample using the perturbed attitude and store the result in line[0]/samp[0]. 
11. Perturb the input line number by 1 line (delta_line = 1) and recompute the corresponding 

output line/sample, storing the result in line[1]/samp[1]. 
12. Restore the input line number to in_line and perturb the input sample number by 1 sample 

(delta_samp = 1) and recompute the corresponding output line/sample, storing the result in 
line[2]/samp[2]. 

13. Calculate the output space to input space line/sample sensitivities as: 
a. delta_oline_per_iline = (line[1]–line[0]) / delta_line 
b. delta_oline_per_isamp = (line[2]–line[0]) / delta_samp 
c. delta_osamp_per_iline = (samp[1]–samp[0]) / delta_line 
d. delta_osamp_per_isamp = (samp[2]–samp[0]) / delta_samp 

14. Invert the resulting 2-by-2 sensitivity matrix to find the input line/samp per output line/samp 
sensitivities: 
a. determinant = delta_oline_per_iline * delta_osamp_per_isamp – delta_oline_per_isamp 

* delta_osamp_per_iline 
b. delta_iline_per_oline = delta_osamp_per_isamp / determinant 
c. delta_iline_per_osamp = -delta_oline_per_isamp / determinant 
d. delta_isamp_per_oline = -delta_osamp_per_iline / determinant 
e. delta_isamp_per_osamp = delta_oline_per_iline / determinant 

15. Apply the input line/samp per output line/samp sensitivities to the output line/samp offset 
due to the attitude perturbation, to find the equivalent input space offset : 
a. d_iline = delta_iline_per_oline * (line[0] – line0) + delta_iline_per_osamp * (samp[0] – 

samp0) 
b. d_isamp = delta_isamp_per_oline * (line[0] – line0) + delta_isamp_per_osamp * 

(samp[0] – samp0) 
16. Divide by the attitude perturbation to compute the input line/sample to attitude jitter 

sensitivities for this axis at this grid point: 
a. line_sens[axis] =  -d_iline / perturbation 
b. samp_sens[axis] = -d_isamp / perturbation 
Where :  

line_sens[] is the array of roll-pitch-yaw line sensitivities for the grid. 
 samp_sens[] is the array of roll-pitch-yaw sample sensitivities for the grid. 
 perturbation is the 1 microradian attitude perturbation introduced in step 1.  
Note that the sign of the sensitivities is inverted in this calculation. This is done because the 
sensitivities will be used to compute the equivalent input space corrections needed to 
compensate for an attitude disturbance. So, since d_iline is the input space line offset that 
is equivalent to one microradian of jitter for the current axis, an offset of –d_iline will 
compensate for this jitter. 

A 2-by-3 array containing the line and sample sensitivity coefficients for the roll, pitch, and yaw axes 
is stored for each grid point. 
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c) Calculate Map Coefficients 
Bilinear mapping coefficients for each grid cell are calculated for mapping from input location to 
output location (forward mapping) and for mapping from output location to input location (inverse 
mapping).  A separate mapping function is used for lines and samples.  This equates to four mapping 
functions.  A set of four mapping functions is calculated for each grid cell, for each SCA, for every 
band, and for every elevation plane that is stored in the grid. 
 
The following methodology is used for calculating one set of four bilinear mapping equations: 
 
A 9x4 matrix is used to fit nine points within a grid cell.  The matrix equation takes the form of: 
 

    bcoeffA   

 
In this equation, matrix A is 9x4, vector b is 9x1, and the coefficient matrix is 4x1. The coefficient 
matrix, [coeff], can be solved to obtain the mapping coefficients as: 
  

     bAAAcoeff TT 1
  

 
In the case of solving for an equation to map an input line and sample location to an output sample 
location, belonging to one grid cell, the matrices can be defined as: 

 
An,0 = 1    where n=0,8  

A0,1 = upper left input sample location for current grid cell 
A1,1 = upper right input sample location for current grid cell 
A2,1 = lower left input sample location for current grid cell 
A3,1 = lower right input sample location for current grid cell 
A4,1 = (A0,1+A1,1+A2,1+A3,1)/4 
A5,1 = (A0,1+A1,1)/2 
A6,1 = (A1,1+A3,1)/2 
A7,1 = (A2,1+A3,1)/2 
A8,1 = (A2,1+A0,1)/2 
A0,2 = upper left input line location for current grid cell 
A1,2 = upper right input line location for current grid cell 
A2,2 = lower left input line location for current grid cell 
A3,2 = lower right input line location for current grid cell 
A4,2 = (A0,2+A1,2+A2,2+A3,2)/4 
A5,2 = (A0,2+A1,2)/2 
A6,2 = (A1,2+A3,2)/2 
A7,2 = (A2,2+A3,2)/2 
A8,2 = (A2,2+A0,2)/2 
An,3 = An,1*An,2  where n=0…8 

 
b0 = upper left output sample location for current grid cell 
b1 = upper right output sample location for current grid cell 
b2 = lower left output sample location for current grid cell 
b3 = lower right output sample location for current grid cell 
b4 = (b0+b1+b2+b3)/4 
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b5 = (b0+b1)/2 
b6 = (b1+b3)/2 
b7 = (b2+b3)/2 
b8 = (b2+b0)/2 

 
The line and sample locations listed above are defined at the grid cell corners coordinates.  The 
points interpolated in between the grid cell line segments provide stability for what could be, most 
notably a mapping that involves a 45o rotation, an ill-defined solution if only four points were used in 
the calculation.  The set of coefficients define a bilinear mapping equation of the form: 
 

sampleo = coeff0 + coeff1 * samplei + coeff2 * linei + coeff3 * samplei * linei 
 
where: 

sampleo = output sample location 
samplei  = input sample location 
linei       = input line location 

 
The forward mapping equations, mapping input line and sample locations to output line locations can 
be solved by swapping output line locations for output sample locations in the matrix [b].  The reverse 
mapping equations, mapping output locations to input line and sample, can be found by using output 
line and sample locations in the [A] matrix and the corresponding input sample and then line locations 
in the [b] matrix. 
 
c.1) Calculate Forward Mappings 
This function, given grid points in both input and output space, uses the Calculate Map Coefficients algorithm 

described above to generate the mapping polynomial coefficients needed to convert from a line/sample in input 

space (satellite) to one in output space (projection).  It generates these coefficients for every cell in the grid. 

 

c.2) Calculate Inverse Mappings 
This function, given grid points in both input and output space, uses the Calculate Map Coefficients 
algorithm described above to generate the mapping polynomial coefficients needed to convert from a 
line/sample in output space (projection) to one in input space (satellite).  It generates these 
coefficients for every cell in the grid. 
 

Stage 5 - Finalize the Grid 
The final stage of grid processing generates the global (rough) mapping coefficients, used to initially 
identify the appropriate grid cell, and computes the parallax sensitivity coefficients, used to correct for 
even/odd detector offset effects, for each grid cell. 
 
a) Calculate Rough Mapping Coefficients 
This routine will find the rough mapping coefficients for the grid.  The rough polynomial is a set of 
polynomials used to map output line and sample locations to input line and sample locations.  The 
rough polynomial is generated using a large number of points distributed over the entire scene, and 
by calculating a polynomial equation that maps an output location to an input location.  The rough 
polynomial is only meant to get a “close” approximation to the input line and sample location for a 
corresponding output line and sample location.  Once this approximation is made, the value can be 
refined to get a more accurate solution.  A rough mapping polynomial is found for every SCA, for 
every band, and for every elevation plane that is stored in the grid file. 
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Bilinear mapping was found to be sufficient for the rough mapping.  The mapping function therefore 
looks like the ones used for each individual grid cell.  However, the set up of the matrices to solve for 
the mapping coefficients is different:  
 

    
1144 NxxNx

bcoeffA   

 
Where the matrix [A] is defined by the output line and sample locations, matrix [b] is defined by either 
the input lines or input samples, and N is equal to the total number of points stored in the grid for one 
elevation plane, of one band, for a single SCA.  The rough polynomial is therefore found by using all 
the point locations stored in the grid for a given band and elevation plane for a single SCA.  There is 
one mapping for output line and sample location to input sample location and one mapping for output 
line and sample location to input line location. 
 
Grid Cell Polynomial 
This utility function calculates a "rough" mapping of output to input lines/samples. The coefficients 
returned from this function are used as a first order approximation to an inverse line-of-sight model.  
This polynomial is used to initially locate the grid cell to be used in the resampling process, providing 
a starting point for the more accurate inverse model based on individual grid cell parameters. 
 

b) Calculate Detector Offsets 
This function computes the detector offset values and stores linear mapping coefficients associated 
with detector offsets in the grid structure.  Using the zero elevation plane, for each band and each 
SCA, loop on the input lines and samples calculating the detector offsets.  The detector offsets are 
set up to account for the geometric differences between the primary and redundant rows of detectors 
and the “nominal” set of detectors modeled by the Legendre polynomials (see the TIRS LOS Model 
Creation ADD).  These differences are considered to be consistent between actual and nominal 
detectors when they occur under the same acquisition conditions, i.e. they are slowly varying. These 
actual to nominal detector differences are due to the imperfect trade-off between space (detector 
offset) and time (detector delay) that is made when we temporally shift (through the use of Level 1R 
image fill) the deselected/replaced detectors to compensate for their spatial offsets on the focal plane. 
The degree to which this time/space trade is imperfect varies with height and, so, the corrections 
derived here and stored in the grid structure, are functions of detector offset and height. 
 
There are also the sub-pixel detector specific offsets that are stored in the CPF.  These "exact" 
detector specific offsets are accounted for in the resampling process.  Note that the potential for 
deselected detectors has made it necessary to also store per-detector full-pixel offsets in the CPF 
(and LOS model). As a result, this detector offset sensitivity logic computes the offset sensitivity per 
pixel of detector offset rather than a fixed value. The routine ols2ils listed below, used for mapping an 
output line and sample to an input line and sample using the geometric grid, is discussed in the TIRS 
Image Resampling ADD.   
 
Loop on number of bands stored in grid 
 Loop on number of SCAs stored in grid 
  Loop on lines and samples stored in the grid 
 
   Get the maximum detector offset value for this band from the CPF. 
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Calculate the output line/sample location for the current input line and sample 
and the zero elevation plane, calculated using the forward model (see below) 
with the detector location set to MAXIMUM. This new detector type is the same 
as ACTUAL but uses the maximum detector offset rather than the detector-
specific value. 

 
Map calculated output line/sample back to input space using the TIRS LOS grid 
and ols2ils. 

 
Delta line/sample per pixel of offset are calculated by: 
 

line0 = (nominal line - mapped line) / max offset 

sample0 = (nominal sample - mapped sample) / max offset 
 
   where: 

nominal line = current grid cell line location 
mapped line = input line location from ols2ils mapped "maximum" output 

line 
nominal sample = current grid cell sample location 
mapped sample = input sample location from ols2ils mapped  “maximum” 

output sample 
max offset = detector offset used in the MAXIMUM forward model 

calculations 
 

These delta lines and samples represent the input space correction necessary to 
compensate for the difference between nominal and actual detectors per pixel of 
detector offset, for the zero elevation plane. 

 

Repeat these calculations for the maximum elevation plane to compute lineH 

and sampleH where H is the elevation corresponding to the maximum z-plane. 
 
Compute the line and sample even/odd offset sensitivity coefficients: 
 

 c0 = line0 

 c1 = (lineH - line0) / H 

 d0 = sample0 

 d1 = (sampleH - sample0) / H 
 
Note that c0 and d0 are in units of pixels per pixel and c1 and d1 are in units of 
pixels per meter per pixel. 

 
These ci and di coefficients are stored in the projection grid to be used during the 
resampling process. 

 

Output Line/Sample to Input Line/Sample 
This utility routine maps an output space line/sample back into its corresponding input space 
line/sample.  This is done using the "rough" polynomial from the grid to determine an initial guess at 
an input space line and sample.  From this initial guess a grid cell row and column is calculated and 
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the inverse coefficients for that cell are retrieved from the grid.  These coefficients are used to 
determine an exact input space line and sample (in extended space). 
 

Find Grid Cell 
This utility function finds the correct cell that contains the output line/sample. It finds the correct grid 
cell containing the output pixel by first determining the set of grid cells to be checked.  It then calls a 
routine to perform a "point in polygon" test on each of these grid cells to determine if the pixel does 
indeed fall within that grid cell. 
  

Forward Model 
Having described the grid generation procedure we now turn to the forward model, referred to 
extensively above, in more detail. 
 
For a given line, sample and band, propagate the forward model to determine a latitude and longitude 
for the specified point. This involves finding the time of the observation, constructing the instrument 
line-of-sight, calculating the spacecraft attitude and ephemeris for the observation time, and 
intersecting the projected line-of-sight with the Earth’s surface. The entire forward model procedure is 
referred to as LOS projection and is described step by step below. 
 

a) Project TIRS LOS 
This function finds the position where the line of sight vector intersects the Earth's surface. It invokes 
the following sub-algorithms: 
 

a.1) Find Time 
This function finds the time into the scene given the line, sample, and band. The input sample number 
is 0-relative and relative to the SCA. The accounting for the primary/redundant detector offsets is 
based on the value of the dettype variable which may be NOMINAL, ACTUAL, MAXIMUM or EXACT. 
Note that the EXACT selection is treated the same as ACTUAL. This is due to the fact that even 
though fractional-pixel detector offsets can occur, the compensating time shifts implemented by 
inserting fill pixels can only be introduced in whole-line increments. So, the sub-pixel difference 
between the ACTUAL and EXACT detector types affects only the LOS angle not the time. The 
MAXIMUM detector type represents a theoretical offset that is used to calculate the parallax 
coefficients within the grid. This maximum is stored as #define in the prototype code, called 
MAX_DET_DELAY. 
 
Due to the multiple detector rows and the potential for bad detector replacement, a nominal and an 
actual time can be found in a scene.  If the current position within the image is given as a line and 
sample location, the two different “types” of times for TIRS pixels are calculated by: 
 
      if detector type is set to MAXIMUM 
 detector_shift_x = maximum_detector_shift 
 l0r_fill_pixels = round(detector_shift_x) + nominal_fill 
      else  
 detector_shift_x = shift stored in geometric model 
            l0r_fill_pixels = Fill from L0rp (also stored in geometric model) 
    

time_index = line_number - l0r_fill_pixels 
if ( time_index < 0 ) time_index = 0 
if (time_index > (num_time_stamps - 1)) time_index = num_time_stamps - 1 
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actual_time = line_time_stamp[time_index] - integration_time/2 
                            + (line_number - l0r_fill_pixels - time_index) * TIRS_sample_time 
 
nominal_time = actual_time + (l0r_fill_pixels – nominal_fill) * TIRS_sample_time 

 
where: 

 line_number is the zero-referenced TIRS image line number (N). 

 nominal_fill is the amount of detector alignment fill to be inserted at the beginning of pixel 
columns that correspond to nominal detectors; that is, those detectors with a delay value of 
zero that are the basis for the Legendre polynomial LOS model. This value comes from the 
CPF and will be zero if there are no bad detectors to replace. 

 l0r_fill_pixels is the total amount of detector alignment fill to be inserted at the beginning of 
the pixel column associated with the current detector. It includes both the 
nominal_fill_pixels and the detector-specific delay fill required to align deselected/replaced 
detectors. 

 num_time_stamps is the total number of time codes (image lines) in the image. It is tested 
to ensure that time_index, the line_time_stamp index, does not go out of bounds. 

 detector_shift_x is the amount of detector offset for the current detector from the TIRS LOS 
model detector delay table. It is rounded to the nearest integer pixel because time offsets 
can only occur in whole line increments. 

 
The detector_shift_x offset parameter from the LOS model detector delay table is rounded to include 
the effects of detector deselect/replacement but not the detector-specific sub-pixel offsets. 
 

a.2) Find TIRS LOS 
This function finds the line of sight vector in sensor coordinates, using the Legendre polynomial LOS 
model and the SSM model stored in the TIRS LOS model, as follows: 
 

Find normalized detector for Legendre polynomial: 
 

 
 

1
1-detectors ofnumber 

detectorcurrent  *2
detector   normalized   

 
    where: 

current detector = sample location (in the range 0 to number of detectors-1) 
number of detectors  = number of detectors (samples) for current band and SCA
 (from TIRS LOS model) 

 
Find across track (y) and along track (x) angles: 

       

        )5.1nd*5.2(*nd*_)5.0nd*5.1(*_nd*__

)5.1nd*5.2(*nd*_)5.0nd*5.1(*_nd*__

2

3

2

210

2

3

2

210





ycoefycoefycoefycoefy

xcoefxcoefxcoefxcoefx
 

where: 
nd = normalized detector 
coef_x = Legendre coefficients for along track direction 
coef_y = Legendre coefficients for across track direction 

(Note: coef_x and coef_y are read from the CPF and stored in the LOS model) 
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If LOS requested is ACTUAL, add the whole pixel detector shift (detector, band, and SCA 
dependent) from the TIRS LOS model. This detector shift is only in the along track direction. 
Note that the TIRS LOS model contains the combined whole pixel and sub-pixel detector 
offset, so it must be rounded to the integer part for the ACTUAL detector type and left 
unrounded for the EXACT detector type. 
 
  x = x + round(detector_shift_x) * IFOV 
  
If LOS requested is EXACT, then add individual detector offsets (detector number, band, and 
SCA dependent).  This detector shift is in both the along and across track directions.  These 
values are stored within the TIRS LOS model.   
 
  x = x + (detector_shift_x) * IFOV 
  y = y + (detector_shift_y) * IFOV 
 
Note that the detector_shift_y parameter, from the TIRS LOS model detector delay table, is 
always sub-pixel. See TIRS LOS Model Creation ADD for further explanation of 
NOMINAL/ACTUAL/EXACT line of sight. 
 
If the LOS request is MAXIMUM then add the maximum detector offset. 
 

x = x + (maximum_detector_shift_x) * IFOV 
 
Calculate LOS vector. 

 


















1

los y

x

 

 
Normalize LOS. 








los

los
los  

 
Apply the TIRS telescope alignment matrix (from the TIRS LOS model) to the LOS vector. 
 
  [losSSM] = MTele2SSM [los] 
 
Calculate the SSM angle (from the TIRS LOS model) using the sample time returned from the 
find time sub-algorithm (nominal or actual). Note that both the image and SSM times are 
referenced to the same UTC epoch (see TIRS LOS Model Creation ADD for details). 

1. In the TIRS SSM model, find the last SSM angle sample, n, with a time, tn, earlier than 
the pixel time. 

2. Linearly interpolate the SSM angle, , at the image time, t, from n, tn, n+1, and tn+1. 

 = n * (tn+1 – t)/(tn+1 – tn) + n+1 * (t – tn)/ (tn+1 – tn) 
3. Compute the SSM reflection matrix. 
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4. Apply the SSM reflection matrix to the LOS. 

 [losTIRS] = MSSM() [losSSM] 
 

 

a.3) Find Attitude 
This function finds the precise roll, pitch and yaw at the specified time. This routine uses the 
"corrected" version of the attitude data stored in the TIRS LOS model. This attitude data sequence 
includes the effects of ground control point precision correction (if any).  
 

Find the current time relative to attitude data start time stored in the LOS model. 
 

dtime = time + image epoch time – attitude epoch time 
Note: 

time = nominal time of input sample relative to the start of the image epoch time 
= image start time from LOS model, only need seconds of day field since all 
epochs are adjusted to the same day. 
attitude epoch time = attitude data start time from LOS model, only need seconds 
of day field since all epochs are adjusted to the same day. 

 
Find index into attitude data (stored in model) corresponding to dtime: 
 











rate sampling attitude

dtime
floorindex  

where: 

attitude sampling rate = sample period from LOS model  
 
This attitude index determination could also be implemented as a search through the attitude 
data time stamps which are stored in the LOS model. The selected index would be the index 
of the last time that does not exceed dtime. 
 
Attitude is found by linearly interpolating between the attitude values located at index and 
index+1 using the corrected attitude sequence from the LOS model: 
 

 
rate sampling attitude

rate sampling attitudedtime,fmod
w  

 

 

w

w

w

indexindexindex

indexindexindex
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1

1

1


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


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a).3.i. Find Jitter Find the high frequency roll, pitch and yaw corrections at the specified input image 
line/sample coordinate. This routine uses the jitter table stored in the TIRS LOS model. This table is 
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time aligned with the TIRS image line sampling times, so the jitter table look-up proceeds directly 
from the input line/sample coordinates:  

Find the current detector number from the input sample location: 
 detector = round(sample) 
Verify that the detector is in the valid range for this band (return error if not). 
Look up the number of L0R fill pixels for this detector (from the fill table). 
Calculate the jitter table index: 
 Index = round(line) – l0r_fill_pixels 
Verify that jitter table index is within the valid range for the table (return zeros if not). 
Extract the roll-pitch-yaw jitter values for the current index from the jitter table and return 
these values. 
 

Note that the jitter values are a direct look-up without interpolation. This does not compromise 
accuracy because this function is only used for cases of EXACT detector projection (e.g., the TIRS 
data simulator) for which the input line/sample coordinates are integers. The jitter values extracted by 
Find Jitter are added to the low frequency roll-pitch-yaw values interpolated by Find Attitude, by the 
calling procedure, Project TIRS LOS, when the EXACT option is in force. 
 

a.4) Move Satellite Sub-Algorithm 
This function computes the satellite position and velocity at a delta time from the ephemeris reference 
time using Lagrange interpolation. This is a utility sub-algorithm that accesses the "corrected" version 
of the model ephemeris data to provide the TIRS position and velocity at any specified time. Since the 
model ephemeris arrays are inputs to this sub-algorithm it will work with either the ECI or ECEF 
ephemeris data. 
 

Calculate time of current line/sample relative to start time of ephemeris start time. 
 

reference time = time + image epoch time – ephemeris epoch time 
 

  where: 

time = nominal time of input sample relative to the start of the imagery 
image epoch time = image start time from LOS model, only need seconds of day since all 

epochs are on same day. 

ephemeris epoch time = ephemeris start time from LOS model,  only need 
seconds of day since all epochs are on same day. 

 
Find index into ephemeris data stored in model. 
 











2

points Lagrange ofnumber 

steps    timeephemeris

  timereference
floorindex  

where: 

ephemeris time steps = time between ephemeris samples 
number of Lagrange points = number of points to use in Lagrange interpolation 

 
Use Lagrange interpolation to calculate satellite position and velocity in ECEF (or ECI, 
depending on which sequence is provided) coordinates at time of current line/sample. 
 

X    = Lagrange(model satellite ECEF/ECI x[index]) 
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Y    = Lagrange(model satellite ECEF/ECI y[index]) 
Z    = Lagrange(model satellite ECEF/ECI z[index]) 
XV = Lagrange(model satellite ECEF/ECI vx[index]) 
YV = Lagrange(model satellite ECEF/ECI vx[index]) 
ZV = Lagrange(model satellite ECEF/ECI vx[index]) 

 
where:  

X    = satellite x coordinate 
Y    = satellite y coordinate 
Z    = satellite z coordinate 
XV = satellite x velocity 
YV = satellite y velocity 
ZV = satellite z velocity 

 
a.5) Convert Sensor LOS to Geocentric 
This function finds the line of sight vector from the spacecraft to a point on the ground by transforming 
the line of sight vector in sensor coordinates to perturbed spacecraft coordinates. 
 

Use the TIRS alignment matrix in the TIRS LOS model to convert the TIRS LOS vector from 
sensor to body. Then apply roll, pitch, and yaw to the LOS to convert body to orbital. Finally, 
use the ephemeris to construct the orbital to ECEF rotation matrix and use it to transform 
LOS to ECEF.   
 
First, using the 3x3 ACS to instrument alignment transformation matrix stored in the TIRS 
LOS model, calculate the instrument to ACS transformation matrix. 
 

    1
Instrument    toACSACS    toInstrument


  

 
Transform LOS from Instrument to ACS/body coordinates. 
 

    losACS    toInstrumentlos  navigation   

 
Calculate attitude perturbation matrix using interpolated attitude values. Note that these 
values include the effects of precision LOS correction (if any) as these will be built into the 
"corrected" attitude stream in the LOS model. Also note that for Earth-view acquisitions the 
roll-pitch-yaw values will be with respect to the orbital coordinate system but for celestial 
acquisitions they will be with respect to ECI. 
 
Calculate perturbation matrix, [perturbation], due to roll, pitch, and yaw: 
 

      rollpitchyaw RPYonperturbati  attitude

cos( ) cos( ) sin( ) sin( ) cos( ) cos( ) sin( ) sin( ) sin( ) cos( ) sin( ) cos( )

cos( ) sin( ) cos( ) cos( ) sin( ) sin( ) sin( ) cos( ) sin( ) sin( ) sin( ) cos( )

sin( ) sin( ) cos( ) cos( ) cos( )

p y r p y r y r y r p y
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
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Calculate new LOS in orbital coordinates (Earth-view) or ECI (celestial) due to attitude 
perturbation: 
 

    los  navigationonperturbatiloson  perturbati   

 
For Earth-view acquisitions, calculate the transformation from Orbital Coordinates to ECEF.  
The position and velocity vectors used in calculating the transformation are those calculated 
above.  These vectors are in ECEF allowing the LOS to be transformed from the instrument 
coordinate system to the ECEF coordinate system. 
 
Transform perturbed LOS from Orbital to ECEF. 

 
    loson  perturbatiORB2ECEFlos  ECEF   

 
For celestial acquisitions, the ECI los ([perturbation los]) is returned. 

 

a.6) Find Target Position 
This function finds the position where the line of sight vector intersects the Earth's surface. 
  

Intersect the LOS in ECEF with the Earth model calculating the target ECEF vector. The 
ECEF vector is then used to compute the geodetic latitude and the longitude of the 
intersection point.  

 
 

 

                                        
Figure 7:  Intersecting LOS with Earth model 

  
Where: 

   rs = satellite position vector 
   re = geocentric Earth vector 
   los = line-of-sight vector 

 
Intersect LOS with ellipsoid 
 

f) Rescale vectors with ellipsoid parameters. 
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where: 

a = semi-major axis of Earth ellipsoid 
b = semi-minor axis of Earth ellipsoid 
rs' = rescaled satellite position vector 
re' = rescaled geocentric Earth vector 
los' = rescaled LOS vector 
 

g) From the Law of Cosines 
 

)cos(''*2''*'
222

rslosdrslosdre   

where:  
d =  los’ vector length 
δ = angle between rs’ and los’ 

 

 
''

''
cos

rslos

rslos 
  

 
 By definition  | re’ | = 1 
 
Rearranging the equation determined from the Law of Cosines in terms of the 
constant d. 
 

  1'''2'
222  rsrslosdlosd  

 
Solving for d using the quadratic equation. 
 

 
2

222

'

1''''''

rs

rslosrslosrslos
d


  

 
h) Compute new target vector. 
 

'*'' losdrsre   
 
i) Rescale target vector. 
 

 '*'*'* rezbreyarexare   
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j) Compute Geodetic coordinates (see Geocentric to Geodetic below). 
 

   000 ,,,, hrezreyrex   

                              
If target height (H), or elevation corresponding to current z plane, is not zero: 
 
Initialize:  

Target vector:   rt=re 
Target height:   h0=0 
 

                   Iterate until Δh =(hi-H) is less than TOL 
 

g) Calculate delta height. 
 

Δh=hi-H 
 

h) Compute length of LOS. 
 

     222
rszrtzrsyrtyrsxrtxd   

 
where: 

d = length of LOS vector 
rt = target vector 
rs = spacecraft position vector 

 
i) Compute LOS /height sensitivity. 

 
losnq   

 
Where n is a vector normal to the ellipsoid surface. 
 

          Tiiiiin  sinsincoscoscos  

 
and: 

q = LOS height sensitivity coefficient 
los = LOS unit vector 

i = current estimate of ground point latitude 

i = current estimate of ground point longitude 
 

j) Adjust LOS. 
 

hqdd  *  

 
k) Re-compute target vector. 

 

losdrsrt *  
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l) Calculate new geodetic coordinates and corresponding height above ellipsoid. 
 

   111 ,,,,  iii hrtzrtyrtx   

    
   Calculate the geodetic latitude and longitude from the final ECEF vector. 

 

a.7) Geocentric to Geodetic 
The relationship between ECEF and geodetic coordinates can be expressed simply in its direct form: 
 

e2 = 1 - b2 / a2 
N = a / (1 - e2 sin2(φ))1/2 
X = (N + h) cos(φ) cos(λ) 
Y = (N + h) cos(φ) sin(λ) 
Z = (N (1-e2) + h) sin(φ) 
 

where: 
X, Y, Z - ECEF coordinates 

φ, λ, h  - Geodetic coordinates (lat , long , height h) 
N  - Ellipsoid radius of curvature in the prime vertical 
e2  - Ellipsoid eccentricity squared 
a, b  - Ellipsoid semi-major and semi-minor axes 

 
The closed-form solution for the general inverse problem (which is the problem here) involves the 
solution of a quadratic equation and is not typically used in practice.  Instead, an iterative solution is 
used for latitude and height for points that do not lie on the ellipsoid surface, i.e., for h ≠ 0.   
 
To convert ECEF Cartesian coordinates to spherical coordinates: 
 

Define: 
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Iterate until abs(hi-hi+1) < TOL 
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Projection Transformation 
This function converts coordinates from one map projection to another.  The transformation from 
geodetic coordinates to the output map projection depends on the type of projection selected.  The 
mathematics for the forward and inverse transformations for the Universal Transverse Mercator 
(UTM), Lambert Conformal Conic, Transverse Mercator, Oblique Mercator, Polyconic, and the Space 
Oblique Mercator (SOM) map projections are handled by U.S Geological Survey’s (USGS) General 
Cartographic Transformation Package (GCTP), as noted below. 
 

Projection Errors 
This function reports projection transformation package errors. The function receives a GCTP error 
code and prints the correct error message. 
  
General Cartographic Transformation Package (gctp) 
Map projections are handled by U.S Geological Survey’s (USGS) General Cartographic 
Transformation Package (GCTP), which may be obtained at 
http://edcftp.cr.usgs.gov/pub/software/gctpc/. 
 
Grid Structure Summary 
Tables 1 and 2 below show the detailed contents of the TIRS LOS grid structure. 
 

Geometric Grid Structure Contents 

Satellite Number (8) 

WRS Path 

WRS Row (may be fractional) 

Acquisition Type (Earth, Lunar, Stellar) 

Scene Framing Information: 

   Frame Type:  PROJBOX, MINBOX, MAXBOX, PATH, PATH_MINBOX, 
PATH_MAXBOX 

   Projection Units (text): METERS, RADIANS, ARCSECONDS 

   Projection Code:  GCTP integer code for UTM, SOM, etc... 

   Datum:  WGS84 

   Spheroid:  GCTP integer code = 12 (WGS84/GRS80) 

   UTM Zone:  UTM zone number (or 0 if not UTM) 

   Map Projection Parameters: 15-element double array containing 
parameters 

http://edcftp.cr.usgs.gov/pub/software/gctpc/
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   Corners:  4 by 2 array of projection coordinates for UL, LL, UR, and LR 
corners 

   Path Oriented Framing Information: 

      Center Point:  latitude and longitude of WRS scene center 

      Projection Center:  Map x/y of WRS scene center 

      Rotation Angle:  Rotation (from true north) of the path frame (degrees)  

      Orientation Angle:  Rotation (from grid north) of the path frame 
(degrees) 

   Active Image Areas:  latitude and longitude (in degrees) of the four 
corners of the active image area (excluding leading and trailing SCA 
imagery) for each band 

Grid Structure Information: 

   Number of SCAs 

   Number of Bands 

   Band List:  array of band IDs included in grid 

   Array of band grid structures, one for each SCA in each band (see Table 
2) 

Table 1:  TIRS LOS Grid Structure Contents 
 

Grid Structure Contents for Each SCA in Each Band 

Band number 

Grid cell size:  number of image lines and samples in each grid cell 

Grid cell scale:  1/lines per cell and 1/samples per cell 

Pixel size:  in projection units (usually meters) 

Number of lines in output image 

Number of samples in output image 

Number of lines in grid (NL) 

Number of samples in grid (NS) 

Number of z-planes (NZ) 

Index of zero-elevation z-plane 

Z-plane spacing:  elevation increment between z-planes 

1D array of input line numbers corresponding to each grid row 

1D array of input sample numbers corresponding to each grid column 

3D array of output lines for each grid point (row-major order) (NS*NL*NZ) 

3D array of output samples for each grid point (row-major order) 
(NS*NL*NZ) 

Array of line c0, c1 even/odd offset coefficients (row-major order) (2*NS*NL) 

Array of sample d0, d1 even/odd offset coefficients (row-major order) 
(2*NS*NL) 

3D array of forward mapping (ils2ols) coefficient sets (NS*NL*NZ) 

3D array of inverse mapping (ols2ils) coefficient sets (NS*NL*NZ) 

3D array of line jitter sensitivity coefficient vectors (3*NS*NL*NZ) 

3D array of sample jitter sensitivity coefficient vectors (3*NS*NL*NZ) 

Degree of rough polynomial 

Array of rough line polynomial coefficients ((degree+1)2 * NZ values) 

Array of rough sample polynomial coefficients ((degree+1)2 * NZ values) 

Table 2:  Per Band LOS Grid Structure Contents 
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LOS Projection Grid Size 
To fully capture the potential variability of the 50 Hz attitude data would require a grid spacing of 1.4 
TIRS lines. This is impractical. The TIRS error budgets assumed that attitude variations at 
frequencies up to 10 Hz would be corrected in the LOS model. Such variations can be captured by 
sampling at 20 Hz or higher. This corresponds to a grid spacing of 3.5 lines, which is still not terribly 
practical. A nominal grid spacing of 5 lines was initially adopted for TIRS. Grid size is not the concern 
it is for OLI data as the TIRS images are substantially smaller (only 2 bands, 3 SCAs and ~2071 
lines) but the practicalities of working with such a dense grid (e.g., on the grid cell search logic) make 
it desirable to implement per-line high frequency correction logic as this permits the use of a sparser 
grid. The inclusion of a high frequency jitter table in the TIRS model and jitter sensitivity coefficients in 
the grid structure allow the grid to be less dense in the time (line) dimension. The baseline 
assumption is that attitude frequencies above 1 Hz will be relegated to the jitter table allowing the 
TIRS grid density to be reduced to 10 lines thus saving grid space even with the addition of the new 
jitter sensitivity fields. 

7.3.2.8 Maturity 

Though much of the OLI LOS projection algorithm was reused there are several areas where 
changes were necessary: 

1. The Legendre polynomial model is higher order (3rd order instead of 2nd order). 
2. The scene select mirror adds some additional logic to the Find LOS sub-algorithm. 
3. The computation of image times is essentially the same as for OLI. 
4. The required grid sampling rate will be higher (in terms of image lines) due to the lower TIRS 

sampling rate. This has made it advantageous to implement, as of version 3.1 of this algorithm, 
a per-line high frequency correction capability to capture attitude dynamics above 1 Hz in order 
to allow for a sparser LOS projection grid. 

5. As with OLI, the highly accurate ephemeris provided by the spacecraft makes it worthwhile to 
include compensation for the offset between the spacecraft center of mass and the TIRS 
instrument in the TIRS LOS model. 

6. As with OLI, the inertial to Earth fixed coordinate transformation logic should include leap 
seconds and light travel time effects. 

7. The TIRS LOS projection logic includes velocity aberration and light travel time effects. 

7.3.2.9 Notes 

Some additional background assumptions and notes include: 
1. The NOVAS planetary ephemeris file provides the lunar ephemerides used to define the 

reference output space for lunar image processing. This file is in the original JPL format and is 
provided to the NOVAS routines as an input. 

2. The number of elevation planes in the grid is computed from the elevation range provided by 
the DEM and the maximum elevation plane spacing stored in the CPF.. 

3. The default grid density is hard coded (through #define statements) but these values are 
overwritten by values read from the CPF. 

4. The "thresholds and limits" parameters, stored either in system tables or the database for L7 
and ALI, have been moved to the CPF. This makes date specific changes, e.g., due to a 
change in the nominal orbit during early- or late-mission operations, easier to manage. 

5. The problem of multiple terrain intersections needs to be addressed for off-nadir images, 
though probably not for purposes of grid generation, since it requires analysis of the full 
resolution DEM. This problem is being handled for OLI images by a new processing step which 
creates an output space mask of pixels that are obscured by terrain. This is not as much of a 
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concern for the (lower resolution) TIRS images and is ignored. Refer to the Terrain Occlusion 
ADD for details. 

6. A number of data elements that are shown as coming from the TIRS LOS Model (e.g., TIRS to 
ACS reference alignment matrix/quaternion, spacecraft CM to TIRS offset in ACS reference 
frame, focal plane model parameters) are also contained in and were loaded into the model 
from the CPF. This is a departure from the ALIAS prototype which accesses fields of this type 
from the CPF wherever needed rather than merging them into the TIRS LOS model. 
 

7.3.3 TIRS Resampling Algorithm 

7.3.3.1 Background/Introduction 

Since the Thermal InfraRed Sensor (TIRS) uses a pushbroom sensor architecture that is very similar 
to the Operational Land Imager (OLI), we can adopt a common approach to image resampling. 
Despite the common approach, the TIRS resampling algorithm will be maintained in a separate ADD 
to accommodate the substantially different OLI and TIRS development schedules. It should be 
possible to converge the OLI and TIRS algorithms once they achieve a similar level of maturity. 
 
The resampling algorithm is used to take a L1R image in original sensor geometry, which has 
unevenly spaced pixels with respect to the surface of the object imaged, and creates a reprojected 
image where all image pixels are located within an evenly spaced set of grid points, or output space, 
with respect the object imaged. This mapping is subject to the errors associated with the interpolation 
method used to determine the digital numbers associated with the output image. 
 
The TIRS geometric resampling grid and geometric model are used to calculate the mappings 
between the input and output space.  The TIRS geometric model contains the individual detector 
offsets from a nominal location (i.e., departures from the Legendre polynomial line-of-sight model, 
offsets due to bad detector replacement) while the geometric resampling grid contains all other 
mapping variables. The resampling grid provides a mapping from a 2D input space to a 3D output 
space and vice versa.  The output space corresponds to x/y/z projection locations while the input 
space corresponds to line/sample locations within the L1R.  The z component in output space is 
elevation.  If elevation is not to be accounted for during processing an elevation of zero is used for 
mapping output pixels to input pixels. 
 
Due to what can be rather large sample-to-sample offsets within a L1R image, the cubic convolution 
interpolation option works in a two step process. A hybrid set of pixels in the sample direction are 
created using cubic convolution resampling in the line direction.  This creates a set of unevenly 
spaced pixels in the sample direction.  The Akima A interpolation method is then used to determine 
the final digital number for the output image by resampling the hybrid pixels in the sample direction.  
The nearest neighbor resampling option simply determines the closest input pixel for corresponding 
output pixel. 
 
The TIRS resampling algorithm is derived from the corresponding OLI algorithm. The sensor 
architecture between the instruments is similar enough that a majority of the OLI algorithm can be 
reused. Though the TIRS focal plane geometry is somewhat simpler than the OLI due to the lack of 
detector stagger, it can be represented as a special case of the same model through appropriate 
selection of calibration parameters. The baseline geometric modeling approach will use the same 3D 
gridding approach for OLI and TIRS.  The OLI algorithm may have to be modified to accommodate 
any differences in TIRS data formats. 
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7.3.3.2 Dependencies 

The OLI/TIRS resampling algorithm assumes that the Ancillary Data Preprocessing, OLI and TIRS 
Line-of-Sight (LOS) Model Creation, and OLI and TIRS Line-of-Sight Projection to Ellipsoid and 
Terrain algorithms have been executed, and a L1R has been generated.  If a digital elevation model 
(DEM) is given as input to account for relief, or terrain, displacement the grid must have an adequate 
number and range (elevation bounds) of z-planes to cover the entire elevation range within the L1R.  
A geometric model and grid must be available for the L1R.  More information about the data structure 
and contents of the Geometric Model and Resampling Grid can be found in the Ancillary Data 
Preprocessing, OLI Line-of-Sight (LOS) Model Creation and Line-of-Sight Projection to Ellipsoid and 
Terrain, TIRS LOS Model Creation and LOS Projection to Ellipsoid and Terrain, Algorithm Description 
Documents (ADDs). 

7.3.3.3 Inputs 

The resampling algorithm and its component sub-algorithms use the inputs listed in the following 
table. Note that some of these “inputs” are implementation conveniences (e.g., using an ODL 
parameter file to convey the values of and pointers to the input data).  
 

Algorithm Inputs 

L1R Image 

TIRS Resampling Grid (see the TIRS Line of Sight Projection ADD for contents) 

Bands to process 

Terrain correction Flag (yes/no) 

DEM (if terrain flag set to yes) 

SCA combine flag (yes/no) 

TIRS Geometric Model (see TIRS Line of Sight Model Creation ADD for 
contents) 

Resampling type (CC,NN) 

Minimum and maximum DN of output (see note #7) 

Output data type 

α (if resampling type is CC) (defaults to -0.5) 

Fill pixel value 

 

7.3.3.4 Outputs 

Resampled output image (L1G, L1GT or L1T) 

     Image data descriptor record (DDR) (See table 1) 

7.3.3.5 Options 

Cubic convolution or nearest neighbor resampling 
Creating an output image with Sensor Chip Assemblies (SCAs) combined or separated 
Applying terrain correction, yes or no 
 
 

7.3.3.6 Procedure 
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TIRS resampling interpolates radiometrically corrected but geometrically raw image data to a map 
projected output space.  The resampling process uses information stored in the TIRS resampling grid 
along with focal plane calibration data stored in the TIRS geometric model to map output projection 
locations to an input location. Since an input location for an output pixel typically lies at a non-integer 
location interpolation is used to find the pixel values associated with this non-integer location. TIRS 
resampling is performed on the geometrically raw L1R data using one of two methods; cubic 
convolution combined with the Akima A method, or nearest neighbor. Note that modulation transfer 
function compensation (MTFC) and bilinear resampling are not supported in the baseline algorithm.  
Due to the lack of inherent band registration and the need to perform sub-pixel registration to achieve 
TIRS band alignment, cubic convolution combined with the Akima A interpolation method will be used 
to generate the standard LDCM products. It is also important to have the best subpixel accuracy in 
the output image during geometric characterization and calibration, so cubic convolution is chosen for 
interpolation during the characterization and calibration of the TIRS instrument.  The ALIAS-heritage 
nearest neighbor interpolation capability is also provided as an option for special-purpose science 
products and testing purposes. Since both standard product generation and geometric 
characterization and calibration are the focus of this document, the only interpolation method 
discussed in detail here is the cubic convolution combined with the Akima A method. 
 
During resampling, there is a need to know what input pixel goes with a given output pixel.  The 
geometric processing system does not have a “true” inverse model to perform this calculation.  
Instead, for a given output pixel, the corresponding input pixel is found from the forward and inverse 
mapping coefficients stored in the resampling grid.  There are two scenarios when performing this 
calculation.  The first involves performing resampling for a systematic image in which case the 
dimension for z, or elevation, is zero.   This involves only a two dimensional operation in line and 
sample.  The second involves performing resampling for a terrain corrected image.  A terrain 
corrected image has the effects of relief removed from the output imagery.  When working with a 
terrain corrected image, a 3-dimensional operation is performed during the inverse mapping with the 
dimensions being input (L1R) line, input sample, and elevation (figure 1).  Both procedures of 
mapping output pixel locations to input pixel locations are discussed below. 
 
Due to layout of the TIRS focal plane, there are along-track offsets between spectral bands within 
each SCA, along-track offsets between even and odd SCAs, and a reversal of the band ordering in 
adjacent SCAs. This leads to an along-track offset in the imagery coverage area for a given band 
between odd and even SCAs as well as an offset between bands within each SCA. To create more 
uniform image coverage within a geometrically corrected output product, the leading and trailing 
imagery associated with these offsets is trimmed.  This trimming is controlled by a set of 
latitude/longitude bounds for the active image area for each band, contained in the input resampling 
grid. Trimming is implemented  by converting these bounds to a look up table that lists the starting 
and ending sample location of active (non-fill) data for each line of the output image. 
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Figure 1.  3D Grid Representation 

 

Using the geometric grid to map an output pixel location to an input pixel 
location. 
To find an input line/sample location for an output line/sample location given that the elevation is zero:  

 
1) Calculate an input line and sample location using the rough polynomial stored in the resampling 
grid and the current output line and sample location.  
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Where: 
 ra = rough polynomial mapping coefficients for line mapping 
 rb = rough polynomial mapping coefficients for sample mapping 
 M = Number of sample coefficients in polynomial 
 N = Number of line coefficients in polynomial 

 
Previous experience when working with the ALI instrument has demonstrated a 1st order polynomial 
in both the line and sample direction will suffice for the rough polynomial,  thus M = N = 1. 
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There is no evidence to believe that this will not also be the case when working with the TIRS 
instrument. 
 
2) Calculate the grid cell location for the approximate input line and sample location. 
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cellper    samples  ofnumber  

sampleinput    eapproxinat
column

cellper    lines  ofnumber  

lineinput    eapproximat
row





 

 
Where: 
number of lines per cell      = size of grid cell in lines 
number of samples per cell = size of grid cell in samples  
 
Set this grid cell column and row location as the current grid cell column and row location. 
 

3) Using the current grid cell location check if the correct grid cell has been found. 
 
Use input (current) mapping grid cell coefficients (ai and bi) to map output line and sample to input: 
 

input line = b0 + b1 * output sample + b2 * output line + b3 * output line * output sample 
input sample = a0 + a1 * output sample + a2 * output line + a3 * output line * output sample 

 
Calculate the grid cell location for this input line and sample location: 
 

cellper    samples  ofnumber  

sampleinput  
column new

cellper    lines  ofnumber  

lineinput   
row new





 

 
If the new grid cell (new row and new column) is the same as the current grid cell (current row and 
current column): 

The correct grid cell has been found, inverse grid mapping coefficients for this grid cell are used to 

calculate the input line/sample for the current output line/sample. 

 
If the new grid cell (new row and new column) is not the same the current grid cell (current row and 
current column): 

The new grid cell is chosen as current grid cell and the 3rd step is repeated until the correct 
grid cell is found. 

 
This routine or function listed above, of mapping output pixel locations to input pixel locations without 
taking into account elevation, will be referred to as ols2ils (output space line-sample to input space 
line-sample mapping). The ols2ils sub-algorithm takes a given output line and sample location and 
calculates the grid cell column and row location along with the corresponding input line and sample 
location for that output location. 
 
To find an input line/sample location for an output line/sample location given that the elevation is not 
zero:   
 
1) Find the z planes that the elevation associated with the output pixel falls between. 
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  Where: 
 elevation = elevation associated with current output location (from DEM) 

 elevation increment = elevation increment between z planes stored in grid 
 zelev=0 = zero z plane, the index of the zero elevation z-plane 

 
    The output line/sample falls between z plane and z plane+1. 
 
2) Call ols2ils for z plane and z plane+1. This yields (input sample0, input line0), and (input sample1, 
input line1).  

 
3) Interpolate between z plane and z plane + 1 to find input line and sample location for elevation. 
 
Calculate elevations for z plane and z plane + 1: 
elev0 = elevation increment * ( z plane - zero z plane ) 
elev1 = elev0 + elevation increment 
 
Calculate weights for ols2ils results: 

01

0
1

01

1
0

elev-elev

elev-elevation
w

elev - elev

elevation - elev
w





 

input sample = input sample0 * w0 + input sample1 * w1 
input line = input line0 * w0 + input line1 * w1 
Where: 
input sample0 = input sample for z plane 
input sample1 = input sample for z plane + 1 
input line0 = input line for z plane 
input line1 = input line for z plane + 1 
 
This routine or function listed above, which performs the three-dimensional output space line-sample 
to input space line-sample mapping, is referred to as 3d_ols2ils.   
 

Resampling Methodology 
The along and cross track detector offsets are applied during resampling.  These include both the 
dynamic primary and redundant detector terrain-dependent relief and parallax effects that were 
calculated during the resampling grid generation, and the individual detector shifts that are stored in 
the TIRS geometric model.  The nature of these geometric effects due to the individual detector 
characteristics is such that, in input space, they are evenly spaced in the line direction but unevenly 
spaced in the sample direction.  This is due to the fact that as you move along raw imagery in the line 
direction, the detector number does not change.  Since the detector number does not change along 
the line direction in raw input space, the along track detector offset, stored within the geometric 
model, does not change.  These geometric effects, due to these detector offsets, are slowly varying in 
time staying essentially constant within the area that resampling is performed.  Therefore the along 
track geometric effect, and essentially spacing in the line direction, can be treated as a constant over 
this area.   The same logic helps explain why the across track detector offset is not constant in the 
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sample direction, since each sample comes from a different detector. This creates unevenly spaced 
samples in raw input space.   An example of a detector layout and its’ associated offset can be seen 
in figure 2.  The squares in figure 2 represent a location of an input pixel, taking into account the 
detector offsets.  The circle with the cross hairs in figure 2 represents the true input location for the 
current output pixel.  It is at this point that an interpolated value is needed to represent the current 
output pixel. 
 

 

Figure 2. Example detector layout 

Detector offsets are handled in the resampler by first applying a resampling kernel in the line direction 
that assumes evenly spaced detectors.  Cubic convolution interpolation is used in the line direction; 
this will align a set of pixels in the sample direction.  Once the pixels are aligned in the sample 
direction, at uneven spacing, the Akima A interpolation is used to find the final output pixel value. The 
linear arrangement of the TIRS detectors, not accounting for bad detector replacement, may have 
made it possible to avoid this complication, but treating the TIRS detectors as a special case with 
zero even/odd detector stagger, allows the use of a common resampling approach for OLI and TIRS. 
 
Cubic convolution interpolation uses a set of piecewise cubic spline interpolating polynomials.  The 
polynomials have this form: 
 

 

column

1 2 3 4

detector row

1

2

3

4

5 6

output

pixel



LDCM-ADEF-001 
Version 3 

 

   


















20

21485

10132

)(
23

23

x

xxxx

xxx

xf 



 

 
 
Four points, centered on the point to be interpolated, are used in interpolation.  The weights for each 
point are generated from f(x).  The α in the cubic convolution function is a variable parameter that 
effects the edge slope of the function.  For standard processing, a value of -0.5 is used.  An example 
of what the cubic convolution function looks like, and the corresponding weights for a phase shift of 
zero (marked as x's), is shown in figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Cubic Convolution Function 

 
As stated previously; for the TIRS resampler the cubic convolution resampling process produces a 
set of hybrid points that are aligned in the line direction.  This is done by resampling several sets of 
L1R pixels in the line direction using the cubic convolution kernel; each time cubic convolution is 
performed one hybrid pixel is produced.  The set of hybrid points produced from the cubic convolution 
process are not evenly spaced in the sample direction.  Figure 4 illustrates a set of hybrid samples 
that have been aligned in the line direction using the cubic convolution process. 
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Figure 4. Hybrid pixels for detector offsets 

The Akima A method for interpolation is used for interpolating the hybrid pixels created from the cubic 
convolution process.  This method of interpolation does not require the samples used to be evenly 
spaced.  The Akima A method uses a third order polynomial for interpolation.  The interpolating 
polynomial is defined by the coordinates and the slopes of the two points that are on either side of the 
point to be interpolated.  The slopes of the adjacent points are determined as follows: 
 
If five points are defined as 1, 2, 3, 4, and 5 then the slope at point 3, t, is defined as: 
 

3234

312234

mmmm

mmmmmm
t




  

 
   Where: 

m1 = slope of line segment defined by points 1 and 2 
m2 = slope of line segment defined by points 2 and 3 
m3 = slope of line segment defined by points 3 and 4 
m4 = slope of line segment defined by points 4 and 5 

 
The Akima A method of interpolation is based upon the values (y) and slopes (t) on either side of the 
point that is to be interpolated. The interpolating polynomial for a point x between xi and xi+1 is then 
defined as: 
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   Where: 

x    = sample location of point to be interpolated 
xi   = location of point to the left of x 
xi+1 = location of point to the right of x 
yi    = DN value for the input point at xi 
y    = interpolated DN value for an output line and sample location 

 
This methodology must be adjusted somewhat to account for higher frequency image distortion 
effects than those that can be captured by the conventional resampling grid. To model such effects, 
the LDCM attitude data stream is separated in to low-frequency and high-frequency segments with 
the low-frequency portion being used for the TIRS line-of-sight projection operations that build the 
resampling grid. The high-frequency data are interpolated to match the TIRS line sampling times and 
stored in the TIRS LOS model in a jitter table for application as an extra correction at image 
resampling time. The process of separating the attitude data stream by frequency is described in the 
TIRS Line-of-Sight Model Creation Algorithm Description Document. 
 
Sensitivity coefficients that relate these high-frequency roll-pitch-yaw jitter terms to the equivalent 
input image space line and sample offset effects are stored in the TIRS LOS grid. This makes it 
possible to look up the roll-pitch-yaw jitter for each image line being resampled, and convert the jitter 
values to compensating input line/sample corrections that are used to refine the image interpolation 
location coordinates. The generation of these sensitivity coefficients is described in the TIRS Line-of-
Sight Projection/Grid Generation Algorithm Description Document. The process by which the jitter 
table from the TIRS model and jitter sensitivity coefficients from the TIRS grid are used during image 
resampling is shown schematically in Figure 5 below. The items in green in the figure are new 
structures added to support jitter correction. 
 
Since the jitter effects vary by image line, the time delay between deselected detectors can lead to 
slightly different jitter effects in adjacent image samples. This is depicted below in Figure 6. Six time 
samples (t0 through t5) for six adjacent detectors are shown in the figure. In this example, every other 
detector is assumed to be deselected and replaced from the redundant detector row. Note that the 
input line location returned by the grid is adjusted differently for the even and odd detectors due to 
their timing offset. Including the effects of detector deselect, the interpolated line location for the 
hybrid pixels could be different for each detector. The current approach does not account for sample-
to-sample variations in jitter for each detector, applying the jitter correction only at the output location. 
This preserves the uniform along-track sampling assumption required to apply the cubic convolution 
kernel. Also note that while it is the interpolation location that is adjusted relative to the input pixel 
locations in the line direction, it is the detector sample locations that are adjusted relative to the 
interpolation location in the sample direction. The jitter-adjusted resampling procedure is explained in 
more detail below. 
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Figure 5:  TIRS LOS Model and TIRS LOS Grid Jitter Correction Data Flow 

  
 

Figure 6:  Jitter Effects in Image Resampling 

 

7.3.3.6.1 Building The SCA-trimmed Look Up Table (LUT). 

Allocate SCA-trim LUT.  There is a starting and ending sample location of active or valid imagery 
stored for each line of output in the SCA-trimming look up table. 
 LUT = malloc( 2 * nl ) 
 Where nl = number of lines in output imagery 
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Given the set of geographic corner coordinates, read from the input grid file, that represent valid 
imagery for a given band: 

7. Map four corners to output projection coordinates. 
8. Map four output projection coordinates to line and sample coordinates. 
9. Set up polygon definition from four coordinates: 

<px0,py0> = <sample upper left, line upper left> 
<px1,py1> = <sample upper right, line upper right> 
<px2,py2> = <sample lower right, line lower right> 
<px3,py3> = <sample lower left, line lower left> 
<px4,py4> = <sample upper left, line upper left> 

10. Set up sample locations for each line that is outside active imagery: 
osamp1 = -1.0 
osamp2 =   output number of samples 
for nn = 0 to 3 
 if px[nn] < osamp1 then osamp1 = px[nn] – 1.0 
 if px[nn] > osamp2 then osamp2 = px[nn] + 1.0 

11. Initialize LUT values to fill for all output lines: 
For nn = 0 to (2 * number of output lines) 
 LUT[nn] = 0 

12. For nn = 0 to number of output lines (nn and current line are synonymous). 
6.1. Define line by sample locations calculated from 4 and current line 
 <x0,y0> = <osamp1, nn> 
 <x1,y1> = <osamp2, nn> 
6.2. Determine intersection between sides of polygon defined in 3 and line defined in 6.1 
 Initialize number of intersections for current line: 

intersections = 0 
 For nn = 0 to 3 
  (Simple line intersection routine) 
  xlk = x0 – x1 
  ylk = y0 – y1 
  xnm = px[nn] – px[nn+1] 
  ynm = py[nn] – py[nn+1] 
  xmk = px[nn+1] – x1 
  ymk = py[nn -1] – y1 
  det = xnm * ylk – ynm * xlk 
  if ( | det | <= TOL ) lines are parallel, no intersection found. 
  s = ( xnm * ymk - ynm * xmk ) / det 
             t = ( xlk * ymk - ylk * xmk ) / det 
             if( s<0.0 || s>1.0 || t<0.0 || t>1.0 )  

no intersection found 
  else  

intersection found, calculate point: 
xp[ intersections ]  = x1 + xlk * s 
yp[ intersections ] = y1 + ylk * s 
intersections++ 

6.3. If number of intersections from 6.2. is two then the current line has valid active imagery 
and the look up table values are these intersections and represent the start and stop of valid 
imagery.  Store values in SCA-trim lookup table.   

 if   xp[0] > xp[1] 
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  LUT[ 2 * nn ]      = xp[1] 
  LUT[ 2 * nn + 1] = xp[0] 
 else 
  LUT[ 2 * nn ]       = xp[0] 
  LUT[ 2 * nn + 1] = xp[1] 

(Note: If number of intersections is not two then current line has no valid active imagery and 
SCA-trim lookup table will contain points outside of imagery, fill will be used). 
 

7.3.3.6.2 Load/Build Information 

To resample a Level 1R data set, the image file, grid file, geometric model, and, if the effects terrain 
are to be removed, a DEM must be opened.  See note #3. 

7.3.3.6.3 Resample Level1R Imagery 

Loop on each band of each SCA for resampling. 
 
6. Get resampling grid for the band and SCA to be processed. 
7.  Build SCA-trimming table. 
8. Read one band of imagery for one SCA. 

8.1. Initialize jitter correction parameters for this band (jitter_scale = 1 for TIRS) 
9. Loop on output line/samples 

9.1. Check to see if output line/sample is within SCA-trimming bounds. 
if  output sample > LUT[ 2 * output line ] &&  

output sample < LUT[ 2 * output line + 1 ]  then proceed 
else  output pixel = fill 

9.2. If image is terrain corrected, calculate elevation dependent input line/sample location. 
4.2.1)  Get elevation for output pixel location X/Y location from DEM (elevation).  See note #3. 
4.2.2) Map the output line/sample back into input space using the grid and the function 

3d_ols2ils. 
9.3. If image is not terrain corrected calculate zero elevation (ellipsoid surface) input  
line/sample location. 
 4.3.1) Set elevation to zero 
 4.3.2) Map the output line/sample back into input space using the grid and the function ols2ils. 
9.4. Calculate actual input sample location; for sample location (int)input sample calculated from 

either 4.2 or 4.3: 
4.4.1) Calculate detector offset parallax scale. 
Scale = (int) floor(detector along track offset + 0.5) (in geometric model).  See note #4. 
4.4.2) Calculate sample detector parallax offset   

 Δsample_oe = (d0 + elevation * d1 ) * scale 
 Note that (d0 + elevation * d1 ) is the  parallax (in pixels) per pixel of along track  offset 
from the nominal detector location. 
 Where:  
 d0,1 = detector sample parallax coefficients stored in the grid 
 4.4.3) Get sample fractional offset 
 fractional sample offset =  
  detector across track offset (in geometric model)  

4.4.4) Calculate sample jitter adjustment 
 4.4.4.1) Calculate the index into the jitter table for the current image line 
jit_index = (int)(jitter_scale*(input line – pixel column fill (defined below))) 
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Make sure jitter index is within the range of the jitter table. Set to the min or max value 
(whichever is closest) if it is outside the range. 
 
4.4.4.2) Calculate the fractional jitter table index 

jit_index = jitter_scale * input line – floor( jitter_scale * input line) 
 
4.4.4.3) Calculate simple sample jitter adjustment 
samp_jitter0 = samp_sens[0] * jitter_table[jit_index].roll 
                     + samp_sens[1] * jitter_table[jit_index].pitch 
                     + samp_sens[2] * jitter_table[jit_index].yaw 
samp_jitter1 = samp_sens[0] * jitter_table[jit_index+1].roll 
                     + samp_sens[1] * jitter_table[jit_index+1].pitch 
                     + samp_sens[2] * jitter_table[jit_index+1].yaw 

samp_jitter = samp_jitter0 * (1-jit_index) + samp_jitter1*jit_index 
Where: 

samp_sens[0] is the sample direction jitter roll sensitivity, 
samp_sens[1] is the sample direction jitter pitch sensitivity, 
samp_sens[2] is the sample direction jitter yaw sensitivity, 
for the current grid cell, from the TIRS grid. 
jitter_table[n] is the jitter table roll-pitch-yaw vector for row n, 
from the TIRS model. 

 
4.4.4.4) Refine the sample jitter to compensate for line jitter 
line_jitter0 = line_sens[0] * jitter_table[jit_index].roll 
                   + line_sens[1] * jitter_table[jit_index].pitch 
                   + line_sens[2] * jitter_table[jit_index].yaw 
line_jitter1 = line_sens[0] * jitter_table[jit_index+1].roll 
                   + line_sens[1] * jitter_table[jit_index+1].pitch 
                   + line_sens[2] * jitter_table[jit_index+1].yaw 

line_jitter = line_jitter0 * (1-jit_index) + line_jitter1*jit_index 
Where: 

line_sens[0] is the line direction jitter roll sensitivity, 
line_sens[1] is the line direction jitter pitch sensitivity, 
line_sens[2] is the line direction jitter yaw sensitivity, 
for the current grid cell, from the TIRS grid. 

This is the error in the line coordinate used above, due to line jitter. 
samp_rate =  
    samp_sens[0]*(jitter_table[jit_index+1].roll-jitter_table[jit_index].roll) 
+  samp_sens[1]*(jitter_table[jit_index+1].pitch-jitter_table[jit_index].pitch) 
+  samp_sens[2]*(jitter_table[jit_index+1].yaw-jitter_table[jit_index].yaw) 
This is the rate of change of sample jitter with line coordinate. 
samp_jitter += line_jitter*samp_rate 
This is the sample jitter correction adjusted for the effects of line jitter. 

 
4.4.5) actual input sample = input sample - Δsample_oe – samp_jitter - fractional sample offset 

(See note #5). These corrections are subtracted rather than added because what we are 
doing here is, rather than adjusting the input space interpolation location, computing the 
apparent location of the detector to the left of the interpolation location to make sure we 
have the correct range of samples to feed the interpolation logic. If the above adjustments 
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lead to the “actual input sample” being greater than (to the right of) the original input 
sample location, then we move our sample range one more sample to the left. We 
perform a similar calculation on the detector to the right of the input space interpolation 
location to make sure that we don’t have to shift one more sample in that direction. See 
also the note in section 4.6.2 below. 

9.5. Create fractional pixel shift for current input location: 
 Δline      = input line       - (int) input line 
 Δsample = input sample - (int) input sample 
9.6. Create aligned samples for Akima resampling by applying cubic convolution weights in line 

direction. 
9.6.1. Loop on actual input sample location: 
For hybrid sample = (int) actual input sample - 2 to (int) actual input sample + 3 (Note #5.  One 
extra hybrid sample created to left and right of minimum number of samples needed for Akima 
interpolation) 
For NN resampling, only the two closest hybrid sample locations are calculated, that for (int) 
actual input sample and (int) actual input sample + 1. 

9.6.1.1.  Calculate line and hybrid sample detector offset parallax scale 
scale = (int) floor(detector along track offset + 0.5) (in geometric model).  See note #4. 
9.6.1.2.  Calculate detector offset, parallax, and jitter correction for hybrid detector. 

9.6.1.2.1. Detector offset and parallax corrections. 
Δline_oe      = (c0  + elevation * c1 ) * scale + pixel column fill - nominal detector fill - 
at_offset[hybrid sample] 

 Δsample_oe = (d0 + elevation * d1 ) * scale  
 Where: 

c0,1 = detector line parallax coefficients stored in the grid  
d0,1 = detector sample parallax coefficients stored in the grid.  Note that (c0  + 
elevation * c1 ) is the along-track parallax (in pixels) per pixel of along-track offset 
from the nominal detector location and (d0 + elevation * d1 ) is the across-track 
parallax (in pixels) per pixel of along-track offset from the nominal detector 
location. 
 

9.6.1.2.2. Jitter correction 
The sample jitter correction is calculated as described in section 3.3.4 above. The line 
jitter correction is calculated as follows: 

jit_index = (int)(jitter_scale*(input line – pixel column fill)) 

jit_index = jitter_scale * input line – floor( jitter_scale * input line) 
line_jitter0 = line_sens[0] * jitter_table[jit_index].roll 
                   + line_sens[1] * jitter_table[jit_index].pitch 
                   + line_sens[2] * jitter_table[jit_index].yaw 
line_jitter1 = line_sens[0] * jitter_table[jit_index+1].roll 
                   + line_sens[1] * jitter_table[jit_index+1].pitch 
                   + line_sens[2] * jitter_table[jit_index+1].yaw 

line_jitter = line_jitter0 * (1-jit_index) + line_jitter1*jit_index 
Where: 

line_sens[0] is the line direction jitter roll sensitivity, 
line_sens[1] is the line direction jitter pitch sensitivity, 
line_sens[2] is the line direction jitter yaw sensitivity, 
for the current grid cell, from the TIRS grid. 

This is the error in the line coordinate due to jitter. 
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line_rate =  
    line_sens[0]*(jitter_table[jit_index+1].roll-jitter_table[jit_index].roll) 
+  line_sens[1]*(jitter_table[jit_index+1].pitch-jitter_table[jit_index].pitch) 
+  line_sens[2]*(jitter_table[jit_index+1].yaw-jitter_table[jit_index].yaw) 
This is the rate of change of line jitter with line coordinate. 
line_jitter += line_jitter*line_rate 
This is the line jitter correction adjusted for the second order effects of line jitter. Note the 
similarity to the sample correction described in 4.4.4.4. 

 
9.6.1.3.   Calculate new hybrid line location.                                                    

hybrid line = (int)floor(input line + ∆line_oe + line_jitter). 
Note that in this case we add the corrections since we are adjusting the interpolation 
location. 

 
9.6.1.4. Calculate new fractional hybrid line location.  
Δhybrid line = input line + Δline_oe + line_jitter – hybrid line 
If |Δhybrid line| > 1 then the integer line index must be adjusted and Δhybrid line brought 
back into the -1 < Δhybrid line < 1 range (see note #5). 
9.6.1.5. For CC resampling, apply cubic convolution in line direction to hybrid sample line 

DNs.  
9.6.1.5.1.  Calculate cubic convolution weights.  See note #2 


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2 )line hybrid(
n

n nfw  

Where f  is equal to cubic convolution function. 
9.6.1.5.2.  Apply cubic convolution weights to L1R DNs. 

 hybrid line DN = w0 * h0 + w1 * h1 + w2 * h2 + w3 * h3 
 Where 
 w0,w1,w2,w3 = Cubic convolution weights for Δhybrid line. 
 h0 = DN from L1R for hybrid sample, input line location  - 1 
 h1 = DN from L1R for hybrid sample, input line location 
 h2 = DN from L1R for hybrid sample, input line location + 1 
 h3 = DN from L1R for hybrid sample, input line location + 2 

For NN resampling, use the fractional hybrid line location to select the closest integer line 
number, and extract the corresponding pixel value as the hybrid line DN for the current 
hybrid sample. 

9.6.2. Calculate the apparent Akima pixel location for the current hybrid sample. 
Akima pixel location xi =  
 hybrid sample location - Δsample_oe - across track detector offset (in geometric model) 
– samp_jitter (computed per section 4.6.1.2.2 above). 
Note that in this case the across-track terrain parallax and sample jitter effects are subtracted 
instead of added. This is because we are adjusting the apparent detector location relative to 
the output pixel interpolation point instead of adjusting the output pixel interpolation location 
itself. We must do it this way in the sample direction because the adjustments are different for 
each detector. As for the across-track offset term, which is also unique for each detector, the 
detector offset corrections are designed to be applied as line-of-sight corrections in the 
instrument coordinate system. As such, the along-track offset is a +X LOS correction and the 
across-track offset is a +Y LOS correction. The instrument +X axis is in the +line direction but 
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the +Y axis is in the –sample direction, so this correction is also subtracted from the apparent 
detector location.   

9.7. For CC resampling, calculate output DN using Akima interpolation and hybrid line/sample 
information from 4.6.1 and 4.6.2. 

9.7.1. Calculate Akima weights according to pixel locations from 4.6.2. 
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Where: 
DNn = hybrid DNs calculated from cubic convolution, step 4.6.1. 
xn = Akima locations calculated in step 4.6.2.   
akn = Akima weights 
mn = Akima slopes 
9.7.2. Calculate output pixel DN using Akima A method. 
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The output sample point is located between hybrid samples x2 and x3 where xn is from n=0…5. 
For NN resampling, test the hybrid Akima locations for the extracted hybrid samples to decide 
which is closest to the desired output location. Select the closest hybrid sample value as the 
output DN. 

9.8. Write output DN to image file.  See note #7. 
10. Write out data descriptor record for image file. The baseline contents of the metadata record are 

shown in Table 1.  All fields present in the table refer to the imagery associated with the DDR 
unless otherwise specified. Note that the scene roll angle is a new field added for off-nadir 
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acquisitions. It would be computed from the TIRS LOS model by interpolating the roll angle from 
the "original" attitude data sequence at the time corresponding to the precision model reference 
time t_ref. This would be done using the logic described in the Find Attitude sub-algorithm in the 
TIRS LOS Projection ADD, except operating on the "original" rather than the "corrected" attitude 
data sequence. The logic for using the "original" data is so that this scene roll value will not 
change due to LOS model correction.  The sign convention on the roll angle is such that a positive 
roll angle would correspond to a positive orbital Y coordinate which is looking to starboard. 

 

7.3.3.6.4 Combining SCAs into one output file. 

For an SCA combined output image the overlap region between SCAs can be handled by averaging 
the pixels between SCAs. 
 

7.3.3.7 Prototype Code 

 
Input to the executable is an ODL file, output is a HDF5 file containing the image data and 
corresponding metadata.  The output format follows the format of the L1G DFCB version 1. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse  –msse2 
 
The following text is a brief description of the main set of modules used within the prototype with each 
module listed along with a very short description. It should be noted that not all library modules are 
referenced in the explanations below. The modules within the main directory of the prototype are 
discussed and any library modules that were determined to be important to the explanation of either 
results, input parameters, or output parameters.  
 
Main driver for resampler (oliresample) 
Main driver for TIRS resampler.  Performs the following steps or calls the following modules. 
 1) Read input ODL parameters (tirs_getpar). 
 2) Read TIRS LOS model file (oli_get_model). 
 3) Read TIRS grid headers (oli_get_grid_headers). 
 If terrain correction read DEM file (oli_get_dem). 
 4) Open L1G image file (open_l1g_resamp_image). 
 5) Get fill pixel value (get_fill_pixel). 
 For each band to process 
  6) Read grid band pointers (oli_get_grid_pointers). 
  7) Open/initialize L1G band file (start_l1g_resamp_band). 
  8) Setup resampling kernel (Kernal_Setup). 
  9) Read resampling kernal information for resampling (get_kernal_info). 
  For each SCA 
   10) Read one SCAs worth of data from L0ra       
 (get_input_image_data_l0ra). 
   11) Resample SCA worth of data (resample_image). 
   if not SCA combined image file write SCAs worth of data     
  (write_l1g_resamp_band). 
  If SCA combined image file write full SCA file (write_l1g_resamp_band). 
  12) Close band in L1G output file (stop_l1g_resamp_writing_band). 
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  13) Free grid band pointer (oli_free_grid). 
 14) Close L1G image file (close_l1g_resamp_image). 
 15) Update L1G metadata (update_l1g_metadata). 
    
Get resampling processing parameters (tirs_getpar). 
This function reads the TIRS resampling parameters from the ODL file.  Also contains two functions, 
get_combine_sca and get_fill_pixel, that will return input flags as to whether 1) combine the SCAs in 
the output image and 2) what DN value should be used for fill.   
 
Resample a given set of DN value using the Akima method (akima). 
Function takes a given set of X locations with corresponding Y values and finds the Y value for the 
given input X location (xp).  Function returns interpolated Y value associated with coordinate xp. 
 
 
Calculate cubic convolution weight for a given location (cubic_convolution). 
Given a cubic convolution alpha parameter and X value return the Y value associated with the cubic 
convolution function. 
 
For a given band read one SCAs worth of L0R imagery (get_input_image_data_l0ra). 
Given a L0rp file name, band number, and SCA number read a SCAs worth of data from L0rp file.  
Number of lines to read is taken from number of lines stored in models image data structure. 
 
Set up resampling kernel (module kernal.c). 
Using a set of functions, create a set of resampling weights.    The resampling kernel is created and 
managed though several steps within the kernal.c file. 
 Kernal_Setup sets up kernal table or pointer.  Allocates pointer and calls 
Create_Resampling_Kernal_1D to create a set of cubic convolution weights.  Set is a look-up table of 
1D cubic weights representing 1/64 of a shift in pixel locations. 
 Cleanup_Kernal frees up cubic convolution pointer. 
 Create_Resampling_Kernal_1D creates a set of one dimensional cubic convolution based on 
the input alpha parameter. 
 Get_Resample_Weight_Table_Ptr returns a pointer containing a set of 1D cubic convolution 
weights. 
 get_lines_in_kernal returns number of lines in resampling kernal. 
 get_samples_in_kernal returns number of samples in resampling kernal. 
 num_left_kernal_samples returns number of resampling weights to the "left" of the point that 
is to be interpolated. 
 num_right_kernal_sample returns number of resampling weights to the "right" of the point 
that is to be interpolated. 
 num_top_kernal_lines returns the number of lines "above" the point to be interpolated. 
 num_bottom_kernal_lines returns the number of lines "below" the point to be interpolated. 
 get_kernal_step_size returns the offset size in pixels between two sets of resampling 
weights. 
 get_kernal_info returns the number of steps (or number of sets of weights) within the 
resampling kernal, total number of sets of weights within the resampling table, width of resampling 
kernal, and height of resampling kernal. 
 
Read DEM file (oli_get_dem). 
Reads (Image Processing Element) IPE L1G file contain DEM data. 
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Open, close, write to L1G output image file (file output_image_data.c) 
The file output_image_data.c contains several routines used for managing the output L1G file.  Calls 
and functions are listed below. 
open_l1g_resamp_image opens a L1G file. 
start_l1g_resamp_band opens one band within an L1G file. 
write_l1g_resamp_band writes image data to L1G file. 
stop_l1g_resamp_writing_band closes band within L1G file. 
close_l1g_resamp_image closed L1G file. 
 
Resample one SCA for one band of L0Rp imagery (file resample_image.c) 
The file resample.c contains several functions used in resampling imagery. 

setup_trim_lut builds a lookup table that contains the starting and ending output pixel of valid 
imagery.  Everything outside of this bounds will be set as fill 
 cleanup_trim_lut frees static buffer that contains SCA-trimming lookup table array. 
 get_kernal_info retrieves resampling weight table and corresponding characteristics.  
 setup_detector_offsets stores the detector offsets, along and across, level-0R fill, and 
nominal detector fill within arrays.  Used by resample_image for applying detector offsets when 
resampling imagery. 
 resample_image is the main guts of the resampler.  Takes the image data, DEM data if terrain 
corrected, grid band pointer, and TIRS model structure to resample one SCA or one band of imagery.  
Loops on output pixels mapping each output pixel location to an input location and resamples L0Rp 
(or L1R when it becomes available) using algorithm described in procedure section. 
 calc_jitter computes the sample and line direction jitter corrections for the current input 
line/sample location. This corrections are the adjustments to the input space interpolation location 
required to compensate for the high frequency jitter present at the time of observation. 
 calc_jitter_samp is a simplified version of calc_jitter that computes only the sample direction 
jitter correction. It is implemented as a separate function for processing efficiency because it is 
invoked more frequently than calc_jitter. 
 
Update L1G metadata information (update_l1g_metadata). 
Update L1G metadata according to projection information stored within resampling grid. 
 
Write out ENVI header file (write_envi_hdr). 
Writes out ENVI header file for image flat file that is written to disk.  Only used for testing purposes. 
 
Input and Output File DetailsOutput is a L1G image file formatted according to the L1G DFCB.  The 
output is a HDF5 file.  The metadata associated with the output file is listed below.  This table follows 
the metadata fields in version 1 of the LDCM Level-1 G DFCB.  The metadata is split up into a file 
metadata and band metadata.  For further information on this format see the L1G DFCB. Not all fields 
within the prototype metadata fields are filled in with valid data.  Fields in which data is not correctly 
filled are indicated in italics (see notes #8 and #9). 

Field Description Type 

    Spacecraft source Spacecraft associated with data record char[32] 

    Instrument source Imaging instrument (TIRS) char[32] 

    WRS path WRS path number integer 

    WRS row WRS row number integer 

    Capture direction Ascending or descending pass char[64] 

    Capture date Date imagery was acquired by instrument char[11] 
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    Capture time Time of day imagery was acquired by 
instrument 

char[8] 

    Scene roll angle Roll angle (in degrees) at the scene center float 

    Correction type Raw, L1R, L1G, L1Gt, L1T char[8] 

    Acquisition type Earth, lunar, stellar char[8] 

    Projection Code Map projection code integer 

    Zone code UTM zone code integer 

    Datum code Datum code for map projection char[16] 

    Spheroid code Earth model for map projection integer 

    Projection units Distance units char[8] 

    Projection 
coefficients 

Parameters needed by coordinate 
transformation package.  For the prototype code 
projection transformations are performed using 
GCTP. 

float[16] 

For each band:   

    Band Number LDCM band designation for current record integer 

    Number lines Number of lines present in data file integer 

    Number samples Number of samples present in data file integer 

    Data Type Data type of imagery integer 

    Maximum Pixel Maximum DN value in data float 

    Minimum Pixel Minimum DN value in data float 

    Maximum Radiance Maximum radiance  float 

    Minimum Radiance Minimum radiance float 

    Upper left projection               
coordinate 

Upper left y (latitude/northing) and x 
(longitude/easting) coordinate 

float[2] 

    Upper right 
projection coordinate 

Upper right y (latitude/northing) and x 
(longitude/easting) coordinate 

float[2] 

    Lower right 
projection coordinate 

Lower right y (latitude/northing) and x 
(longitude/easting) coordinate 

float[2] 

    Lower left projection 
coordinate 

Lower left y (latitude/northing) and x 
(longitude/easting) coordinate 

float[2] 

    Projection distance 
y 

Pixel size for y map coordinate float 

    Projection distance 
x 

Pixel size for x map coordinate float 

 
Table 1.  Metadata Contents 

7.3.3.8 Maturity 

1. Since the OLI 3D grid approach is adopted for TIRS, the OLI code was reused with limited 
modifications. 

2. The bad detector replacement approach used by TIRS, in which detectors from the redundant 
row are swapped for bad detectors in the primary row, is similar to the detector select 
capability used by the OLI. TIRS will use the same detector offset approach, in which the along 
track detector offsets are stored in the CPF with the whole pixel adjustment needed due to the 
detector selected and the small sub-pixel adjustment, capturing deviations from the nominal 
Legendre polynomial LOS model, that was present in the heritage ALI CPF detector offset 
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field.  The fractional detector offset is separated from the detector select offset at times during 
processing. 

3. The TIRS LOS model will not specifically address the problem of multiple terrain intersections. 
A terrain occlusion mask will be generated to identify obstructed OLI pixels (see note #1 below 
for additional details), and the TIRS grid structure should be compatible with the terrain 
occlusion algorithm but that algorithm will not be modified to accommodate TIRS. 

4. The baseline (non-threaded) resampler implementation generates combined-SCA images by 
simply overwriting pixels present in multiple SCAs. Thus, the output image will contain pixel 
values from the highest-numbered SCA that views each pixel. The more sophisticated 
threaded resampler explicitly merges overlapping pixels, taking the average of pixels seen by 
two SCAs. Either method is acceptable but the latter approach is preferred. 

7.3.3.9 Notes 

Some additional background assumptions and notes include: 
1. The new logic required to calculate the terrain occlusion mask (particularly for off-nadir scenes) 

is documented in a separate ADD but may be implemented as part of the OLI resampling 
software for processing efficiency. If the OLI and TIRS resampling implementations are 
converged, this logic would also be present for TIRS. 

2. For implementation of the prototype code, the cubic convolution weights are stored within a 
table.  The cubic convolution weights are stored as sets of 4 within the table with each set 
representing a 1/64 pixel shift. 

3. For implementation of the prototype, the elevation for each output pixel are stored within a 
table (or image file) with each entry within the table representing the elevation of every pixel 
within the highest resolution of output imagery required. 

4. Due to the detector select option aboard OLI and the TIRS bad detector replacement strategy, 
the detector parallax coefficients stored within the grid are in units of nominal pixels.  To get 
the geometric effects of parallax and offset for a particular pixel the coefficients need to be 
rescaled to the pixel of interest based on its whole-pixel even/odd and deselect offset. 

5. The processing needs to handle situations where fractional location shifts changes the 
indexing, or integer, location for the pixel of interest.  This can happen when operating in either 
the sample or line direction. 

6. The lunar L1Rs may contain detector offsets between primary and replaced detectors that are 
much greater in spacing than what is typically present in an earth imaged L1R.  Since lunar 
processing is not required for TIRS, no special logic will be developed to handle this situation. 

7. This assumes that the ALIAS heritage method of applying the radiance to product DN scaling 
within the resampler remains the same.  Any scaling that needs to be done for the output 
imagery, whether due to output data type constraints or any radiometric scaling that must be 
applied, can be performed as the last step just before the DN value is written to the output 
image file. 

8. Many of the fields in the band and file metadata could most likely be filled in from the L0Rp 
metadata.  As this file format is still in the state of being defined these fields should be filled in 
as they become more finalized. 

9. It currently is expected that the L0rp metadata file will contain the off-nadir angle associated 
with the image acquisition.  Under this scenario this off-nadir angle from the L0rp can be used 
as the off-nadir angle within the resampled L1G metadata. 
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7.3.4 TIRS Band-to-Band Calibration Algorithm 

7.3.4.1 Background/Introduction 

The TIRS Band-to-Band calibration (B2BCal) algorithm estimates improved values for band 
placement within each Sensor Chip Assembly (SCA) of the TIRS instrument.  Adjustments are made 
relative to the primary detector row 10.8 micrometer band, or in other words, the 10.8 micrometer 
band serves as the reference for all other bands. The baseline algorithm calibrates only the TIRS 
primary row 12.0 micrometer band relative to the primary row 10.8 micrometer band. Some features 
are retained from the OLI band calibration algorithm that would facilitate adding the capability to 
calibrate the TIRS redundant rows in the future. 
 
The B2B calibration takes the TIRS Band Accuracy Assessment residuals file, which represents 
displacements with respect to the product output projection space, maps the residuals back into 
displacements with respect to the focal plane and then performs a least squares (LSQ) fit between 
the focal plane residuals to determine updates to the TIRS band Legendre line-of-sight (LOS) 
polynomial coefficients.   The least squares fit results represent updates needed to adjust the existing 
Legendre LOS coefficients.  These updates can be used to produce new Legendre LOS coefficients 
for the Calibration Parameter File (CPF). 
 
TIRS band alignment calibration algorithm would be applied to the output of the TIRS band 
registration accuracy assessment algorithm derived from SCA-separated TIRS images. 
 

7.3.4.2 Dependencies 

The TIRS B2B calibration algorithm assumes that a cloud free nadir viewing L1T image has been 
generated and the resampled DEM used to create the L1T is available.  The TIRS Model Creation 
and TIRS LOS Projection/Gridding algorithms for the L1T will be assumed to have been executed 
and the corresponding output files available.  The L1T image needs to be in SCA-separated format 
and either in a SOM or UTM path oriented projection.  The digital orthophoto quadrangle (DOQ) 
control and a digital elevation model (DEM) need to be used in generating the L1T.  The accuracy of 
the precision solution should have post-fit residuals below the recommended threshold, the solution 
should have used an adequate number of control points, and the distribution of the control should be 
well distributed throughout the imagery.  The TIRS Band Registration Accuracy Assessment (BRAA), 
or Band Characterization (B2BChar), algorithm will assumed to have been run on the L1T image 
successfully producing a B2B residuals file.    
 

7.3.4.3 Inputs 

The B2B calibration algorithm uses the inputs listed in the following table. Note that some of these 
“inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the values of 
and pointers to the input data). 
 
Algorithm Inputs Algorithm Inputs 

TIRS resampling grid ODL 

DEM  ODL 

TIRS CPF file name ODL 

Along track IFOV CPF/LOS-model (See note #8) 

Minimum points ODL 

Number of Legendre Coefficients ODL (See note #6) 

TIRS  Line-of-Sight model ODL 
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B2B residuals file ODL 

Band calibration report file  ODL 

Trend flag ODL 

Flag for CPF group creation (see note #3) ODL 

Flag for individual tie-point listing  ODL 

CPF effective dates (begin and end) ODL 

Work Order ID (for trending) ODL 

 

7.3.4.4 Outputs 

B2B calibration report file (See note #1 and table #1) 

Legendre LOS CPF group 

B2B calibration trending 

Geometric Characterization ID 

  Work Order ID  

  WRS Path/Row 

   B2B calibration post and pre fit residuals 

   New SCA line-of-sight parameters 

7.3.4.5 Options 

Trending on/off switch 

7.3.4.6 Prototype Code 

The TIRS prototype code follows very closely that of the OLI prototype code.  The changes and 
differences between the code are associated with the increase in the number of Legendre coefficients 
(from 3 to 4) and the decrease in the number of bands (10 to 4) and SCAs (14 to 3).   
 
 
Input to the executable is an ODL file; output is an ASCII file containing measured offsets between 
band combinations of the L1T image and the corresponding updated line-of-sight (LOS) Legendre 
CPF coefficients.  Under this directory is the ODL input file needed, band accuracy assessment 
residuals file, the input CPF, the output reports file and the output updated Legendre LOS 
coefficients.   
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse –msse2 
 
The following are a set of brief descriptions of the main set of modules used within the prototype.  It 
should be noted that almost all library modules are not referenced in the explanations below.   The 
modules within the main bandcal directory or the prototype are discussed and any library modules 
that were determined to be important to the explanation of either results, input parameters, or output 
parameters. 
 
getpar 
Reads the parameters from the input ODL parameter file.  Input parameters include: co-registered 
DEM, CPF, LOS resampling grid, geometric LOS model file and output band calibration report file 
names, the minimum points, number of coefficients, effective CPF file dates, and output file print 
flags.  The minimum points variable ensures that the normal matrix contains a minimum number 
along its diagonal to zero out any omitted bands. Rather than being removed from the solution, the 
offsets for omitted bands are set to zero with a weight equal to the minimum number of points.  
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Omitted bands, for calibration or adjustment, are dependent on the bands present within the band 
accuracy assessment residuals file.  A similar approach is used to restrict the number of SCAs that 
will be calibrated. 
 
read_b2bchout 
Reads band accuracy assessment residuals file.  Also determines the specific SCAs and bands to 
calibrate by checking the band accuracy assessment residuals for SCAs and bands present (See 
Note  #7). 
 
oli_get_dem 
Reads DEM file into IMAGE data structure. 
 
oli_get_model 
Reads TIRS geometric/LOS model.   
 
oli_get_grid 
Reads TIRS LOS geometric resampling grid.   
19.  
20. bandcal 

21. Main driver for determining new Legendre LOS.  Calls module to retrieve ODL parameters (getpar), calls 

module to read band accuracy assessment residuals files (read_b2bchout), reads elevation or DEM data 

(oli_get_dem), reads LOS geometric resampling grid, reads geometric line-of-sight model, and solves for 

new Legendre LOS (solve_focal_plane).   

22.  
23. solve_focal_plane 

24. Module to solve for new Legendre LOS.  Loops on each valid tie-point for each SCA and each band 

combination.  Calls module get_los_errors to determine per tie-point adjustment needed for determining 

least squares (LSQ) solution for new Legendre LOS coefficients.  Calculates post and pre-fit statistics 

associated with Legendre LOS coefficients.     

25.  
26. get_los_errors 

27. Calculates delta input line and sample LOS needed for LSQ.  Reads elevation for tie-point, maps tie-point to 

input space, finds adjustment needed between search and reference LOS vectors.   

28.  
29. write_SCA_parameters_cpf 

Writes out a new set of Legendre LOS.  Format fits LOS group within TIRS CPF. 

7.3.4.7 Procedure 

Band calibration uses the residuals measured during the TIRS Band Registration Accuracy 
Assessment Algorithm (See the TIRS Band Registration Accuracy Assessment ADD) to determine 
updates to the Legendre LOS coefficients (See TIRS Line-of-Sight Model Creation ADD).  The band 
calibration process involves taking the residuals from band registration accuracy assessment, 
measured in output space, mapping them into input space angular deltas in terms of along- and 
across-track LOS angles and performing a least squares fit of the input space LOS angle deltas to a 
set of 3rd  order Legendre polynomial correction coefficients.  The correction polynomials calculated 
represent updates to the original LOS Legendre polynomial coefficients.  New Legendre LOS 
coefficients can be found by combining the correction coefficients with the original coefficients.  
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Due to the differences in viewing geometry between bands within a SCA, along with the differences in 
viewing geometry between SCAs, the effects due to relief displacement must be taken into account 
during band calibration.  To account for relief displacement during B2B calibration a DEM is required.  
The resampling grid and LOS model is also required during B2B calibration.  The resampling grid, the 
corresponding detector’s IFOV, and the LOS model's Legendre coefficients are used to map the 
residuals from output space to angular differences in input space. 
 
A least squares fit is done on all requested bands and SCAs using the band-to-band tie point 
measurements from all band-pair combinations for a single SCA at a time.   Requested bands and 
SCAs to process are based on the bands and SCAs present within the TIRS Band Registration 
Accuracy Assessment residuals file.   
 

7.3.4.7.1 Stage 1- Data input 

The data input stage involves loading the information required to perform the band calibration.  Input 
file names are needed for: geometric LOS resampling grid, LOS model, band registration accuracy 
assessment results (B2B residuals file), output band calibration report file name, and the L1T DEM 
file name.  Further input parameters are the effective begin and end dates of the new Legendre LOSs 
calculated, trending flag, CPF group creation flag, and individual tie-point reporting.  Once the file 
names for the input data needed are retrieved the files can be opened and read. 
 
Get ODL Parameters  
Reads the parameters from the input ODL parameter file.  This process was modified from the ALIAS 
heritage version to handle new inputs:  minimum points, flag for CPF group creation, CPF effective 
dates, and flag for reporting individual tie-point results.  The minimum points variable ensures that the 
normal matrix contains a minimum number along its diagonal to zero out any omitted bands. Rather 
than being removed from the solution, the offsets for omitted bands are set to zero with a weight 
equal to the minimum number of points. 
   
Read Band-to-Band Residual File  
Reads band accuracy assessment residuals file.   
 
Read DEM  
Read DEM file into IMAGE data structure.   
 
Read TIRS LOS Model  
Read TIRS geometric/LOS model.   
 
Read TIRS LOS Geometric Grid  
Read TIRS LOS resampling grid.   
 

7.3.4.7.2 Stage 2 - Setup Least Squares Matrices and Solve 

For each input SCA, every residual for each input band combination that is not an outlier is mapped 
back to TIRS input space.  These input space mappings are single value adjustments needed for 
each point to align the LOS, associated with the focal plane, between the bands of the combination.  
This mapping procedure is described in more detail below.  Once all of these residuals are mapped 
back to the focal plane and stored within the least-squares (LSQ) matrices new LOSs can be 
calculated.  
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The matrices defining calibration the process takes the following form: 
 

    YcoeffA   

 
The matrices [A] and [Y] shown above correspond to one tie point measurement.  The matrix [coeff] 
are the unknown adjustments to the Legendre LOS coefficients, the matrix [A] contain the Legendre 
coefficient multipliers for the band combination corresponding to that one measurement, and the [Y] 
matrix contains the input space residuals for that one measurement.  For one measurement the 
matrices have the following dimensions: 
[coeff] = (2 * Number of Legendre (4) * Number of bands (2)) x 1 = M x 1 
[A] = 2 x (2 * Number of Legendre (4) * Number of bands (2))      = 2 x M 
[Y] = 2 x 1 
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Where: 
abi,j = Legendre coefficient j for line direction (along track) for band i 
bbi,j = Legendre coefficient j for sample direction (across track) for band i 
j = 0, 1, 2, 3 or the Number of Legendre coefficients to solve. 
i = 1, 2 (Number of TIRS bands) 
 
A 2x1 matrix pertaining to one residual measurement can be defined as: 
 

  













sample

line
Y  

 
Where: 
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Δline      = input space residual in line direction (angular) 
Δsample = input space residual in sample direction (angular) 
 
The TIRS input space residuals are calculated by finding the nominal (search) LOS in input space 
and the measured (search + measured offset) LOS in input space.  These LOSs are found by 
mapping the output space line and sample locations to input space line and sample locations using 
the TIRS LOS projection grid (See TIRS Resampling ADD) and then using the TIRS LOS model (see 
TIRS Line-of-Sight Model Creation ADD) to convert the input space locations to LOSs.  These input 
space nominal and measured locations are also used to construct the Legendre coefficient 
multipliers. 
 
The design matrix [A] for one residual measurement is then: 

    nnik YcoeffA   

 

 


















3,2,2,2,1,2,0,2,
0000

3,1,2,1,1,1,0,1,
0000

0000
3,2,2,2,1,2,0,2,

0000
3,1,2,1,1,1,0,1,

n
sl

n
sl

n
sl

n
sl

n
rl

n
rl

n
rl

n
rl

n
sl

n
sl

n
sl

n
sl

n
rl

n
rl

n
rl

n
rl

A  

Where: 
rln,1,j = reference band (1)1 Legendre polynomial 
sln,2,j = search band (2) Legendre polynomial 
j = 0, 1, 2, 3 or the Number of Legendre coefficients to solve 
n = tie-point number 
 
These matrices define one observation.  A sequence of observations can be summed to define the 
normal equations for a set of coefficients that can be used to update the TIRS LOS Legendre 
coefficients: 
 

 

  










nikik

T

nik

nikik

T

nik

YWAL

AWAN

1

1

 

 

Where [N] and [L] are summed over all n. Note that for TIRS there is only one band combination (the 
reference 10.8 micrometer band and the search 12.0 micrometer band).  W is a weight matrix that is 
currently set to the same weight for all observations. 
 
Since all of the tie point observations involve band differences, the solution lacks an absolute 
reference. To stabilize the solution a constraint observation is added to provide such a reference.  
This additional observation is applied to the 10.8 micrometer reference band as an offset of zero for 
each direction (line and sample).  This fixes the reference band adjustment at zero and forces the 
search band to be registered to it. 
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 

 





































































0

0

0

0

0

0

0

0

0000000010000000

0000000001000000

0000000000100000

0000000000010000

0000000000001000

0000000000000100

0000000000000010

0000000000000001

00

00

Y

A

 

Where the 10.8 micrometer reference band is stored in the first eight columns of the [A] observation 
matrix.   
 
The solution for a new set of Legendre coefficients is then: 
 

     LNcoeff
1

  

 
Band Calibration Processing Steps 

Note: Array indexes are zero-relative.  Band numbers are 10.8 m = 1, 12.0 m = 2,  
 nLeg = Number of Legendre update coefficients to solve (1, 2, 3, 4 valid options). 
 Matrix indexes are zero relative 
 
30. 1.  Initialize parameters 

31.   









2

2

0

0




W  

Where σ2 = 16, an approximate measurement variance for the tie point observations. 
 

2.  For each SCA to process 

32.  Initialize pre-fit statistics variables 

33.   pre-fit sum line = 0 

34.   pre-fit sum sample = 0 

35.   pre-fit sum line
2
 = 0 

36.   pre-fit sum sample
2
 = 0 

37.  Initialize LSQ matrices to zero 

38.   [N] = [0] 

39.   [L]  = [0] 
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40.  
41. 2.1 For the single TIRS band combination 

42.        rband = 10.8 m reference band 

43.        sband = 12.0 m search band 

44.  
2.1.1 For each tie-point 
 

45. 2.1.2 Calculate reference line, sample location and search adjusted line, sample location. 

46. rline = tie-point reference line location 

47. rsamp = tie-point reference sample location 

48. sline = tie-point search line location + line offset measured  

49. ssamp = tie-point search sample location + sample offset measured 

50. Note: sline, ssamp is the adjusted (or true) search location. 

51.   

52.  Note that rline, rsamp, sline, ssamp are output space pixel locations. 

53.  
54. 2.1.3  Set rband and sband to zero-relative (needed for matrix operations, done  with 

axx_parse_user_band in ALIAS) 

55. rband = rband - 1 

56. sband = sband - 1 

57.  
58.  Map residuals to input space (focal plane space).  

 2.1.4 Find elevation for reference and sample locations 
59.   relev = elevation at rline,rsamp 

60.   selev = elevation at sline,ssamp 

61.  
62.  2.1.5 Map rline,rsamp and sline,ssamp to input space using 3d_ols2ils (See Note   #2) and the 

search band TIRS LOS/resampling grid. 

63. (riline,risamp) = 3d_ols2ils(search_grid, relev, rline, rsamp) 

64. (siline,sisamp) = 3d_ols2ils(search_grid, selev, sline, ssamp) 

65. Where 

66. riline, risamp is the input space location of reference tie-point location. 

67. siline, sisamp is the input space location of adjusted search tie-point location. 

68. search_grid is the TIRS LOS/resampling grid for the search band. 

69. Note: Search band grid is used for mapping both the adjusted search (siline,sisamp) and the 

reference locations.   

70.  
71.  2.1.6   Calculate Legendre normalized detector location 

72.  

1
1SCAin  detctorsnumber 

sisamp*2.0
snorm

1
1SCAin  detectorsnumber 

risamp*2.0
rnorm











 

73.  
74. rnorm = normalized reference detector 

75. snorm = normalized adjusted search detector 

76.  
77.  2.1.7   Calculate reference and search along and across track LOS. 
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78. 

2/)3*5(**_

2/)1*3(*_*____

2/)3*5(**_

2/)1*3(*_*____

2

3,

2

2,1,0,

2

3,

2

2,1,0,









rnormrnormycoef

rnormycoefrnormycoefycoefysearnom

rnormrnormxcoef

rnormxcoefrnormxcoefxcoefxsearnom

s

sss

s

sss

 

79. 

2/)3*5(**_

2/)1*3(*_*___

2/)3*5(**_

2/)1*3(*_*___

2

3,

2

2,1,0,

2

3,

2

2,1,0,









snormsnormycoef

snormycoefsnormycoefycoefysear

snormsnormxcoef

snormxcoefsnormxcoefxcoefxsear

s

sss

s

sss

 

 
 Where 
 ref_x, ref_y = along and across track view angles 
 sear_x, sear_y = along and across track view angles 
 coef_xs,n = search Legendre along track coefficients 
 coef_ys,n = search Legendre across track coefficients 
 
 2.1.8  Determine LOS vectors 
 sear_z = 1.0 

 

m

zsear
zsear

m

ysear
ysear

m

xsear
xsear

zsearysearxsearm

_
_

_
_

_
_

___ 222









 

 
 nom_sear_z = 1.0 

 

m

zsearnom
zsearnom

m

ysearnom
ysearnom

m

xsearnom
xsearnom

zsearnomysearnomxsearnomm

__
__

__
__

__
__

______ 222









 

 
2.1.9.1 Determine effective line-of-sight instantaneous-field-of-view (IFOV) 

 
 2.1.9.1.1 Map input search pixel location, line and sample, to output space. 
 sline = search line location 
 ssamp = search sample location 
 elevation = elevation for location sline, ssamp 
 

Calculate elevation planes bounding current elevation. 
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plane zero grid
z spacing grid

elevation
zplane   

elev0 = grid z spacing * (zplane – grid zero plane) 
elev1 = elev0 + grid z spacing 
 
Calculate cell index, row and column, for search line and sample location and zplane. 
row = sline / grid cell line spacing 
column = ssamp / grid cell sample spacing 
cell index0 = nrows * ncols *  zplane + row * ncols + column 

 
Where: 
grid z spacing = elevation difference between two grid planes 
ncols = number of grid cell columns 
nrows = number of grid cell rows 
 
Calculate output space line, sample location for input space search line, sample location and 
zplane. 
a0,1,2,3 = grid sample location forward mapping coefficients for cell index0 
b0,1,2,3 = grid line location forward mapping coefficients for cell index0 

 
 lms = sline * ssamp 

osamp0 = a0 + a1 * ssamp + a2 * sline + a3 *lms 
oline0 = b0 + b1 * ssamp + b2 * sline + b3 * lms 
 
Calculate cell index, row and column, for search line and sample location and zplane +1. 
 
cell index1 = nrows * ncols *  (zplane + 1.0) + row * ncols + column 
 
Calculate output space line, sample location for input space search line, sample location and 
zplane+1. 
 
a0,1,2,3 = grid sample location forward mapping coefficients for cell index1 
b0,1,2,3 = grid line location forward mapping coefficients for cell index1 

 
 lms = sline * ssamp 

osamp1 = a0 + a1 * ssamp + a2 * sline + a3 *lms 
oline1 = b0 + b1 * ssamp + b2 * sline + b3 * lms 
 
Calculate output space line, sample location for input space search line, sample location, and 
elevation. 
 
w0 = (elev1 – elevation) / (elev1 – elev2) 
w1 = (elevation – elev0) / (elev1 – elev2) 

  
 osampn = osamp0 * w0 + osamp1 * w1 
 olinen = oline0 * w0 + oline1 * w1 
 

2.1.9.1.2 Map input location ssamp, sline+1.0 to output space osampn+1,olinen+1  (repeat step 
2.1.9.1.1 for input location ssamp,sline+1) 
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2.1.9.1.3 Determine change in output space between input locations (ssamp, sline) and 
(ssamp, sline+1.0) 
dline = olinen – olinen+1 
dsamp = osampn = osampn+1 

dsamp*dsampdline*dlinedistance   

 
 2.1.9.1.4 
 If earth acquisition calculate LOS distance to target 
  

Calculate output latitude and longitude for search line and sample (see Forward Model section 
of LOS Projection Ellipsoid & Terrain). 

 
Calculate time for current search line and sample (see section a.1 in Forward Model section of 
LOS Projection Ellipsoid & Terrain). 
 
Calculate satellite position for current search line and sample time (see section a.4 in Forward 
Model section of LOS Projection Ellipsoid & Terrain). 

 
Calculate target vector (see section a.7 in Forward Model section of LOS Projection Ellipsoid & 
Terrain). 
 
LOS x coordinate = target x coordinate - satellite x coordinate 
LOS y coordinate = target y coordinate - satellite y coordinate 
LOS z coordinate = target z coordinate - satellite z coordinate 
 
length = sqrt( LOS x * LOS x + LOS y * LOS y + LOS z * LOS z) 
 
IFOValong = (output pixel size * distance ) / length 

 
 If lunar acquisition 
 
 IFOValong = output pixel size * distance 
 
 2.1.10  Calculate the LOS errors 

 

zsearnom

ysearnom

zsear

ysear
samp

IFOVrilinesiline
zsearnom

xsearnom

zsear

xsear
line along

__

__

_

_

*)(
__

__

_

_





 

  
 

2.1.11 Create matrices need to sum with [N] and [L]. 
 

2.1.11.1  Calculate Legendre generating polynomial coefficients for search and reference: 
80. sl0 = 1.0 

81. if( nLeg >= 2 )  sl1 = snorm 

82. if( nLeg >= 3 )  sl2 = (3 * snorm
2
 – 1)/2 

83. if(nLeg == 4 )  sl3 = snorm * (5 * snorm
2
 – 3)/2 
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84. rl0 = 1.0 

85. if ( nLeg >= 2 )  rl1 = rnorm 

86. if( nLeg >= 3 )  rl2 = (3 * rnorm
2
 – 1)/2 

87. if(nLeg == 4 )  rl3 = rnorm * (5 * rnorm
2
 – 3)/2 

88. Note: If the number of Legendre coefficients in the solution is less than 4 the corresponding sln 

and rln will be omitted. 

89.  
90. 2.1.11.2 Initialize [A] to zero and then set [A] indexes to sln and rln. 

91. A[0][Number Legendre * sband + n] = sln 

92. A[1][Number Legendre * sband + n] = sln 

93. A[0][Number Legendre * rband + n] = -rln 

94. A[1][Number Legendre * rband + n] = -rln 

95.  Where: n = 0 … nLeg -1  

96.  [A] = 0 elsewhere 

97.  
98. 2.1.11.3 Set [Y] according to input space deltas measured and sum pre-fit statistics. 

99.  
100. 2.1.11.3.1 Store deltas in [Y] 

101. Y[0][0] = Δline 

102. Y[1][0] = Δsamp 

103.  

104. 2.1.11.3.2 Sum statistics 

105. pre-fit sum line        = pre-fit sum line        + Δline 

106. pre-fit sum sample   = pre-fit sum sample  + Δsample 

107. pre-fit sum line
2
      = pre-fit sum line

2
       + Δline

2
 

108. pre-fit sum sample
2
 = pre-fit sum sample

2
 + Δsample

2 

109.  

110. 2.1.11.4  Create matrices to add to normal matrices 

111. [Atie-point] = [A]
T
[W][A] 

112. [Ytie-point] = [A]
T
[W][Y] 

113.  

114. 2.1.11.5 Sum N and L matrices 

115.  [N] = [N] + [Atie-point] 

116. [L] = [L] + [Ytie-point] 

117.  

118. 2.2 Set minimum points for bands to omit from processing. 

119.       Eliminate observations for omitted band: 

120. oband = band to omit - 1 (from earlier, bands are 1-relative) 

121. [N]g+n,i = 0 

122.  Where g = nLeg * 2 * oband 

123.   n = 0 … 2*nLeg - 1   

124.   i = 0 … nLeg * 2 * Number of Bands - 1 

125. [N]i,g+n = 0 

126.  Where g = nLeg * 2 * oband 

127.   n = 0 … 2*nLeg - 1   

128.   i = 0 … nLeg * 2 * Number of Bands - 1 

129. [N]g+n,g+n = Minimum Points 

130.  Where g = nLeg * 2 * oband 

131.   n = 0 … 2*nLeg - 1   
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132. [L]g+n = 0 

133.  Where g = nLeg * 2 * oband 

134.   n = 0 … 2*nLeg - 1   

135.  

136. 2.3 Solve for delta Legendre coefficients 

137.      LNcoeff
1

  

138.  

139. 2.4 Calculate new Legendre coefficients 

140. 
nicoeff 



nband,SCA,

n band,SCA,

tscoefficien  along  previous

tscoefficien along new
 

141. 
nnLegicoeff 



nband,SCA,

nband,SCA,

tscoefficien  across  previous 

 tscoefficien across new
 

142. band = 1, 2 

143. i = 2 * nLeg * (band – 1)n = 0 … nLeg - 1Stage 3 - Calculate Pre and Post fit Residuals 

 
144. 1.  For each SCA calculate residuals 

145.  Initialize post-fit statistics variables 

146.   post-fit sum line = 0 

147.   post-fit sum sample = 0 

148.   post-fit sumsq line = 0 

149.   post-fit sumsq sample = 0 

150.  

151. 2.  For the single band combination 

152.  

153.  2.1   Perform steps 2.1.1 - 2.1.10 from stage 3. 

154.  

155.  2.2  Calculate adjusted reference and search line/sample locations 

156. riline'   = Δcoeffsca,rband,0  

157. if( nLeg >=2 ) riline'   = riline' + rnorm * Δcoeffsca,rband,1 

158. if( nLeg >= 3 ) riline'   = riline' + (3 * rnorm
2
 - 1)/2 * Δcoeffsca,rband,2  

159. if( nLeg == 4 ) riline'   = riline' + rnorm * (5 * rnorm
2
 - 3)/2 * Δcoeffsca,rband,3 

160. risamp' = Δcoeffsca,rband,0  

161. if( nLeg >= 2 ) risamp' = risamp' + rnorm * Δcoeffsca,rband,1 

162. if( nLeg >= 3 ) risamp' = risamp' + (3 * rnorm
2
 - 1)/2 * Δcoeffsca,rband,2 

163. if( nLeg == 4 ) risamp' = risamp' + rnorm * (5 * rnorm
2
 - 3)/2 * Δcoeffsca,rband,3 

164. siline'   = Δcoeffsca,rband,0   

165. if( nLeg >= 2 ) siline'   = siline' + snorm * Δcoeffsca,sband,1  

166. if( nLeg >= 3 ) siline' = siline' + (3 * snorm
2
 - 1)/2 * Δcoeffsca,sband,2  

167. if( nLeg == 4 ) siline' = siline' + snorm * (5 * snorm
2
 - 3)/2 * Δcoeffsca,sband,3  

168. sisamp' = Δcoeffsca,sband,0  

169. if( nLeg >= 2 ) sisamp' = sisamp ' + snorm * Δcoeffsca,sband,1 

170. if( nLeg >= 3 ) sisamp' = sisamp' + (3 * snorm
2
 - 1)/2 * Δcoeffsca,sband,2 

171. if( nLeg == 4 ) sisamp' = sisamp' + snorm * (5 * snorm
2
 - 3)/2 * Δcoeffsca,sband,3 

172. Where: 

173. SCA, band, 0, 1, 2, 3 are the SCA, band number and coefficients for the updates to the Legendre 

polynomials.  The Δcoeff added to the riline are the along track updates the Δcoeff add to the risamp 

are the across track updates.   
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174. rband = index to reference band coefficient 

175. sband = index to search band coefficient 

176.  

177. 2.3  Calculate new post fit Δerrors by updating Δline and Δsample with Legendre updates 

178. Δline'   = Δline    - riline'   + siline' 

179. Δsamp' = Δsamp - risamp' + sisamp' 

180. Where: 

181. Δline and Δsamp are the same as those calculated in 2.1.10 from stage 3. 

182.  

183. 2.4 Sum post-fit variables 

184. post-fit sum line       = post-fit sum line       + Δline' 

185. post-fit sum sample  = post-fit sum sample  + Δsample' 
186. post-fit sumsq line      = post-fit sumsq line      + Δline'

2 

187. post-fit sumsq sample = post-fit sumsq sample + Δsample'
2 

188.  

189. 3. Calculate post and pre fit statistics for both line and sample directions: 

190.   

points ofnumber 

squares sum
  rmse

scale* sum * sum
1points ofnumber 

squares sum
deviation standard

1)points of(number  * points ofnumber 

1
scale

points ofnumber 

sum
mean













 

191.      Where 

192.  sum = pre/post sum line or pre/post sum sample 
193.  sum squares = pre/post sumsq line or pre/post sumsq sample

 

194.  number of points = number of points used in LSQ fit 

195.  

196. 4. Create Band-to-Band Calibration output report (See table #1). 

197. 4.1 Write report header information. 

198.  

199. 4.2. Write post and pre-fit statistics (per SCA) for line and sample direction. 

200.  

201. 4.3. Write individual tie-point statistics (if tie-point reporting flag = Yes). 

202.  

203. 5. If CPF group flag is set to yes write out ASCII file of CPF group with new Legendre coefficients. 

204.  

7.3.4.8 Output files 

The output report contains a standard header.  This standard header is at the beginning of the file 
and contains the following: 
 
1) Date and time file was created. 
2) Spacecraft and instrument pertaining to measurements. 
3) Pointing (roll) angle of spacecraft/instrument. 
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4) Acquisition type 
5) Report type (band-to-band) 
6) Work order ID of process (left blank if not applicable) 
7) WRS path/row 
8) Software version that produced report. 
9) L0R image file name 
 

The following items should be stored (trended) in the database with respect to the Band-to-Band 
Calibration algorithm: 

 
All report header information: 
 Date and time 
 Spacecraft instrument source 
 Work order ID 
 WRS path/row 
 Software version 
 Off-nadir angle 
 L0Rp file name 
 Processing file name 
The following processing parameters: 
 Bands processed 
 SCAs processed 
The following report file information: 
 Number of points used per SCA 
 Computed Legendre along track coefficient updates 
 Computed Legendre across track coefficient updates 
 New Legendre along track coefficients (updates + existing) 
 New Legendre across track coefficients (updates + existing) 
 Post-fit mean, standard deviation, RMSE 
 Pre-fit mean, standard deviation, RMSE 
See note #11. 

 

465. Field 466. Description 467. Trend 

468. Date and time 469. Date (day of week, month, day of month, 
year) and time of file creation. 

470. Yes 

471. Spacecraft and instrument 
source 

472. LDCM and TIRS 473. Yes 

474. Processing Center 475. EROS Data Center SVT 476. No 

477. Work order ID 478. Work order ID associated with processing 
(blank if not applicable) 

479. Yes 

480. WRS path/row 481. WRS path and row (See note #4) 482. Yes 

483. Software version 484. Software version used to create report 485. Yes 

486. Off-nadir angle 487. Off-nadir pointing angle of processed 
image file (See note #5) 

488. Yes 

489. Acquisition Type 490. Earth viewing or Lunar 491. Yes 

492. L0Rp image file 493. L0Rp image file name used to create L1T 494. Yes 

495. Processed image file name 496. Name of L1T used to create report 497. Yes 
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498. Number of Legendre 
coefficients 

499. Number of Legendre coefficients present 500. Yes 

501. Heading for pre and post fit 
statistics 

502. One line of ASCII text defining pre and 
post statistics 

503.  

504. For each SCA (along and 
across track directions) 

505.  506.  

507.     SCA number 508. SCA number associated with statistics 509. Yes 

510.     Pre fit statistics 511. Mean, RMSE, standard deviation, along 
and across track direction (in units of radians) 

512. Yes 

513.     Post fit statistics 514. Mean, RMSE, standard deviation, along 
and across track direction (in units of radians) 

515. Yes 

516. For each SCA and band 517.  518.  

519.     Along track solution 520. Legendre along track correction 
coefficients 

521. Yes 

522.     Across track solution 523. Legendre across track correction 
coefficients 

524. Yes 

525. For each SCA and band 526.  527.  

528.     Along track updates 529. Updated Legendre along track coefficients 530. Yes 

531.     Across track updates 532. Updated Legendre across track 
coefficients 

533. Yes 

534. For each tie-point of each 
SCA and Band to process 

535. Output produced only if tie-point results 
flag is set to Yes. 

536.  

537.     Point ID 538. Point identifier 539. No 

540.     SCA number 541. SCA number for band combination 542. No 

543.     Reference output line 544. Output tie-point location in line direction 545. No 

546.     Reference output sample 547. Output tie-point location in sample 
direction 

548. No 

549.     Reference input line 550. Reference input tie-point location in line 
direction 

551. No 

552.     Reference input sample 553. Reference input tie-point location in 
sample direction 

554. No 

555.     Search input line 556. Search input tie-point location in line 
direction 

557. No 

558.     Search input sample 559. Search input tie-point location in sample 
direction 

560. No 

561.     Reference band 562. Reference band 563. No 

564.     Search Band 565. Search band 566.  

567.     Measured line offset 568. Output space offset in line direction (from 
Band Accuracy Assessment residuals file) 

569. No 

570.     Measured sample offset 571. Output space offset in sample direction 
(from Band Accuracy Assessment residuals file) 

572. No 

573.     Pre-fit line delta 574. Pre-fit input space line delta/offset (Δline) 575. No 

576.     Pre-fit sample delta 577. Pre-fit input space sample delta/offset 
(Δsample) 

578. No 

579.     Post-fit line delta 580. Post-fit input space line delta/offset (Δline') 581. No 

582.     Post-fit sample delta 583. Post-fit input space sample delta/offset 
(Δsample') 

584. No 
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Table 1.  Band Calibration Report file 
 
If the CPF group creation flag is set to yes an ASCII file containing the updated Legendre LOS should 
be generated.  This file would contain the new Legendre LOS for each SCA for every band and would 
be formatted according to the CPF group that the Legendre LOS resides in (for geometric prototype 
code this is the LOS_LEGENDRE group).  The file would also contain the file attributes CPF group 
with the effective dates for the LOS generated (See note #3).  The SCAs and bands that were not 
updated should still be represented within the file; these values should be the same for post and pre 
calibration. 

7.3.4.9 Maturity 

3. Band-to-Band Calibration for TIRS closely follows that of ALIAS and OLI.   

7.3.4.10 Notes 

Some additional background assumptions and notes include: 
7. The band calibration results currently contains the L1T name, pre and post fit mean, root mean 

squared error, and standard deviation for the along and across track direction of each SCA, 
new Legendre LOS coefficients, and a new CPF Legendre LOS group parameters.  The 
individual tie-point characteristic information and (pre and post-fit) residuals and should be 
added to the report file (see table #1). 

8. See "Using the LOS geometric resampling grid to map an output pixel location to an input pixel 
location" in the TIRS Resampling ADD for ols2ils functionality. 

9. The table listed below contains the file attributes and LOS groups that should be populated 
with the corresponding TIRS fields when the CPF group creation flag is set to yes.  The 
CPF_Status, CPF_Name_Source, CPF_Description, and CPF_Version fields were inserted 
during ALIAS development by software development, these fields may or may not be 
present/needed for TIRS processing.   

 
Parameter  

Groups 
Parameter  

Name 
Data  
Type 

 
Description 

GROUP: 

LOS_LEGENDRE 

Along_LOS_Legendre
_BBB_NNN_SCASS 

float32 

array 

(4 values) 
for each 
band of 
each SCA 

Legendre polynomial 
coefficients defining along 
track viewing angle of band 
number BB, band name 
NNN and SCA SS given in 
radians 

Valid format: for each term: 
SN.NNNNESN, where S = 
“+” or “-”, N = 0 to 9, and E = 
"E".   

GROUP: 

LOS_LEGENDRE 

Across_LOS_Legendr
e_BBB_NNN_SCASS 

float32 

array 

(4 values) 
for each 
band of 
each SCA 

Legendre polynomial 
coefficients defining across 
track viewing angle of band 
number BB, band name 
NNN and SCA SS given in 
radians 

Valid format: for each term: 
SN.NNNNESN, where S = 
“+” or “-”, N = 0 to 9, and E = 
"E" 

 
The file name for the CPF group can follow the convention of: 
Legendre_coefficients_<effective begin date>_<effective end date>.odl 
Where: 
effective begin date = YYYYMMDD 
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effective end date    = YYYYMMDD 
YYYY = Year 
MM = Month of year 
DD = Day of month 

10. Any kind of "non-WRS" collect; lunar or off-nadir viewing at the poles should have 000/000 
listed as the path/row. 

11. Pointing angle for lunar acquisitions would be 0.0. 
12. Currently it is not expected that any calibration will be done on anything other than the full 

range of Legendre coefficients (4), however the prototype code supports the range of 1-4 
Legendre coefficients in the solution.  The IAS prototype code will keep this option and it 
should remain in the system. 

13. The normal operating procedure will be to calibrate all of the TIRS SCAs.  Input that does not 
contain the full three TIRS SCAs is more of a toolkit and testing capability. 

14. The IFOV was historically used for calculating the LOS errors of the measured residuals.  The 
code was modified to calculate a dynamic IFOV, however the CPF static IFOV was left as an 
input to allow for comparisons between the historical and current dynamic methods. 

 
 

7.3.5 TIRS Alignment Calibration Algorithm 

7.3.5.1 Background/Introduction 

The TIRS alignment calibration algorithm combines the functions of the OLI sensor alignment and 
focal plane alignment calibration algorithms. Using an OLI short-wave infrared (SWIR) band image as 
a reference it compares an SCA-separated precision and terrain corrected (L1T) TIRS 10.8 
micrometer band image (see note #1) with the OLI SWIR reference image. Each SCA in the TIRS 
L1T image is compared to the SCA-combined OLI reference to measure both systematic full-scene 
TIRS-to-OLI misregistration and SCA-specific deviations from the scene-average registration. The 
measured deviations are used to estimate corrections to the TIRS-to-OLI alignment matrix and to the 
10.8 micrometer band Legendre polynomial coefficients that model the nominal lines-of-sight for each 
SCA. 
 
The algorithm is implemented in two steps:  1) a mensuration/setup step in which the separated-SCA 
L1T image is correlated with the OLI reference image to measure the within-SCA deviations, and; 2) 
a calibration update computation step in which the measured deviations are used to compute TIRS-
to-OLI alignment corrections and TIRS line-of-sight model correction Legendre coefficients that adjust 
the original LOS model to minimize the residual image deviations. The calibration update step 
includes applying an outlier filter to the image measurements. Separating the algorithm into two 
distinct steps makes it possible to run the calibration update step multiple times, using different outlier 
filter thresholds, for example, without having to perform the time consuming image 
mensuration/correlation setup procedure more than once. 
 
Results from individual calibration scenes are stored in the geometric trending database so that 
results from multiple scenes can be analyzed together when deciding whether and how to adjust the 
operational ACS-to-TIRS alignment and TIRS focal plane calibrations. If a 10.8 micrometer band focal 
plane calibration update is generated, the TIRS 12.0 micrometer spectral band would subsequently 
be re-registered to the 10.8 micrometer band using the TIRS band alignment calibration procedure. 
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The TIRS alignment calibration procedure is derived from the OLI focal plane calibration algorithm. 
The implementation should be very similar for the setup step, which measures the SCA-specific 
deviations relative to the reference image. The legendre step, which calculates the Legendre 
polynomial coefficient updates, will be enhanced to include the computation of the full-scene TIRS-to-
OLI alignment update. Since the Legendre coefficients and alignment angles are not completely 
independent, some additional constraints are required to make the parameters separable. The default 
approach is to constrain the Legendre coefficients so that they cannot model roll, pitch, or yaw effects 
(more about this below). An alternate option is to constrain the alignment angles. This option makes 
the calibration solution mimic the heritage focal plane calibration procedure. 

7.3.5.2 Dependencies 

The TIRS alignment calibration algorithm assumes that the L1T process flow has created a 
substantially cloud-free SCA-separated (nadir-viewing) path-oriented L1T 10.8 micrometer band 
image, over a band registration calibration site, which has been registered to an OLI reference image 
either by using systematic LOS models for both the OLI and TIRS images, or by transferring the OLI-
derived precision correction model to the TIRS LOS model. This would be accomplished by copying 
the OLI precision correction parameters from the OLI LOS model to the TIRS LOS model. The SCA-
separated TIRS L1T image will be framed to exactly match the SCA-combined OLI reference image, 
by using the TRANSFER_FRAME framing option during TIRS LOS projection grid generation. This 
algorithm also assumes that the CPF, TIRS LOS model, TIRS grid file, and DEM used to produce the 
TIRS L1T image, are available. 

7.3.5.3 Inputs 

The TIRS alignment calibration algorithm uses the inputs listed in the following table. Note that some 
of these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey the 
values of and pointers to the input data). The second column shows which algorithm step (image 
mensuration or correction model computation) uses the input. 
Algorithm Inputs Processing 

Step 

ODL File (implementation) Both 

   Calibration Parameter File (CPF) Name Both 

   TIRS L1T Image File Name (see note #2) Step 1 

   TIRS LOS Model File Name Step 1 

   TIRS LOS Projection Grid File Name Step 1 

   DEM File Name Step 1 

   OLI Reference Image File Name Step 1 

   Correlation Data File Name Both 

   Report File Name Step 2 

   Processing Parameters Both 

      Number of Tie Points per Cell Step 1 

      Outlier tolerance Step 2 

      Constraint Type: 
         0 (default) = constrain Legendre coefficients (solve all 
parameters),  
         1 = constrain angles   (solve Legendre only) 

Step 2 

   Work order ID (for trending) Step 2 

   WRS Path (for trending) Step 2 

   WRS Row (for trending) Step 2 

   Calibration effective dates for updated parameters Step 2 

   Trending flag Step 2 

CPF Both 

   Calibration effective dates Step 2 
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   ACS-to-OLI alignment matrix (3x3 orientation matrix) Step 2 

   ACS-to-TIRS alignment matrix (3x3 orientation matrix) Step 2 

   Algorithm Parameters (formerly system table parameters)  

      Size of Correlation Window Step 1 

      Peak Fit Method Step 1 

      Min Correlation Strength Step 1 

      Max Correlation Displacement Step 1 

      Fill Threshold Fraction (max percent of window containing fill 
value) 

Step 1 

      Tie point weight (in units of 1/microradians
2
) Step 2 

      Alignment constraint weight (in units of 1/microradians
2
) (new) Step 2 

      Fit order Step 2 

      Post-fit RMSE Thresholds (trending metrics) (in units of 
microradians) 

Step 2 

TIRS Grid File (see LOS Projection ADD for details) Step 1 

  Number of SCAs Step 1 

  For each SCA: Step 1 

    Grid cell size in lines/samples Step 1 

    Number of lines/samples in grid Step 1 

    Number of z-planes, zero z-plane index, z-plane spacing Step 1 

    Array of grid input line/sample locations Step 1 

    Array of output line/sample locations (per z-plane) Step 1 

    Array of forward mapping coefficients Step 1 

    Array of inverse mapping coefficients Step 1 

    Rough mapping polynomial coefficients Step 1 

TIRS LOS Model File Step 1 

  TIRS Along-Track IFOV (in radians) Step 1 

   Number of SCAs Step 1 

   Number of Bands Step 1 

   Number of Detectors per SCA per Band Step 1 

   Focal Plane Model Parameters (Legendre Coefficients) (in 
radians) 

Step 2 

   ACS-to-TIRS Alignment Matrix (3x3 orientation matrix) (see note 
#5) 

Step 2 

TIRS L1T Image (separated SCA) Step 1 

  Image corner coordinates Step 1 

  Pixel size (in meters) Step 1 

  Image size Step 1 

  Search image pixel data (10.8 micrometer band) Step 1 

DEM Step 1 

  DEM corner coordinates Step 1 

  Pixel size (in meters) Step 1 

  DEM size Step 1 

  Elevation data Step 1 

OLI Reference Image Step 1 

  Image corner coordinates Step 1 

  Pixel size (in meters) Step 1 

  Image size Step 1 

   Reference image pixel data (SWIR1 or SWIR2 band) Step 1 

Correlation Data File (output of Step 1) Step 2 

  Correlation results in TIRS input space pixels Step 2 

  LOS errors in radians Step 2 

  Correlation results in output space pixels Step 2 
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7.3.5.4 Outputs 

Step 1:  TIRS Alignment Setup 

  Correlation Data File (temporary output passed to Update step) 

     Correlation results in output space pixels 

     Correlation results in TIRS input space pixels 

     LOS errors in radians 

Step 2:  TIRS Alignment Update (see Table 1 below) 

  Report File (see Table 1 below for details) 

    Standard report header 

    Acquisition date 

    Ref (OLI)/Search (TIRS) image names 

    Constraint Type (Legendre or Angle) 

    Original TIRS-to-OLI roll-pitch-yaw 

    Estimated TIRS-to-OLI roll-pitch-yaw correction 

    Updated TIRS-to-OLI roll-pitch-yaw 

    Original TIRS-to-OLI alignment matrix (3x3) 

    Updated TIRS-to-OLI alignment matrix (3x3) 

    Number of SCAs 

      For each SCA: 

      SCA Number 

      Old Along- and Across-track Legendre coefficients (NSCAx2x4) 

      Along- and Across-track Legendre error (fit) coefficients 
(NSCAx2x4) 

      New Along- and Across-track Legendre coefficients (NSCAx2x4) 

      Pre-fit along- and across-track offset statistics (mean, stddev, 
RMSE) 

      Post-fit along- and across-track residual statistics (mean, stddev, 
RMSE) 

      Confidence level used for outlier rejection 

      Legendre polynomial fit order (see note #3) 

      Number of tie points used for current SCA 

    CPF LOS_LEGENDRE and ATTITUDE_PARAMETERS Groups  
    (separate ODL-format files) (see note #6) 

        Effective Dates (embedded in output file names) 

        New ACS-to-TIRS alignment matrix (3x3) 

        New Legendre polynomial coefficients (NSCAx2x4) 

    Measure Tie Point Data 

      For each point: 

      SCA Number 

      Grid Cell Column Number 

      Nominal Output Space Line 

      Nominal Output Space Sample 

      Measured LOS Error Delta Line (in pixels) 

      Measured LOS Error Delta Sample (in pixels) 

      Measured LOS Error Along-Track Delta Angle (in microradians) 

      Measured LOS Error Across-Track Delta Angle (in microradians) 

      Tie Point State (outlier) Flag 

      Along-Track Fit Residual (in microradians) 

      Across-Track Fit Residual (in microradians) 

  TIRS Alignment Trending Database (see Table 1 below for details) 

    Geometric Characterization ID 

    Work Order ID 

    WRS path/row 

    Acquisition date 

    Ref (OLI) image name 

    Constraint Type (Legendre or Angle) 
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    Original TIRS-to-OLI roll-pitch-yaw 

    Estimated TIRS-to-OLI roll-pitch-yaw correction 

    Updated TIRS-to-OLI roll-pitch-yaw 

    Number of SCAs 

      For each SCA: 

      SCA Number 

      Old Along- and Across-track Legendre coefficients (NSCAx2x4) 

      Along- and Across-track Legendre error (fit) coefficients 
(NSCAx2x4) 

      New Along- and Across-track Legendre coefficients (NSCAx2x4) 

      Pre-fit along- and across-track offset statistics (mean, stddev, 
RMSE) 

      Post-fit along- and across-track residual statistics (mean, stddev, 
RMSE) 

      Confidence level used for outlier rejection 

      Number of tie points used for current SCA 

7.3.5.5 Options 

TIRS Alignment Calibration Trending On/Off Switch 

7.3.5.6 Prototype Code 

 
Input to both executables is an ODL file containing all parameters needed by both programs; outputs 
are a binary tie point mensuration file (used internally only), an ASCII report file, two ASCII ODL-
formatted CPF fragments, and trending data written to the stdout and captured in an ASCII log file. 
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse  –msse2 
 
The code units of the prototype implementation are briefly described here. Additional details are 
provided below for units that perform core algorithm processing logic. 
 
TIRS_Align_Setup.c - This routine is the main driver for the setup portion of the TIRS alignment 
calibration.  
 
get_tirs_align_parms.c - This function gets the input parameters from the ODL parameter file. It is 
used by both the setup and legendre executables. 

 
check_images_match.c - This function checks to make sure the TIRS search, OLI reference, and 
DEM images all match. The corners of all the images should match to within half a pixel, and the 
reference and search images should be the same resolution (pixel size) and the same size.  This 
function is an initial check to make sure that all the images are consistent before correlation is 
attempted. This function assumes the OLI reference image and the DEM are one-band images. 
 
set_up_grid.c - This function reads the grid file into the grid data structure. The whole grid structure is 
returned so the caller can free all memory allocated when the grid was read using the grid 
deallocation call. 
 
select_corr_pts.c - This function selects nominal correlation points evenly distributed about the center 
point of each grid cell (output space).   
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calc_input_space_errors.c - This function calculates the errors in input space pixels.  This is done by 
first correlating in output space and converting the correlated locations to input space. 
 
perform_correlation.c - This function performs the normalized gray-scale correlation at each point. It 
does this by invoking the correlation library routines described in the GCP Correlation Algorithm 
Description Document (e.g., math_submit_chip_to_corr). 
 
map_coords_to_input_space.c - This function uses the inverse mapping coefficients in the grid to 
calculate the input space line/sample for each output space line/sample.  

 
calc_los_errors.c - This function uses the tie point reference and search input space locations to 
calculate the angular line-of-sight errors. 
 
output_correlation_info.c - This function writes the tie point correlation results to a file. 
 
Generate_Legendre_Polynomials.c - This routine is the main driver for the Legendre polynomial and 
TIRS alignment angle estimation portion of TIRS alignment calibration.  
 
read_correlation_info.c - This function reads the correlation information from the file generated by the 
output_correlation_info routine above. 
 
filter_outliers.c - This function separates the correlation data into groups for each SCA for the X 
(sample) and Y (line) directions.  It then finds the standard deviation for the points in each group.  
Outlier rejection is then performed on the points based on the tolerance selected by the user and the 
Student's T distribution. This procedure is described in the OLI Geometric Accuracy Assessment 
Algorithm Description Document. 
 
calculate_point_weights.c - This function calculates the weight associated with each correlation point 
for doing the Legendre polynomial and TIRS alignment angle fit. Currently, this routine assigns the 
weight passed in to each point, effectively assigning each point an equal weight.  Originally, it was 
thought that the correlation strength would factor into the weight, but that was determined to not be 
needed.  This routine was left in to allow point-specific weight factors to be added at a later date. 
 
fit_polynomials.c - This function performs the weighted least squares fit of the correlation data points 
(using the angular error) to find the TIRS alignment angle and Legendre error polynomials. Note that 
unlike the heritage OLI focal plane calibration procedure, TIRS alignment calibration performs a 
simultaneous solution for all parameters. This is necessary because the TIRS alignment angles are 
correlated with Legendre polynomial terms, linking the solutions for the three TIRS SCAs. 
 

calculate_post_fit_residuals.c - This function calculates the residual statistics after the TIRS 
alignment angles and Legendre polynomial coefficients have been fit. This unit includes the 
calc_legendre_poly() function that calculates the Legendre polynomial for the input normalized 
detector value. 
 

calculate_alignment_matrix.c – Computes the 3-by-3 alignment matrix corresponding to a set of 3 
roll-pitch-yaw alignment angles. 
 
create_tirs_alignment_report.c - This function generates a file reporting the results of the global TIRS 
alignment angle and SCA-specific Legendre polynomial fit calculations. The report file contents are 
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shown in Table1 below. This unit also includes the write_coeffs() function that writes an entire set of 
coefficients to the indicated output file. 

 
trending_dummy.c - This function is a placeholder for the logic that will write the results of the TIRS 
alignment angle and SCA Legendre polynomial fit calculations to the geometric characterization 
database. In the prototype implementation the actual database output is replaced by dummy ASCII 
output to stdout. 

 
update_alignment_parameters_cpf.c – Applies the computed TIRS-to-OLI alignment corrections to 
the current TIRS-to-OLI alignment matrix calculated from the CPF Attitude_To_OLI_Matrix and 
Attitude_To_TIRS_Matrix parameters, and then uses the updated TIRS-to-OLI alignment to compute 
an updated Attitude_To_TIRS_Matrix calibration parameter set. 
 
write_alignment_matrix_ODL.c - This function writes the updated ATTITUDE_PARAMETERS 
parameter group of the CPF, in the ODL format used by the CPF, to an output file. This group 
contains the updated Attitude_To_TIRS_Matrix alignment parameters. 
 
write_SCA_parameters_cpf.c - This function writes the updated LOS_LEGENDRE parameter group 
of the CPF, in the ODL format used by the CPF, to an output file. 

7.3.5.7 Procedure 

The TIRS Alignment Calibration Algorithm is used for on-orbit calibration of the TIRS-to-OLI 
instrument alignment as well as for the alignment of the lines-of-sight of the TIRS SCAs relative to 
each other.  This calibration is necessary to meet the TIRS-to-OLI band registration, and the TIRS 
image registration, geodetic accuracy, and geometric accuracy requirements.   
 
Procedure Overview 
The TIRS alignment algorithm adjusts the overall TIRS field of view and each TIRS SCA to an OLI 
reference image.  By simultaneously aligning the TIRS SCAs to a common reference, any measured 
inter-SCA misalignment is removed.  Each TIRS SCA is correlated against a reference image created 
from an OLI SWIR band, acquired at approximately the same time.  A new set of 3rd order Legendre 
LOS coefficients, representing updates or corrections to the original polynomials, are generated by 
fitting a set of coefficients to the measured LOS deviations. A set of roll-pitch-yaw angular 
adjustments are also computed to remove any alignment biases between the TIRS and OLI 
instruments.  
 
Substantially cloud free scenes should be used for TIRS alignment calibration.  The imagery should 
have ground control applied and terrain displacements removed, i.e. the imagery should be a terrain 
corrected (L1T) data set. Both the OLI SWIR and TIRS images should be path oriented and 
resampled to 30m output pixel size. 
 
Stage 1:  Setup – Correlate L1T Image with OLI Reference 
An array of test points is generated for each TIRS SCA based upon the number of points per grid cell 
specified in the input parameters. The TIRS LOS projection grid is used to generate the test point 
array by spacing the test points at regular intervals in TIRS input space, and then computing the 
corresponding output space coordinates for each. Constructing the test point array in the TIRS input 
space ensures that the test points fall within the active area of each TIRS SCA. 
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Image windows extracted from the L1T image at the test point locations are correlated with 
corresponding windows extracted from the reference OLI SWIR image, using normalized gray scale 
correlation. This procedure is the same as that described in the OLI Focal Plane Calibration Algorithm 
Description Document. Since the expected offsets are small, the TIRS L1T and OLI SWIR image 
windows are the same size. The correlation procedure yields measured deviations (or correlation 
failure flag) in the line and sample directions, estimated to sub-pixel accuracy. These measured LOS 
deviations are in units of output space pixels. 
 
The deviations measured in output space are converted to differences in LOS along- and across-
track angles by mapping the reference point location from output space to TIRS input space and then 
mapping the search point location from output space to TIRS input space.  The mappings are 
performed using the TIRS LOS projection grid that was used to resample the L1T image, and include 
the test point elevation interpolated from the input DEM. This three-dimensional output space to input 
space mapping (3d_ols2ils) is described in the TIRS Image Resampling Algorithm Description 
Document. This logic is identical to that used for OLI focal plane calibration. Once a TIRS input space 
location is found for both points, the LOS vectors are calculated for each input sample location using 
the TIRS LOS model. This is described in the Find LOS section of the TIRS LOS Projection Algorithm 
Description Document. 
 
The angular LOS offsets in TIRS input space are then: 
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where: 

rx,ry,rz = reference x,y,z vector components of LOS 
sx,sy,sz = search x,y,z vector components of LOS 

input reference line = input line location for reference point 
input search line = input line location for search point 

 
Stage 2:  Update – Compute TIRS Alignment Calibration Update 
A constrained least squares solution is used to generate the fit between the angular offsets and the 
corrections to the TIRS alignment angles and per-SCA Legendre polynomial coefficients.  Constraints 
are necessary to separate the alignment angle estimates from the Legendre polynomial coefficients 
since the angular effects could be largely absorbed by the Legendre polynomials. The constraints are 
implemented as supplemental observations that enforce relationships between solution parameters. 
 
There are two options for constraining the parameters. The first, default, option is to constrain the 
Legendre coefficients so that they do not attempt to model the rotation effects. The second option is 
to constrain the angular corrections to be zero. This effectively reduces the TIRS alignment 
calibration solution to be a simple focal plane calibration solution, similar to the OLI heritage. Both 
options use three additional constraint observations (described in more detail below) with an 
associated 3-by-3 constraint weight matrix. The weight matrix is a diagonal matrix with the diagonal 
terms containing a common weight, read from the CPF, for all 3 constraints. 
 



LDCM-ADEF-001 
Version 3 

 

Unlike the OLI focal plane calibration procedure which calibrates one SCA at a time, the TIRS 
alignment solution is simultaneous so that both the SCA-specific Legendre coefficients and the global 
alignment angles can be estimated. This also requires that both the along- and across-track Legendre 
coefficients be solved for at the same time. There are thus 27 unknowns to be solved for:  3 
alignment angles + 3 SCAs * ( 4 along-track Legendre coefficients + 4 across-track Legendre 
coefficients). 
 
There are Nk tie point observations in SCA k (k=1,2,3), so the total number of observations is N = N1 
+ N2 + N3. The observation matrix is an Nx2 matrix containing the measured X and Y offsets in TIRS 
input space angular units.  Note that, unlike the OLI focal plane calibration, there is a single 
observation matrix containing both the along track (X) offsets and the across track (Y) offsets. 
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The design matrix is an 2Nx27 matrix with each row of the matrix containing the alignment angle 
partial derivatives and the Legendre polynomial terms associated with the reference sample location 
of the corresponding tie point measurement. The calculation of these angle partial derivatives and 
Legendre polynomial terms, as functions of the input sample location, is described below. 
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Where A0 and A1 are submatrices defined as: 
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And where:

 

x’j = the x coordinate of tie point j, evaluated using the current estimate of the Legendre 
polynomials. 
y’j = the y coordinate of tie point j, evaluated using the current estimate of the Legendre 
polynomials. 
li,j = ith Legendre polynomial term associated with the tie point location of the jth 
measurement.  

 
The Legendre polynomial terms (contained in the 2x8 A1,j submatrix) will be in the set of 8 columns 
associated with the SCA containing tie point j. Thus, columns 4-11 are associated with SCA 1, 
columns 12-19 are associated with SCA 2, and columns 20-27 are associated with SCA 3. In 
equation (2-2) tie points 1 through N1 fall in SCA 1, points N1+1 through N1+N2 fall in SCA 2, and 
points N1+N2+1 through N (=N1+N2+N3) fall in SCA 3. Note that the partial derivative of the X offset 
with respect to the yaw correction is the tie point Y coordinate and the partial derivative of the Y offset 
with respect to the yaw correction is the –X tie point coordinate. Thus, the y’j coordinate appears in 
the first (X observation) row of the A0 submatrix and the –x’j coordinate appears in the second (Y 
observation) row of the A0 submatrix. 
 
The tie point observations are weighted by a diagonal weight matrix. The weight matrix [Wt] is a 
2Nx2N diagonal matrix where the diagonal elements are the tie point weight value read from the CPF. 
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      (2-3) 

 
where wt = tie point weight 

 
The weight matrix is included to make it possible to differentially weight the measured deviations 
based on correlation strength, but this is not implemented in the baseline algorithm. Instead, a 
common weight, read from the CPF, is used for all points. This weight value provides a relative 
weighting of the tie point observations relative to the constraints. 
 
The form of the constraint observations depends upon the constraint option selected. For the default 
case, the Legendre coefficient adjustments are constrained to prevent them from modeling angular 
alignment effects. This is done by considering the effects of angular alignment changes at the center 
of each SCA. The x and y coordinates at the center of SCA k are: 
 
 x0’k = ax0k – ax2k / 2        (2-4) 
 y0’k = ay0k – ay2k / 2 
 
 where: ax0k and ax2k are the first and third x Legendre coefficients for SCA k, and 
  ay0k and ay2k are the first and third y Legendre coefficients for SCA k. 
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So, the Legendre corrections at the center of each SCA are: 
 

 x0’k = ax0k – ax2k / 2       (2-5) 

 y0’k = ay0k – ay2k / 2 
 

 where: ax0k and ax2k are the first and third x Legendre corrections for SCA k, 

  ay0k and ay2k are the first and third y Legendre corrections for SCA k. 
 
To control the modeling of alignment effects in the Legendre polynomials we constrain the Legendre 
adjustments to the locations of the SCA center points such that the mean center point x (pitch) and y 
(roll) locations do not change and such that the x (along-track) coordinates of the center points of the 
two outboard SCAs (1 and 3) do not change in opposite directions (yaw): 
 

 ay01 + ay02 + ay03 – (ay21 + ay22 + ay23)/2 = 0 (roll) 

 ax01 + ax02 + ax03 – (ax21 + ax22 + ax23)/2 = 0 (pitch)  (2-6) 

 ax01 – ax21/2 – ax03 + ax23 / 2 = 0   (yaw) 
 
The corresponding constraint matrix is: 
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         (2-7) 
 
The second constraint option fixes the alignment angle adjustments at zero, allowing all adjustments 
to be modeled through the Legendre coefficients. The corresponding constraint matrix is: 
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The constraint weight matrix [Wc] is a 3-by-3 diagonal matrix containing the constraint weight read 
from the CPF: 
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       (2-9)  

 
where wc = constraint weight 

 
Note that the observation matrix is zero for the constraints no matter which constraint option is 
selected. 
 
The solution for the updates to the TIRS alignment angles and to the Legendre LOS coefficients can 
be found from: 
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The matrix [] is a 27x1 vector containing the corrections to be applied to the alignment angles and to 
the Legendre coefficients. These corrections are added to the original alignment angles and 
Legendre LOS coefficients to compute the updated TIRS alignment parameters. 
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 (2-11) 

 
The 10.8 micrometer band is used for TIRS alignment.  TIRS band calibration uses the 10.8 
micrometer band as the reference for the 12.0 micrometer band. A TIRS band alignment calibration 
should be performed following an update to the TIRS alignment calibration to avoid degrading the 
band-to-band registration. 
 
Figure 1 shows the architecture for the setup portion of the TIRS Alignment Calibration algorithm. 
 



LDCM-ADEF-001 
Version 3 

 

 

Figure 1:  TIRS Alignment Calibration Setup Algorithm Architecture 

 
Figure 2 shows the architecture of the alignment solution portion of the TIRS Alignment Calibration 
algorithm. 
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Figure 2:  TIRS Alignment Calibration Update Algorithm Architecture 

 
TIRS Alignment Cal Setup Sub-Algorithm (TIRS_Align_Setup) 
This routine is the main driver for the setup portion of the TIRS alignment calibration. The setup 
portion consists of correlating points between the search TIRS image and the reference OLI SWIR 
image, and converting the correlation offsets into line-of-sight deviations that can be used to correct 
each SCA's detector array, modeled by a cubic Legendre polynomial. The results of this program are 
used in the second portion of TIRS alignment calibration, the generation of new TIRS-to-OLI 
alignment angles and TIRS SCA Legendre polynomials. This program creates a temporary output file 
that is read by the second portion of TIRS alignment calibration.   
 

Get TIRS Alignment Parameters Sub-Algorithm (get_tirs_align_parms) 
This function gets the input parameters from the input parameter files. 
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Check Images Match Sub-Algorithm (check_images_match) 
This function checks to make sure the L1T TIRS search, OLI L1T SWIR reference, and DEM 
images all match. The corners of all the images should match to within half a pixel, and the 
reference and L1T search image should be the same resolution (pixel size) and the same size.  
This function is an initial check to make sure that all the images are consistent before correlation 
is attempted. This function assumes the OLI SWIR reference image and the DEM are one-band 
images. 
 
Set Up Grid Sub-Algorithm (set_up_grid) 
This function reads the TIRS grid file into the grid data structure. The whole grid structure is 
returned so the caller can free all memory allocated when the grid was read using the grid 
deallocation call. 
 

Select Correlation Points Sub-Algorithm (select_corr_pts) 
This function selects nominal correlation points evenly distributed about the center point of each 
grid cell (output space).  To ensure evenly distributed tie point locations during correlation, 
locations are defined to lie at the center of each resampling grid cell, or sub-cell.  There will be 
pts_per_cell equally-spaced points per grid cell.  For example, if there are 4 points per cell, they 
will be placed as shown in Figure 3. 
 

 

Figure 3:  Correlation Point Placement in Grid Cell 

 

The cell is divided into a 2-by-2 grid of 4 sub-cells, and each sub-cell is divided in half to place the 
point in the middle, yielding points at (0.25,0.25), (0.75,0.25), (0.25,0.75), and (0.75,0.75).  
 
The calculation of the output space line/sample coordinates of the tie points is done as follows: 
 a) Compute number of rows and columns of tie points in each cell. 

ncol = (int)ceiling( sqrt(pts_per_cell) ) 
nrow = (int)ceiling( (double)pts_per_cell/(double)ncol ) 
This creates an array of tie points containing at least pts_per_cell points. 

b) For each tie point, i = 1 to ncol and j = 1 to nrow: 
b1) Compute the grid cell fractional location (cfrac,rfrac). 

nrow

j
rfrac

ncol

i
cfrac

2

12

2

12 



  

b2) Compute the output space line, olij, using bilinear interpolation on the output line 
numbers at the grid cell corners, where lUL, lUR, lLL, and lLR are the output space line 
coordinates at the grid cell upper-left, upper-right, lower-left, and lower-right corners, 
respectively: 

olij = lUL * (1-cfrac)*(1-rfrac) 
      + lUR * cfrac * (1-rfrac) 
      + lLL * (1-cfrac) * rfrac 
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      + lLR * cfrac * rfrac 
b3) Compute the output space sample, osij, using bilinear interpolation on the output 
sample numbers at the grid cell corners, where sUL, sUR, sLL, and sLR are the output space 
sample coordinates at the grid cell upper-left, upper-right, lower-left, and lower-right 
corners, respectively: 

osij = sUL * (1-cfrac)*(1-rfrac) 
      + sUR * cfrac * (1-rfrac) 
      + sLL * (1-cfrac) * rfrac 
      + sLR * cfrac * rfrac 

Note that the bilinear weights are the same for the line and sample computations and only 
need be computed once. 

 
The heritage version of this sub-algorithm locates the points by computing the intersection of the 
cell diagonals and then calculating offsets from that point. It is more straightforward to simply use 
bilinear interpolation, as described above, to calculate the tie point output space coordinates, so 
this unit will be reworked from the heritage implementation. 
  
Calculate Input Space Errors Sub-Algorithm (calc_input_space_errors) 
This function calculates the errors in TIRS input space pixels.  This is done by first correlating in 
output space and converting the correlated locations to input space. 

  
Perform Correlation Sub-Algorithm (perform_correlation) 
This function performs the normalized gray-scale correlation at each point. It does this by 
invoking the correlation library routines described in the GCP Correlation Algorithm Description 
Document. 
 
Map Coordinates to Input Space Sub-Algorithm (map_coords_to_input_space) 
This function uses the inverse mapping coefficients in the grid to calculate the TIRS input 
space line/sample for each output space line/sample.  It does this for both the reference (OLI 
SWIR) image line/sample location and the search (TIRS L1T) image line/sample location, 
mapping both to TIRS input space. 
  
a) For each SCA 
 

a1) For each tie point 
 

a1.1) Interpolate a height from the DEM at the location corresponding to the tie point 
reference image line/sample coordinates (ALIAS xxx_get_elevation). 
 
a1.2) Map the reference output line/sample location to its corresponding input 
line/sample location using axx_3d_ols2ils routine  
 
a1.3) Interpolate a height from the DEM at the location corresponding to the tie point 
search image line/sample coordinates (ALIAS xxx_get_elevation). 
 
a1.4) Map the search output line/sample location to its corresponding input line/sample 
location using the axx_3d_ols2ils  
 

Calculate LOS Errors Sub-Algorithm (calc_los_errors) 
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This function uses the tie point reference and search TIRS input space locations to calculate the 
angular line-of-sight errors. 
 

b) For each SCA 
 

b1) For each tie point 
 

b1.1) Calculate reference line of sight vector for sample location using the nominal 
detector type and the precision LOS model (ALIAS axx_findlos). 
 
b1.2) Calculate the search LOS vector for sample location using the nominal detector 
type and the precision LOS model. 
 
b1.3) Calculate the deviations in terms of the difference in the LOS along and across 
track angles: 

along-track LOS error = ref los.x/los.z – srch los.x/los.z 

                                         + input line error * along-track IFOV 

across-track LOS error = ref los.y/los.z – srch los.y/los.z 
 

Output Correlation Information Sub-Algorithm (output_correlation_info) 
This function writes the tie point correlation results to a file.  The correlation points are dumped to 
a binary file, so the second phase of TIRS alignment calibration (TIRS alignment update) can read 
them directly back in. First, a long integer is written to indicate the number of records, and then all 
the records are written. Each record contains the following fields: 

Type Field Description 

int sca_number SCA number (0-relative) 

int grid_column grid column number (0-relative) 

int grid_row grid row number (0-relative) 

double nom_os_pt.line nominal output space point line 

double nom_os_pt.samp nominal output space point sample 

double ref_os_pt.line reference output space line 

double ref_os_pt.samp reference output space sample 

double srch_os_pt.line search output space line 

double srch_os_pt.samp search output space sample 

double ref_is_pt.line reference TIRS input space line 

double ref_is_pt.samp reference TIRS input space sample 

double srch_is_pt.line search TIRS input space line  

double srch_is_pt.samp search TIRS input space sample  

double los_err.line angular along-track LOS error 

double los_err.samp angular across-track LOS error 

double los_err_pix.line line LOS error in pixels 

double los_err_pix.samp sample LOS error in pixels 

double correlation_accuracy correlation accuracy 

ActiveFlag active_flag correlation success flag 

double pt_weight point weight for use in fit 

double fit_residual.line line residual from fit of pts 

double fit_residual.samp sample residual from fit of pts 
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This is not a human-readable (ASCII) file, because it is only used to transport information from the 
first phase of calibration to the second. If the file already exists, it will be overwritten. 

 
TIRS Alignment Update Sub-Algorithm (Generate_Legendre_Polynomials) 
This routine is the main driver for the least squares solution and alignment update portion of TIRS 
alignment calibration. The TIRS alignment update portion reads the results of the TIRS alignment 
setup, filters the outliers, fits the data to a set of angular alignment corrections and Legendre 
polynomial corrections, updates the TIRS-to-OLI alignment and TIRS SCA models, and generates 
output reports.  This process is outlined below. 
 
a) Initialize the normal equation matrix [N] (27x27) and constant vector [L] (27x1) to zero. 

 
b) Process each tie point (j) 

 
b.1) Build design matrix [Aj]. 
 
Calculate normalized detector for reference sample location. Note that in this context the 
“detector” number is the input sample number within the SCA containing the tie point (SCA #k). 
 

 
1

1-detectors  ofnumber  

detector*2
detector  normalized   

 
where: 

detector = reference sample location (0 ... Ndet-1) 
number of detectors = number of detectors in current SCA 

 
Calculate two rows of design matrix associated with current tie point: 
 

l0,j = 1 
l1,j = normalized detector 
l2,j = (3*(normalized detector)2– 1) / 2 
l3,j = normalized detector *(5 *(normalized detector)2– 3) / 2 
where  j = tie point number 
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where: j = tie point number 
 k = SCA number  
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b.2) Build weight matrix [Wj] using the (fixed) input weight value. 
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b.3) Build the observation matrix [Bj] from the measured x and y offsets in terms of angular 
differences. 
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b.4) Add this observation to the normal equations matrix [N] and to the constant vector [L]. 

 
 [N] = [N] + [Aj]

T [Wj] [Aj] 
 [L] = [L] + [Aj]

T [Wj] [Bj] 
 

c) Add the constraints. 
 

c.1) Form the constraint design matrix [C] based upon the user-selected constraint option, 
using equation (2-7) or equation (2-8) above. 

 
c.2) Form the constraint weight matrix [Wc] per equation (2-9) above. 

 
c.3) Add the constraint contribution to the normal equations matrix [N]. Note that there is no 

constraint contribution to the constant vector [L]. 
 

 [N] = [N] + [C]T [Wc] [C] 
 

d) Solve for alignment angle and Legendre coefficient corrections using weighted least squares 
routine (see the Fit Parameters sub-algorithm below). 

 
e) Calculate pre-fit statistics from the original measured deviations. 

 
e.1) Calculate statistics for along- and across-track offsets used in b.3. 

 
Compute mean, standard deviation and RMSE for the offsets, grouping by SCA.  Values are 
calculated for along- and across-track directions independently. For each SCA k=1,2,3: 

 
  For along-track offsets in SCA k: 

e.1.1) Calculate x mean 
e.1.2) Calculate x standard deviation  
e.1.3) Calculate x RMSE 
 
For across-track offsets in SCA k: 
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e.1.4) Calculate y mean 
e.1.5) Calculate y standard deviation  
e.1.6) Calculate y RMSE 

 
f) Calculate post fit residual statistics for correction coefficients 

 
Post-fit residuals are calculated by updating the original measured offsets/deviations used in step 
b.3 above using the alignment angle and Legendre polynomial corrections.  The differences 
between the original measurements and the offsets modeled by the correction parameters are the 
residuals. The post-fit statistics are calculated on these residuals. 

 
f.1) For each tie point 

 
f.1.1) Calculate normalized detector for reference sample location (as shown in b.1) and 
construct the design matrix as shown in b.1. 
 

f.1.2) Calculate the modeled LOS angle corrections by multiplying the design matrix by the [] 
solution vector. 
 
f.1.3) Find the residuals as the difference between the original angular offsets and the LOS 
angle corrections from f.1.2. 

 
f.2) Calculate statistics for the along- and across-track residuals calculated in f.1. 

 
Compute mean, standard deviation and RMSE for residuals, grouping by SCA. Values are 
calculated for along- and across-track directions independently.  For each SCA k=1,2,3: 

 
  For along-track residuals: 

f.2.1) Calculate x mean 
f.2.2) Calculate x standard deviation  
f.2.3) Calculate x RMSE 

 
For across-track residuals: 
f.2.4) Calculate y mean 
f.2.5) Calculate y standard deviation  
f.2.6) Calculate y RMSE 

 
g) For each SCA, add the correction coefficients to original Legendre LOS coefficients (see note #4): 

 
new along legendrei,sca = update along legendrei,sca + old along legendrei,sca 

 
new across legendrei,sca = update across legendrei,sca + old across legendrei,sca 

 
where: 

i = 0,1,2,3 Legendre polynomial number 
sca = SCA number 

 
h) Use the computed roll, pitch, and yaw alignment corrections to update the TIRS-to-OLI rotation 

matrix. 
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h.1) Compute the delta rotation matrix [M] from the r, p, and y corrections. 
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h.2) Combine the delta rotation matrix [M] with the original rotation matrix [TIRS2OLI], derived 
from the ACS-to-OLI and ACS-to-TIRS matrices in the CPF, to form the updated rotation matrix 

[TIRS2OLI]’. 
 

[TIRS2OLI] = [ACS2OLI] [ACS2TIRS]T 
 

[TIRS2OLI]’ = [TIRS2OLI] [M] 
 

h.3) Compute original and updated TIRS-to-OLI alignment angles. 
 

Roll = atan( -[TIRS2OLI]3,2 / [TIRS2OLI]3,3 ) 
Pitch = asin( [TIRS2OLI]3,1 ) 

Yaw = atan( -[TIRS2OLI]2,1 / [TIRS2OLI]1,1 ) 
 

Roll’ = atan( -[TIRS2OLI]’3,2 / [TIRS2OLI]’3,3 ) 
Pitch’ = asin( [TIRS2OLI]’3,1 ) 

Yaw’ = atan( -[TIRS2OLI]’2,1 / [TIRS2OLI]’1,1 ) 
 

h.4) Compute the updated ACS-to-TIRS rotation matrix. 
 

Compute the updated OLI-to-TIRS rotation matrix as the transpose of the updated TIRS-to-OLI 
matrix: 
 
 [OLI2TIRS]’ = [TIRS2OLI]’T 

 
Compute the updated ACS-to-TIRS rotation matrix using the ACS-to-OLI matrix from the CPF 
and the updated OLI-to-TIRS rotation matrix: 
 
 [ACS2TIRS]’ = [OLI2TIRS]’ [ACS2OLI] 

 
Read Correlation Information Sub-Algorithm (read_correlation_info) 
This function reads the correlation information from the file generated by the Output Correlation 
Information sub-algorithm above. 
 
Filter Outliers Sub-Algorithm (filter_outliers) 
This function separates the focal plane correlation data into groups for each SCA for the X 
(sample) and Y (line) directions.  It then finds the standard deviation for the points in each group.  
Outlier rejection is then performed on the points based on the tolerance selected by the user and 
the Student's T distribution. This procedure is described in the Geometric Accuracy Assessment 
Algorithm Description Document. 
 
Calculate Point Weights Sub-Algorithm (calculate_point_weights) 
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This function calculates the weight associated with each correlation point for doing the Legendre 
polynomial fit. 
 
Currently, this routine assigns the weight passed in to each point, effectively assigning each point 
an equal weight.  Originally, it was thought that the correlation strength would factor into the 
weight, but that was determined to not be needed.  This routine was left in to allow point-specific 
weight factors to be added at a later date.  
  

Fit Parameters Sub-Algorithm (fit_polynomials) 
This function performs the weighted least squares fit of the correlation data points (using the 
angular error) to find the alignment angle corrections and the Legendre error polynomials.  The 

least squares correction parameter vector [ is given by solving: 
 

[N] [ = [L] 
 
Where: 
      [N] is the [27 x 27] normal equations matrix 
 

      [ is the [27 x 1] unknown vector containing the alignment angle and Legendre coefficient 
corrections we are looking for 
 
      [L] is the [27 x 1] constant vector 
 

Solving the above equation for [ yields: [] = ([N])-1 * [L] 
 

Calculate Post-fit Residuals Sub-Algorithm (calculate_post_fit_residuals) 
This function calculates the residual statistics, as described in step f) above, after the alignment 
corrections and Legendre polynomial coefficient corrections have been calculated. 
  

Calculate Legendre Polynomial Sub-Algorithm (calc_legendre_poly) 
This function calculates the Legendre polynomial for the input normalized detector value, x: 

along = coeff_along0 + coeff_along1 x + coeff_along2 (3*x2 – 1)/2 + coeff_along3 x*(5* x2 – 
3)/2 
across = coeff_across0 + coeff_across1 x + coeff_across2 (3*x2 – 1)/2 + coeff_across3 x*(5* 
x2 – 3)/2 

 

Create TIRS Alignment Report Sub-Algorithm (create_tirs_alignment_report) 
This function generates a file reporting the results of the TIRS-to-OLI alignment angle and TIRS 
SCA Legendre polynomial fit calculations. The report file contents are shown in Table 1 below. 
 

Write Coefficients Sub-Algorithm (write_coeffs) 
This function writes an entire set of coefficients to the indicated output file. 

 
Write TIRS Alignment Calibration Results to Characterization Database 
(trend_to_database) 
This function writes the results of the TIRS-to-OLI alignment angle and TIRS SCA Legendre 
polynomial fit calculations to the geometric characterization database. The output is only written to 
the database if the post-fit along- and across-track RMSE statistics are all below the threshold 
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values specified in the CPF (the trending metrics). The characterization database output is listed 
in Table 1 below. 
 
Write SCA Parameters CPF Sub-Algorithm (write_SCA_parameters_cpf) 
This function writes the updated Legendre coefficients to a new LOS_LEGENDRE CPF parameter 
group, in the ODL format used by the CPF, to a separate ASCII output file. All the CPF 
LOS_LEGENDRE parameter values except for the new Legendre coefficients are extracted from 
the original CPF or the LOS Model structure. Current plans call for actual calibration updates to be 
based on multiple scene results extracted from the characterization database, so this capability is 
primarily a convenience for testing purposes. 
 
Write TIRS-to-OLI Alignment Parameters CPF Sub-Algorithm 
(update_alignment_parameters_cpf) 
This function writes the ATTITUDE_PARAMETERS parameter group of the CPF, in the ODL 
format used by the CPF, to a separate ASCII output file. The updated ACS-to-TIRS rotation matrix 
computed in h.4) above is written to the parameter group along with the current values for all other 
parameters in that group. Current plans call for actual calibration updates to be based on multiple 
scene results extracted from the characterization database, so this capability is primarily a 
convenience for testing purposes. 
 

Algorithm Output Details 
The contents of the output TIRS alignment calibration report file and the corresponding geometric 
characterization database outputs are summarized in Table 1 below.  All fields are written to the 
output report file but only those with "Yes" in the "Database Output" column are written to the 
characterization database. Note that the first eleven fields listed constitute the standard report 
header. 
 

Field Description Databas
e 

Output 

585. Date and 
time 

586. Date (day of week, month, day of month, 
year) and time of file creation. 

587. Y
es 

588. Spacecraft 
and instrument 
source 

589. LDCM and TIRS 590. Y
es 

591. Processin
g Center 

592. EROS Data Center SVT 593. Y
es 

594. Work 
order ID 

595. Work order ID associated with processing 
(blank if not applicable) 

596. Y
es 

597. WRS path 598. WRS path number 599. Y
es 

600. WRS row 601. WRS row number 602. Y
es 

603. Software 
version 

604. Software version used to create report 605. Y
es 

606. Off-nadir 
angle 

607. Scene off-nadir roll angle (in degrees) (only 
nadir-viewing scenes are used for TIRS 
alignment) 

608. Y
es 
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609. Acquisition 
type 

610. Earth, Lunar, or Stellar (only Earth-viewing 
scenes are used for TIRS alignment calibration) 

611. Y
es 

612. Geo Char 
ID 

613. Geometric Characterization ID 614. Y
es 

615. L1T image 
file 

616. Name of TIRS L1T used to measure tie 
points 

617. N
o 

Acquisition date Date of L1T image acquisition (new) Yes 

Reference image 
file 

Name of reference (OLI) image used to measure 
tie points 

Yes 

Original TIRS-to-
OLI angles 

Original TIRS-to-OLI roll-pitch-yaw alignment 
angles in radians (new) 

Yes 

TIRS-to-OLI 
correction angles 

Estimated roll-pitch-yaw corrections to the TIRS-
to-OLI alignment knowledge in radians (new) 

Yes 

Update TIRS-to-
OLI angles 

Updated TIRS-to-OLI roll-pitch-yaw alignment 
angles in radians (new) 

Yes 

Original TIRS 
alignment matrix 

Original 3x3 TIRS-to-OLI alignment matrix (new) No 

Updated TIRS 
alignment matrix 

Updated 3x3 TIRS-to-OLI alignment matrix (new) No 

Confidence Level Confidence level used for outlier rejection Yes 

Fit Order Order of Legendre fit Yes 

Number of SCAs Number of SCAs calibrated (3) Yes 

For each SCA:   

SCA Number Number of the current SCA (1-3) Yes 

Original AT 
Legendre coeffs 

Original along-track Legendre coefficients:  a0, 
a1, a2, a3 

Yes 

Original XT 
Legendre coeffs 

Original across-track Legendre coefficients:  b0, 
b1, b2, b3 

Yes 

Error AT 
Legendre coeffs. 

The computed updates to the along-track 
Legendre coefficients:  c0, c1, c2, c3 

Yes 

Error XT 
Legendre coeffs. 

The computed updates to the across-track 
Legendre coefficients:  d0, d1, d2, d3 

Yes 

New AT 
Legendre coeffs 

New along-track Legendre coefficients:  a'0, a'1, 
a'2, a’3 

Yes 

New XT 
Legendre coeffs 

New across-track Legendre coefficients:  b'0, b'1, 
b'2, b’3 

Yes 

Pre-fit AT 
statistics 

Pre-fit along-track offset mean, standard 
deviation, and RMSE statistics 

Yes 

Pre-fit XT 
statistics 

Pre-fit across-track offset mean, standard 
deviation, and RMSE statistics 

Yes 

Post-fit AT 
residual statistics 

Post-fit along-track residual mean, standard 
deviation, and RMSE statistics 

Yes 

Post-fit XT 
residual statistics 

Post-fit across-track residual mean, standard 
deviation, and RMSE statistics 

Yes 

Number of Points Number of tie points used for current SCA Yes 

CPF Group: Written to a separate output ODL file  

Effective Date 
Begin 

Beginning effective date of CPF group (from the 
original CPF):  YYYY-MM-DD 

No 
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Effective Data 
End 

Ending effective date of CPF group (from the 
original CPF):  YYYY-MM-DD 

No 

ACS-to-TIRS 
rotation matrix 

Updated 3x3 attitude control system-to-TIRS 
rotation matrix 

No 

Number of SCAs Number of SCAs (3):   Num_SCA = 3 No 

For each SCA:   

New Legendre 
polynomial 
coefficients 

Four (one per band/row) arrays of four along-track 
Legendre coefficients followed by four arrays of 
four across-track Legendre coefficients. 

No 

Tie Point Data: For each tie point:  

SCA Number SCA where the tie point was measured No 

Grid Cell Column 
Number 

Column number of the grid cell containing the tie 
point 

No 

Nominal Output 
Space Line 

Predicted tie point output space line location No 

Nominal Output 
Space Sample 

Predicted tie point output space sample location No 

LOS Line Error Measured LOS error delta line (in pixels) No 

LOS Sample 
Error 

Measured LOS error delta sample (in pixels) No 

LOS AT Error Measured LOS error along-track delta angle 
(in microradians) 

No 

LOS XT Error Measured LOS error across-track delta angle 
(in microradians) 

No 

State Flag  Tie point state (outlier) flag No 

AT Fit Residual Along-track fit residual (in microradians) No 

XT Fit Residual Across-track fit residual (in microradians) No 

Table 1:  TIRS Alignment Calibration Output Details 
 
Accessing the TIRS Alignment Results in the Characterization Database 
Though not part of the formal TIRS alignment calibration algorithm, some comments regarding the 
anticipated methods of accessing and analyzing the individual scene TIRS alignment calibration 
results stored in the characterization database may assist with the design of the characterization 
database. 
 
The database output from the TIRS alignment calibration algorithm will be accessed by a data 
extraction tool that queries the characterization database to retrieve TIRS alignment calibration 
results from multiple scenes. The only processing required on the returned results is to compute the 
average "new" TIRS-to-OLI alignment angles and the average "new" Legendre coefficients for each 
SCA across all returned scenes. The returned scene results and computed mean alignment angles 
and mean Legendre coefficient values will be output in a report containing a comma-delimited table of 
the retrieved trending results as well as the summary averages.  
 
The geometric results would typically be queried by acquisition date and/or WRS path/row. The most 
common query would be based on acquisition date range, for example, selecting all of the results for 
a given calendar quarter: 
 
 Acquisition_Date is between 01APR2012 and 30JUN2012 
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The average alignment angles would be calculated from the updated alignment angles for the 
individual scenes returned, as: 






numScene

i

ijnetj Angle
numScene

Angle

1

,,

1
 

for angle j = roll, pitch, yaw. 
 
The average coefficients would be calculated from the "new" Legendre coefficients for the individual 
scenes returned, as: 
 





numScene

i

ijSCAnetjSCA Coeff
numScene

Coeff
1

,,,,

1
 

for coefficient j (j=0,1,2,3) for each SCA (SCA=1,2,3). 
 

The query results would be formatted in a set of comma-delimited records (for ease of ingest into 
Microsoft Excel), one record per scene. Each record would contain all of the "header" fields written to 
the characterization database (items with "Yes" in the rightmost column of Table 1 above) but only 
the "new"  alignment angles and the "new" Legendre coefficients for each SCA. The other fields 
would be retrieved using general purpose database access tools, if and when desired. A header row 
containing the field names should precede the database records. 
 
Following the scene records the average alignment angles and Legendre coefficients should be 
written out in the same CPF/ODL syntax used in the report file. This output uses the same structure 
shown in the final row in Table 1 above, but contains the average, rather than a single scene's, 
angles and Legendre coefficients.  

7.3.5.8 Maturity 

Most of the OLI focal plane alignment calibration logic was reusable, but the TIRS version was 
adapted to include the TIRS-to-OLI alignment computation. The focal plane alignment calibration 
logic were also adapted to the TIRS sensor parameters: 

3. There are 3 separate SCAs to calibrate (vs. 14 OLI SCAs). 
4. Analysis of the TIRS optical model indicated that the heritage Legendre polynomial order of 2 

is not sufficiently accurate for the TIRS due to the significantly longer SCAs. Prototype tests 
indicate that a Legendre polynomial order of 3 is sufficient. This was a relatively minor change 
to the algorithm. 

5. Since the alignment angle and Legendre coefficient updates are being computed together, the 
solution must be simultaneous. This is a departure from the heritage method in which each 
SCA was calibrated separately. 

7.3.5.9 Notes 

Some additional background assumptions and notes include: 
6. The 10.8 micrometer thermal band will be used to provide the geometric reference for the 

TIRS instrument. If subsequent band correlation studies show that the 12.0 micrometer band 
provides superior correlation performance relative to the OLI SWIR bands, it could be used as 
the reference instead and this decision will be revisited. Such a change would affect the TIRS 
band alignment calibration algorithm as well. 
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7. The input TIRS and OLI L1T images are treated as separate inputs in the baseline TIRS 
algorithm. These could ultimately be contained in the same output image, but since the TIRS 
image is SCA-separated and the OLI image is SCA-combined it may be best to keep them as 
two distinct input images even if merged OLI and TIRS images can be produced. 

8. The TIRS focal plane model uses third order Legendre coefficients to model the line-of-sight 
directions for each SCA, as noted in maturity note #2 above. 

9. The baseline assumption is that Legendre coefficient sets will be stored in the CPF for both 
active detector rows for each band (10.8 and 12.0 micrometer) on each SCA, but that only the 
primary detector set will be calibrated. Only the coefficients for the primary row for the 10.8 
micrometer band will be updated by this calibration procedure. This assumption may be 
modified if it is decided that the TIRS CPF will contain only Legendre coefficients for the 
primary detector rows, in which case there will only be two sets of Legendre coefficients in the 
CPF, or if the Legendre coefficients for the redundant rows are to be maintained by the 
calibration procedures, in which case the computed updates will be added to the Legendre 
coefficients from both rows for the 10.8 micrometer band. 

10. The ATTITUDE_PARAMETERS CPF parameter group contains the ACS-to-TIRS and ACS-to-
OLI alignment matrices. These two matrices are related by the TIRS-to-OLI alignment matrix, 
which is maintained by the TIRS alignment calibration algorithm, as follows:  [ACS2OLI] = 
[TIRS2OLI] [ACS2TIRS]. To avoid the redundancy inherent in retaining all three of these 
matrices in the CPF, the [TIRS2OLI] matrix is constructed, when needed, from the ACS-to-
sensor matrices as:   

[TIRS2OLI] = [ACS2OLI] [ACS2TIRS]-1  
This [TIRS2OLI] matrix is updated by the TIRS alignment calibration procedure and the result 
is then used to update the [ACS2TIRS] matrix in the CPF as:   

[ACS2TIRS] = [TIRS2OLI]-1 [ACS2OLI]. 
11. The LOS_LEGENDRE CPF group contains the TIRS focal plane model in the form of the 

along-track and across-track Legendre coefficients updated by this algorithm. 
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7.3.6 TIRS Band Registration Accuracy Assessment  

7.3.6.1 Background/Introduction 

The TIRS Band Registration Accuracy Assessment Algorithm (BRAA), or the Band-to-Band (B2B) 
Characterization process, measures the relative band alignment between the spectral bands on each 
Sensor Chip Assembly (SCA) for the TIRS instrument.  The displacement for every pair-wise 
combination of all bands requested for assessment is measured on each SCA, creating a set of band-
to-band measurements for each SCA.  The number of bands available for assessment could be from 
two (the primary 10.8 and 12 micrometer thermal bands) to four for TIRS only or as many as thirteen - 
9 OLI reflective bands and two separate representations of the two TIRS spectral bands derived from 
the primary and redundant TIRS detector rows - depending on the contents of the input L1T image(s).  
The residuals measured from the B2B characterization process will be used to assess the accuracy 
of the band-to-band registration of the TIRS instrument, and if need be, used as input to the band 
calibration algorithm in order to calculate new line-of-sight (LOS) parameters for the Calibration 
Parameter File (CPF). 
 
The B2B characterization process works by choosing tie point locations within band pairs of each 
SCA, extracting windows of imagery from each band and performing grey scale correlation on the 
image windows.  Several criteria are used in determining whether the correlation process was 
successful.  These criteria include measured displacement and strength of the correlation peak.  The 
sub-pixel location of the measured offset is calculated by fitting a 2nd order polynomial around the 
discrete correlation surface and solving for the fractional peak location of the fitted polynomial.  The 
total offset measured is then the integer location of the correlation peak plus the sub-pixel location 
calculated. 
 
There are several options available for processing data through the Band Registration Accuracy 
Assessment algorithm.   These include choosing evenly spaced points for location of the windows 
extracted, choosing to use the TIRS LOS projection grid for determining window locations in order to 
avoid fill within the image files, specifying the bands to process, and specifying the valid pixel range to 
use during correlation. Note that, unlike OLI, in which individual SCAs can be selected for processing 
(to support the analysis of lunar data), we always process all three TIRS SCAs. 
 
The TIRS B2B characterization algorithm will typically be exercised in one of two different modes, 
depending upon the input image provided. When operating on SCA-separated TIRS images, tie 
points based on the TIRS LOS projection grid would be generated to evaluate the internal registration 
of the TIRS spectral bands. The resulting tie point measurements would be suitable for subsequent 
use in TIRS band alignment calibration. When operating on SCA-combined images containing both 
TIRS and OLI data, a regular array of tie points would be used to measure the registration of all 
selected TIRS and OLI band pair combinations. These tie point results would be suitable for 
characterizing TIRS to OLI band registration performance. 
 
The TIRS B2B characterization and OLI B2B characterization algorithms are very similar and could 
potentially be combined at some point in the future. This revision of the TIRS B2B algorithm 
addresses only the TIRS-only and OLI/TIRS combined cases of band registration accuracy 
assessment. 
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7.3.6.2 Dependencies 

The TIRS BRAA assumes that a cloud free Earth viewing L1T image has been generated and 
depending on the tie point selection type chosen, that the LOS Model Correction and the LOS 
Projection and Gridding algorithms have been executed to create a TIRS LOS projection grid file.  
The L1T image may be in either the SCA-separated or SCA-combined format, as noted above, and 
would use either the SOM or UTM path-oriented projection. In any case, the TIRS spectral bands 
would be resampled to 30m pixel spacing. 

7.3.6.3 Inputs 

The BRAA and its component sub-algorithms use the inputs listed in the following table. Note that 
some of these “inputs” are implementation conveniences (e.g., using an ODL parameter file to convey 
the values of and pointers to the input data). 
 
Algorithm Inputs 

ODL file (implementation) 

   Calibration Parameter File name 

   TIRS L1T image file name(see maturity note #3) 

   OLI L1T image file name (optional) 

   TIRS LOS projection grid (optional) 

   B2B characterization output file 

  Output residuals file name 

  Output statistics file name 

  TIRS bands to process 

  OLI bands to process (optional) 

  Processing Parameters 

     Outlier (t-distribution) threshold 

     Tie-point type (1 = regularly spaced, 2 = selected using TIRS grid) 

     Tie-point spacing in line direction 

     Tie-point spacing in sample direction 

     Fill range maximum 

     Fill range minimum 

     Fill threshold or percentage 

     Correlation window size lines 

     Correlation window size samples 

  Trending flag 

  Geometric Characterization ID (for trending) 

  Work Order ID (for trending) 

  WRS Path (for trending) 

  WRS Row (for trending) 

  Calibration Parameter File 

      Fill range maximum (default value) 

      Fill range minimum (default value) 

      Fill threshold or percentage (default value) 

      Correlation window size lines (default value) 

      Correlation window size samples (default value) 

      Maximum allowable offset 

      Strength of correlation peak 

      Correlation Fit method  

      Trending metrics – standard deviation thresholds per band (see note #3). 

7.3.6.4 Outputs 

Pan downsampled image (if OLI bands are included) 

B2B residuals file (see Table 2 below for details) 
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B2B output data file (see Table 1 below for details) 

B2B statistics file (see Table 3 below for details) 

B2B characterization trending (if trend flag set to yes, see Table 3 for details) 

7.3.6.5 Options 

Grid-based tie-point generation 
SCA-separated TIRS-only processing or SCA-combined OLI/TIRS processing 

7.3.6.6 Prototype Code 

 
Input to the executable is an ODL file; output is a set of ASCII files containing measured offsets 
between band locations with and without SCAs combined.  
 
The prototype code was compiled with the following options when creating the test data files: 
 -g -Wall –O2 -march=nocona -m32 –mfpmath=sse  –msse2 
 
The trending option was not included in the TIRS implementation since it does not affect the 
characterization algorithms and has been implemented in the OLI version of B2B.  Since there had to 
be a change with how bands are differentiated between OLI and TIRS to keep track of the respective 
metadata, there have been minor changes to many of the TIRS executables that have been 
previously delivered (i.e., oli_grid, makegeomgrid, geomresample, oli_resamp, and oliresample) and 
to some library modules. 
 
The enumerated band numbers are currently defined as: 
{berror=-1, t1a, t1b, t2a, t2b, pan, b01, b02, b03, b04, b05, b06, b07, b09, b12, b13, b16, b17, b18, 
NBANDS, OPTICAL_AXIS}. 
The TIRS modules, at this point in time, are only concerned with the bands through b09 in the above 
enumeration list.  This equates to band numbers 1 to 9 for OLI and bands 10, 11, 14, and 15 for 
TIRS.  The bands and their respective metadata and grids are now kept track of with the use of a 
band look up table. 

 
The following text is a brief description of the main set of modules used within the prototype with each 
module listed along with a very short description.  It should be noted that almost all library modules 
are not referenced in the explanations below.   The modules within the main b2bchar directory of the 
prototype are discussed and any library modules that were determined to be important to the 
explanation of either results, input parameters, or output parameters. 
 
b2b_char 
Main driver for application.  Calls routines to retrieve ODL input and CPF parameters, read and verify 
image metadata, reduce resolution of OLI PAN band, create a set of tiepoints, and calls module that 
will perform correlation on image tiepoint locations.  Separate calls are made for creating tiepoints 
depending on whether points are to be evenly spaced or based upon a resampling grid. 
 
get_parms 
Reads input ODL parameters.  Checks validity of input band combinations listed in ODL file.  Reads 
CPF BRAA processing parameters. 
 
verify_band_combos 
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Verifies search and reference band combinations given as input.  Verification is done by matching 
reference and search band list.  If bands given don’t match, an error is returned. 
 
create_tiepoints 
Driver for creating evenly spaced tiepoints.  Calls det_tiepoints for each band combination storing 
tiepoint locations in GCPLIB data structure. 
 
det_tiepoints 
Calculates a set of evenly spaced tiepoint locations based on image size.  Tie points are based on 
number of points given as an input ODL parameter and the size of the image file. 
 
create_tiepoints_grid 
Driver for creating tie points based on the resampling grid.  
 
downsample 
Main driver for reducing the resolution of the OLI PAN band.  Driver calls modules to initialize reduce 
image file (setup_reduce_img), calculates cubic convolution weights (cubic_convolution_weights), 
and applies cubic convolution weights to the PAN band (reduce).   
 
setup_reduce_img 
Initializes PAN reduced image file creation.   
 
cubic_convolution_weight 
Determines cubic convolution weights.   
 
reduce 
Applies cubic weights to PAN band.  Output is written to file created/initialized in setup_reduce_img. 
 
b2b_corr 
Main driver for band correlation, or band mensuration, process.  Driver opens image, calls module to 
perform correlation at tie-point locations (process_gcp), and writes out band registration residuals file 
(table 1).  The majority of the OLI/TIRS band differentiation logic is contained here.  process_gcp is 
called on for each SCA and band combination given in the input ODL file.   
 
process_gcp 
Process to perform correlation between two bands for one SCA.  See Ground Control Point 
Correlation ADD for information on the LDCM correlation modules and process.  Calls module 
xxx_check_fill to determine if a given window of imagery contains enough "non-fill" pixels so that 
mensuration can be performed. 
 
ias_math_check_pixels_in_range 
Checks to see if percent of pixels within a given buffer contains fill.  Fill is passed in as a parameter.  
Module has been modified so that fill is a range rather than a single value. 
 
math_fine_corr 
Math library routine that implements the new (see below) least squares correlation algorithm 
developed for fine sub-pixel offset measurement. Takes same-size reference and search image 
windows as input and returns measured offsets. 



LDCM-ADEF-001 
Version 3 

 

7.3.6.7 Procedure 

TIRS Band Registration Accuracy Assessment measures the misalignment between the TIRS 
spectral bands and, optionally, between the TIRS and OLI spectral bands, after all known geometric 
effects have been taken into account.  In the case where an SCA-separated TIRS-only image is used 
as input, the results from the band registration assessment can be used by the TIRS band alignment 
calibration routine (See TIRS Band Alignment Calibration ADD) to estimate new Legendre LOSs (See 
TIRS Line-of-Sight Model Creation ADD) for both TIRS bands for each SCA.  If an SCA-combined 
TIRS and OLI image is used as input, the results would be used solely for band registration accuracy 
characterization purposes. Due to the different viewing angles for each band of each SCA within 
TIRS, and between TIRS and OLI, geometric displacement due to relief must be removed from the 
imagery for band-to-band characterization of Earth acquisitions, i.e. input imagery for band 
registration assessment must be precision and terrain corrected (See TIRS Resampling ADD).   
 
The steps involved in band registration assessment are depicted in Figure 1 and include creating data 
sets with common pixel resolutions (if the OLI panchromatic band is included); choosing locations 
(tie-point locations) for measurement; performing mensuration; removing outliers from calculated 
residuals; and calculating statistics from the remaining residuals.  Residuals are measured on each 
SCA for each band combination requested through the input parameters. 
 

7.3.6.7.1.1 Stage 1 - Data Input 

The data input stage involves loading the information required to perform the band registration 
assessment.  This includes reading the image file, retrieving the output B2B file names: output, 
residuals and statistic files; retrieving or initializing processing parameters: maximum displacement, 
fill range, fill threshold, minimum correlation peak, t-distribution threshold, bands to process, 
correlation window size, trending metrics, tie-point method; and if tie-point method is set to grid-based 
(for SCA-separated input images) the TIRS LOS grid file name will be read.  Once the input file, and if 
need be the TIRS LOS grid name, has been retrieved the files and the information stored within them 
can be opened and read. 

7.3.6.7.1.2 Optional Stage 2 - Creating a Reduced Resolution PAN band (if 
OLI and TIRS SCA-combined image is input) 

Before displacement between the OLI PAN band and the other multispectral bands can be measured 
the PAN band must be reduced in resolution to match that of the multispectral bands.  An 
oversampled cubic convolution function is used to reduce the resolution of the PAN band.  Cubic 
convolution interpolation uses a set of piecewise cubic spline interpolating polynomials.  The 
polynomials have the following form: 
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Since the cubic convolution function is a separable function, a two dimensional representation of the 
function is given by multiplying two one-dimension cubic convolution functions, one function 
representing the x-direction the other function representing the y-direction.  For an offset of zero, or x 
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= 0, and α = -1.0 the discrete cubic function has the following values; f(0) = 1 and f(n) = 0 elsewhere.  
Thus convolving the cubic convolution function of x = 0 with a data set leaves the data set 
unchanged.   
 

operatorn convolutio  theiswhere

][][ gives

0for x

][][][


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Figure 2 shows what the cubic function f(t) (dashed line) and the corresponding discrete weights for 
an offset, or phase, of zero (crossed-dots). 
 
 

 
Figure 2.  Cubic Convolution Function and Weights for phase of zero. 

 
To spatially scale an input data stream an oversampled cubic convolution function with a offset of x 
=0 can be used.  This can best be understood by looking at the Fourier Transform scaling property of 
a function that is convolved with a given input data set: 
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Where: 

nconvolutio is   
● is multiplication 
F is the Fourier transform of f 
X is the Fourier transform of x 
t is time 
ω is frequency 
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Applying the cubic function and scaling properties to an image data file shows that densifying the 
points applied with the cubic convolution function will in turn inversely scale the function in the 
frequency domain, thus reducing the resolution of the imagery.  By setting the cubic convolution offset 
to zero, densifying the number of weights of the cubic function, and convolving these weights to an 
image file a reduction in resolution will be the resultant output image file.  Figure 3 shows the cubic 
function with corresponding weights densified by a factor of two and a phase shift of zero.  To ensure 
that the cubic weights do not scale the DNs of the output imagery during convolution the cubic 
weights are divided by the scale factor. 
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Where: 

fs[n] = scaled cubic convolution weights 
f(n) = cubic convolution function 

 
 

 
Figure 3.  Cubic Convolution Densifyied by a factor of 2 
 

Scaling the cubic convolution function by a factor of 2 gives the following 1-dimensional set of 
weights: 
 

 0.00625.00.03125.05.03125.00.00625.00.0][ nccw  

 
To determine the 2-dimensional cubic convolution weights two 1-dimensional sets of cubic weights 
are multiplied together (note only 7 values are needed for ccw, outside of this extent the weights are 
zero): 
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Where: 

ccw[n] is a 8x1 1-dimensional set of cubic weights 
ccw[m] is a 1x8 1-dimensional set of cubic weights 

 

7.3.6.7.1.2.1 Procedure for Reducing PAN band 

To reduce the resolution of the OLI PAN band apply the ccw[n,m] weights to the PAN image data: 
 

bandpan ],[pan reduced  mnccw  

 
Note: number of lines and number of samples listed below pertain to the size of the PAN band 
imagery. 
 
Reduce PAN Band Resolution Processing Steps 
 
2. Set line =0 then for every other PAN line 
 

2.1. Set sample = 0 then for every other PAN sample 
 
2.2. initialize summing variable sum = 0.0 
 
2.3. For m = -4 to 4 
 

2.3.1. For n = -4 to 4 
 
2.3.2. Check to see if current image index is within valid imagery 
 
2.3.3. if m + line < 0 then line index = -m - line 

  else if m + line >= number of lines then line index =  
   2 * number of lines - m - line - 1 
  else line index = m + line 
 

2.3.4. if  n + sample < 0 then sample index = -n - sample 
  else if n + sample >= number of sample then sample index =     
 2 * number of samples - n - sample - 1 
  else sample index = n + sample 
 

2.3.5. sum = sum + ccw[n+4,m+4] • pan[line index, sample index] 
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2.4. Store  output DN for reduced PAN 

output line = line / 2 
output sample = sample / 2 
reduce pan[output line,output sample] = sum 

 

7.3.6.7.1.3 Stage 3 - Create Tie-point Locations 

Tie point locations may be determined in an evenly spaced pattern in output space or they may be 
established in an evenly spaced pattern in input space, using the TIRS LOS projection grid. The first 
method is used when SCA-combined OLI/TIRS images are input, and the second is used when SCA-
separated TIRS-only images are input. 

7.3.6.7.1.3.1 Determine Evenly Spaced Tie-points (See notes #6 and #7) 

To determine evenly spaced tie-point locations a tie-point location is defined by stepping through the 
output space of the imagery by the user defined steps N,M. 
 
Create Evenly Spaced Tie-Points Processing Steps 
 
3. Determine number of tie-points in sample and line direction: 

1-N

lines n windowcorrelatioONL
y spacingpoint -tie

1-M

samples n windowcorrelatioONS
 xspacingpoint -tie







 

 
Where: 

M = user entered number of tie-points in sample direction 
N = user entered number of tie-points in line direction 
ONS = number of samples in output space of multispectral band 
ONL = number of lines in output space of multispectral band 
Correlation window samples = user entered correlation window size in samples 
Correlation window lines = user entered correlation window size in lines 

 
4. Set evenly spaced tie-point locations  

4.1. For j = 0 to N-2 

  y spacingpoint -tiej
2

lines n windowcorrelatio
jylocation point -tie   

4.2.  
2

lines n windowcorrelatio
1Nylocation point -tie  ONL  

4.3. For i = 0 to M-2 

   xspacingpoint -tiei
2

samples n windowcorrelatio
ilocation xpoint - tie   

4.4.  
2

samples n windowcorrelatio
1-Mlocation xpoint - tie  ONS   
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7.3.6.7.1.3.2 Determine TIRS Grid Spaced Tie-points (See notes #6 and #7) 

For descriptions of the format and data stored within the TIRS LOS grid see the TIRS Line of Sight 
Projection to Ellipsoid and Terrain ADD. 
 
Input Space Tie-points Processing steps. 
 
1. Read image extent parameters from TIRS LOS grid 

 INS = input (raw) space number of samples 
 INL = input (raw) space number of lines 

 
2. Determine number of tie-points in sample and line direction: 

 

1-N

lines n windowcorrelatioINL
y spacing

1-M

samples n windowcorrelatioINS
 xspacing







 

3.  Establish input (raw) space tie-point locations 
 

3.1 For j = 0 to N-2 

  y spacingj
2

lines n windowcorrelatio
jy   

 

3.2  
2

lines n windowcorrelatio
1Ny  INL  

 
3.3  For i = 0 to M-2 

   xspacingi
2

samples n windowcorrelatio
i x   

 

3.4  
2

samples n windowcorrelatio
1-M x  INS   

 
4. Project inputs space tie-points locations to output space 
 

4.1 For j=N-1 
 

4.1.1 For i=M-1 
Map input space tie-point location to output space using grid mapping coefficients.  

   tie-point location y  = b0 + b1 * x[i] + b2 * y[j] + b3 * x[i] * y[j] 
   tie-point location x = a0 + a1 * x[i] + a2 * y[j] + a3 * x[i] * y[j] 
  Where (See note #7): 

an = forward sample mapping coefficients for zero elevation plane retrieved from the TIRS LOS 
projection grid 

bn = forward line mapping coefficients for zero elevation plane retrieved from the TIRS LOS 
projection grid 
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7.3.6.7.1.4 Stage 4. Calculate Individual Point-by-Point Band Displacements 

Normalized cross correlation is used to measure spatial differences between the reference and 
search windows extracted from the two bands being compared.  The normalized cross correlation 
process helps to reduce any correlation artifacts that may arise from radiometric differences between 
the two image sources.  The correlation process will only measure linear distortions over the 
windowed areas. By choosing appropriate correlation windows that are well distributed throughout the 
imagery, nonlinear differences between the image sources can be found.  Normalized grey scale 
correlation has the following formula: 
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Where: 

N = M = Correlation window size in lines and samples 
R = correlation surface (N,M) (See note# 10) 
f = reference window (N,M) 
g = search window (N,M) 
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Normalized cross correlation will produce a discrete correlation surface (i.e., correlation values at 
integer x,y locations).  A sub pixel location associated with the displacement is found by fitting a 
polynomial around a 3x3 area centered on the correlation peak.  The polynomial coefficients can be 
used to solve for the peak or sub pixel location.  Once the discrete correlation has been calculated 
and the peak value within these discrete values has been found the sub-pixel location can be 
calculated: 
 

2

5

2

43210),( yaxaxyayaxaaxyP   

Where 
P(x,y) is polynomial peak fit 
x = sample direction 
y = line direction 
 
Set up matrices for least squares fit of discrete R(x,y) to x/y locations.  
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or:  [Y] = [X] [a] 
 
Note that R(x,y) is relative to the peak, the total offset will need to have the integer line offset and 
sample offset added to the sub-pixel location to have the total measured offset.  Solving for the peak 
polynomial using least squares: 
 

          YXXXa
TT 1

  

 
Calculating the partial derivative of P(x,y) in both the x and y directions, setting the partial equations 
to zero, and solving the partials for x and y, gives the sub-pixel location within the sub-pixel 3x3 
window. 
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Set partial equations equal to zero and solve for x and y: 

 

Sub-pixel 
54
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


  

 
The steps for mensuration, calculating the total offset measured, and how they fit in the overall 
procedure is given in the processing steps section.  
 
See Ground Control Correlation ADD for prototype specifications of correlation processes. 

7.3.6.7.1.5 Stage 5.  Removing Outliers Using the t-distribution  

Once all the line and sample offsets have been measured and the first level of outlier rejection has 
been performed, a check against the maximum allowable offset and the minimum allowable 
correlation peak, the measurements are further reduced of outliers using a Student-t outlier rejection. 
 
Given a t-distribution tolerance value, outliers are removed within the data set until all values deemed 
as “non-outliers” or “valid” fall inside the confidence interval of a t-distribution.  The tolerance, or 
associated confidence interval, is specified per run (or processing flow) and usually lies between 0.9-
0.99.  The default value is 0.95.  The number of degrees of freedom of the data set is equal to the 
number of valid data points minus one.  The steps involved in this outlier procedure are given below.  
The process listed works on lines and samples simultaneously, calculating statistics independently for 
each.  
 
 
Student-t Outlier Rejection Processing steps. 
If an SCA-separated image is being analyzed, the outlier rejection sequence is executed 
independently on each SCA. For SCA-combined images, the outlier rejection logic is performed for all 
points at once. 
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For each  SCA: 
 
1. Calculate mean and standard deviation of data for lines and samples (see stage #6). 
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Where: 
N = number of valid offsets measured (above peak threshold and below maximum offset) 
 
Two means and standard deviations are calculated, one for the line direction and one for the sample 
direction. 
 
2. Find largest offset and compare it to outlier threshold. 
 

2.1. Calculate two tailed t-distribution (T) value for current degree of freedom (N-1) and confidence 
level α. 

 
2.2. Calculate largest deviation from the mean allowable for the specified degree of freedom and 

α: 
 Δline = σline* T 
 Δsample = σsample* T 
 Where: 

 σline = standard deviation of valid line offsets 
 σsample = standard deviation of valid sample offsets 

 
2.3. Find valid data point that is farthest from the mean. 
 max linei = MAX{ line offset - mean line offset} 
 max samplej = MAX{ sample offset - mean sample offset} 
 Where: 
 The maximum is found from all valid offsets 
 i is the tie-point number of max line 
 j is the tie-point number of max sample 
 
2.4. If valid data point that is farthest from the mean is greater than the allowable Δ then the valid 

point is flagged as outlier. 
 if max linei > Δline or max samplej > Δsample then 
  if( max samplej / σsample > max linei / σline ) 
   tie-point j is marked as an outlier 
  else 
   tie-point i is marked as an outlier 
 else no outliers found 
 

3. Repeat 1 and 2 above until no outliers are found. 
 
The t-distribution outlier detection prototype logic runs as a separate process. The key components of 
this process include: 
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tdist 
Main driver for t-distribution outlier rejection and for band residuals statistic calculations.  Logic to 
report the SCA to which each set of statistics pertains is included.  SCA 0 will be used to indicate 
measurements from SCA-combined images. Calls modules to read input parameters (getpar), read 
tie-point information (get_gcpdata), perform t-distribution outlier rejection (filter_outliers), calculate 
final band registration statistics (put_gcpdata), and to write final band registration results 
(put_gcpdata).  The t-distribution outlier rejection is a separate step in the current prototype code, 
whether the process is separated from the BRAA process or is combined within as a function call 
does not affect the algorithm. 
 
getpar 
Reads ODL input parameters file. 
 
get_gcpdata 
Reads output file created from B2B characterization (See Table 1).  Tie-point and mensuration 
information is stored in data structure and passed into filter_outliers module.   
 
filter_outliers 
Performs t-distribution outlier rejection.  Input is the tie-point data structure populated from 
get_gcpdata.  Outliers are flagged and  reported in the band registration residuals file. 
 
put_gcpdata 
Calculates statistics of final residuals and prints results.  Printed results are shown in Tables 2 and 3.  
Calls modules to perform heap sort on statistics and to compute median of residuals calculated. 

7.3.6.7.1.6 Stage 6.  Calculating Measured Statistics 

The mean, standard deviation, minimum, maximum, median, and root-mean squared offset (RMS) 
are calculated from the tie-points that pass all outlier criteria; below maximum offset, above peak 
threshold, and student t-distribution test.  The calculation for mean, standard deviation, and RMS are 
shown below where xi is the measured offset. 
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7.3.6.7.1.7 Band Accuracy Assessment Processing steps 

Windows extracted from imagery have the user entered dimensions; correlation window lines and 
correlation window samples.  Correlation parameters have been read or set as default values; 
maximum offset, fit method, correlation peak, fill data range, fill threshold. The bands should be 
indexed so that the TIRS 10.8 micrometer band is used as a reference to all other bands. 
 
1. For SCA = Number of SCAs to process (1 if SCA-combined, 3 if SCA-separated) 
 

1.1. For rband = Total number of TIRS and OLI bands to process 
 

if rband  is equal to OLI PAN use reduced PAN image file 
 
1.2. For sband = rband + 1 to Total number of TIRS and OLI bands to process 
 
1.3. For index = Number of tie-points to process 
 

1.3.1. Read current tie-point chip and tie-point location x,y 
        Set tie-point flag to unsuccessful 
 

1.3.2. Extract sband window (of imagery) at tie-point location x,y 
 
1.3.3. Extract rband window (of imagery) at tie-point location x,y  
 
1.3.4. Count number of pixels in rband window that is within fill range. 

 count = 0 
 For i=0 to number of pixels in correlation window 
  If rband pixel is > fill min and rband pixel is < fill max 
   count++ 
 

1.3.5. Check number of rband pixels counted against fill threshold/percentage. 

   thresholdfill
size n windowcorrelatio

count
 if   

   increment index to next tie-point location 
  else  
   continue 
 

1.3.6. Count number of pixels in sband window that is within fill range. 
 count = 0 
 For i=0 to number of pixels in correlation window 
  If sband pixel is > fill min and sand pixel is < fill max 
   count++ 
 

1.3.7. Check number of sbands pixels counted against fill threshold/precentage. 

   thresholdfill
size n windowcorrelatio

count
 if   

   increment index to next tie-point location 
  else 
   continue 
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1.3.8. Perform normalized grey scaled correlation between rband and sband windowed 

images, calculating correlation surface R (See Stage 4 and notes #9 and #10). 
 
1.3.9. Find peak within correlation surface 

 Max = R(0,0) 
 For i=0 to correlation window number of lines -1 
  For j=0 to correlation window number of samples -1 
   If R(i,j) > max then  
    Max = R(i,j)  
    line offset = i 
    sample offset = j 
 

1.3.10. Check correlation peak against threshold 
 if max > peak threshold  
  continue 
 else  
  set tie-point flag to outlier and choose next tie-point 
 

1.3.11. Measure sub-pixel peak location (see stage #4) 
 Δsub-line 
 Δsub-sample 
 
1.3.12. Calculate total pixel offset 
total line offset = line offset + Δsub-line 
total sample offset = sample offset + Δsub-sample 
 
1.3.13. Check offset against maximum displacement offset 

22 )offset sample total()offset line total(ntdisplaceme total   

if ( total displacement > maximum displacement ) 
 Set tie-point flag to outlier and choose next tie-point 
Else 
 Set tie-point flag to valid 
 

1.4. Store SCA and band combination (rband-to-sband) tie-point mensuration information, 
correlation success, and offsets measured.  See table #1. 

 
2. For SCA = 1 to Number of SCAs to process 
 

2.1. For band combination = 1 to Number of band combinations 
 

2.1.1. Perform t-distribution outlier rejection (See stage #5). 
 

2.2. Store SCA and band combination final individual tie-point information and outlier flag.  See 
table #2. 

 
3. For SCA = 1 to Number of SCAs to process 
 



LDCM-ADEF-001 
Version 3 

 

4. For band combination = 1 to Number of band combinations 
 

4.1. Calculate mean, minimum, maximum, median, standard deviation, and root mean squared 
offset. 

 
4.2. Store SCA and band combination statistics.  See table #3. 
 

5. Perform trending if trending flag is set to yes 
 

5.1. Check results against trending metrics 
For each band of each SCA 
 if measured Standard Deviation > trending metric  
             exit trending 
If there are no Standard Deviation > trending metric perform trending 

7.3.6.8 Output files 

The output files listed below for the TIRS BRAA follow the philosophy of the Advanced Land Imagery 
Image Assessment System (ALIAS) Band-to-Band (B2B) Characterization output files in that they are 
made generic so that the same format can be used elsewhere.  Therefore some fields like latitude, 
longitude, and elevation may not apply to the application and would be filled with zeros or nominal 
values.   
 
All output files contain a standard header.  This standard header is at the beginning of the file and 
contains the following: 
 
1) Date and time file was created. 
2) Spacecraft and instrument(s) pertaining to measurements. 
3) Off-nadir (roll) angle of spacecraft/instrument. 
4) Acquisition type 
5) Report type (band-to-band) 
6) Work order ID of process (left blank if not applicable) 
7) WRS path/row 
8) Software version that produced report. 
9) L0R image file name 
 
The data shown within Table 3 listed below is stored in the database.  Database output will only be 
performed if the standard deviation statistics for every band and every SCA are below the thresholds 
(trending metrics) stored in the CPF (see note #3). The statistics stored per band per SCA will be 
used for trending analysis of the band registration accuracy of the TIRS instrument.  Results 
produced through a time-series analysis of this data stored, over a set time interval or multiple image 
files, will determine if new Line-of-Sight (LOS) Legendre coefficients will need to be generated from 
the TIRS Band-to-Band Calibration Algorithm (See TIRS Band-to-Band Calibration ADD for details).  
These statistics may also be needed for providing feedback to the LDCM user community about the 
band registration of LDCM products generated.  
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Field Description 

Date and time Date (day of week, month, day of month, year) and time 
of file creation. 

Spacecraft and 
instrument source 

LDCM and TIRS (and OLI if applicable) 

Processing Center EROS Data Center SVT 

Work order ID Work order ID associated with processing (blank if not 
applicable) 

WRS path/row WRS path and row (See note #11) 

Software version Software version used to create report 

Off-nadir angle Off-nadir roll angle of processed image file (See note 
#12) 

Acquisition Type Earth viewing (for TIRS) 

L0R image file L0R image file name used to create L1T 

Processed image file 
name 

Name of L1T used to create report 

Reference bands Reference bands used in band assessment 

Search bands Search  bands used in band assessment 

Heading for individual  
tie-points 

One line of ASCII text defining individual tie-point fields. 

For each tie-point:  

    Tie point number Tie-point index/number in total tie-point list 

    Reference line Tie-point line location in reference image (band) 

    Reference sample Tie-point sample location in reference image (band) 

    Reference latitude Tie-point latitude location 

    Reference longitude Tie-point longitude location 

    Reference elevation Elevation of tie-point location (see note #13) 

    Search line Tie-point line location in search image 

    Search sample Tie-point sample location in search image 

    Delta line Measured offset in line direction 

    Delta sample Measured offset in sample direction 

    Outlier flag 1=Valid, 0=Outlier 

    Reference band Reference band number 

    Search band Search band number 

    Reference SCA SCA number that reference window was extracted or 0 if 
an SCA-combined L1T image was used 

    Search  SCA SCA number that search window was extracted or 0 if an 
SCA-combined L1T image was used 

    Search image Name of search image 

    Reference image  Name of reference image 
 

Table 9.   Band Registration Accuracy Assessment Data File 
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Field Description 

Date and time Date (day of week, month, day of month, year) and time of 
file creation. 

Spacecraft and 
instrument source 

LDCM and TIRS (and OLI if applicable) 

Processing Center EROS Data Center SVT 

Work order ID Work order ID associated with processing (blank if not 
applicable) 

WRS path/row WRS path and row (See note #11) 

Software version Software version used to create report 

Off-nadir angle Off-nadir pointing angle of processed image file (See note 
#12) 

Acquisition Type Earth viewing for TIRS 

L0R image file L0R image file name used to create L1T 

Processed image file 
name 

Name of L1T used to create report 

Number of records Total number of tie-points stored in file 

Heading for individual  
tie-points 

One line of ASCII text defining individual tie-point fields. 

For each band 
combination 

 

    Combination header Number of points in combination, reference band number, 
search band number. 

    For each tie-point:  

       Tie point number Tie-point index/number in total tie-point list 

       Reference line Tie-point line location in reference image (band) 

       Reference sample Tie-point sample location in reference image (band) 

       Reference latitude Tie-point latitude location 

       Reference 
longitude 

Tie-point longitude location 

       Reference 
elevation 

Elevation of tie-point location 

       Search line Tie-point line location in search image 

       Search sample Tie-point sample location in search image 

       Delta line Measured offset in line direction 

       Delta sample Measured offset in sample direction 

       Outlier flag 1=Valid, 0=Outlier 

       Reference band Reference band number 

       Search band Search band number 

       Reference SCA SCA number that reference window was extracted from or 
0 if an SCA-combined L1T input image was used 

       Search  SCA SCA number that search window was extracted from or 0 
if an SCA-combined L1T input image was used 

       Search image Name of search image 

       Reference image  Name of reference image 

 



LDCM-ADEF-001 
Version 3 

 

Table 10.  Band Registration Accuracy Assessment Residuals File 
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Field Description Database 
Output 

Date and time Date (day of week, month, day of month, year) and time 
of file creation. 

Yes 
 

Spacecraft and instrument 
source 

LDCM and TIRS (and OLI if applicable) Yes 

Processing Center EROS Data Center SVT Yes 

Work order ID Work order ID associated with processing (blank if not 
applicable) 

Yes 

WRS path/row  WRS path and row (See note #12) Yes 

Software version Software version used to create report Yes 

Off-nadir angle Off-nadir pointing angle of processed image file (See 
note #13) 

Yes 

Acquisition Type Earth viewing for TIRS Yes 

L0R image file L0R image file name used to create L1T Yes 

Processed image file name Name of L1T used to create report No 

t-distribution threshold Threshold used in t-distribution outlier rejection Yes 

For each band combination of 
each SCA processed 

  

    Reference band Reference band of statistics  Yes 

    Search band Search band of statistics Yes 

    SCA SCA number of statistics or 0 if SCA-combined L1T 
input image was used 

Yes 

    Total tie-points Total number of tie-points for band combination of SCA Yes 

    Correlated tie-points Number of tie-points that successfully correlated for 
band combination of SCA 

Yes 

    Valid tie-points Total number of valid tie-points  for band combination of 
SCA after all outlier rejection has been performed 

Yes 

    For both line and sample 
direction: 

All statistics are given in terms of pixels  

     Minimum offset Minimum offset within all valid offsets Yes 

     Mean offset Mean offset of all valid offsets Yes 

     Maximum offset Maximum offset within all valid offsets Yes 

     Median offset Median offset within all valid offsets Yes 

     Standard deviation Standard deviation of all valid offsets Yes 

     Root-mean-squared Root mean squared offset of all valid offsets Yes 

 

Table 11.  Band Registration Accuracy Assessment Statistics Output File 

 

7.3.6.8.1 Assessing Band Registration (Accessing Statistics Stored in 
Database) 

The Band Accuracy Assessment statistics stored in the database will need to be accessed by the 
geometric CalVal team.   Delineation, or essentially data base querying, will be done by the following 
or a combination of the following: 
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1) Date range of image acquisition or processing date 
2) By SCA number (including 0 for SCA-combined results) 
3) By band number 
4) By acquisition type (Nadir, off-nadir, Lunar) 
5) By geographic location of image extent. 
 
At a minimum access to the Band Accuracy Assessment statistics is needed.  Simple tools, such as 
an SQL queries, would be beneficial to the geometric CalVal team but are not absolutely necessary 
as they could be developed later through other means. 

7.3.6.9 Maturity 

1. The prototype implementation operates on separate TIRS and, if present, OLI L1T input image files. 

The logic would have to be adapted to an OLI-TIRS combined L1T image organization/structure to be 

used with an integrated product generation system. 

7.3.6.10 Notes 

Some additional background assumptions and notes include: 
1. Correlation parameters, minimum correlation peak and maximum offset, are stored and retrieved from 

the CPF. 

2. Tools that analyze the query results will be needed to generate summary statistics: scene 
statistics, individual bands per SCA, SCA summary, band summary. These statistics would 
ultimately be provided to the user as summary statistics in an image quality assessment for the 
user community. 

3. As shown in the input table, there will be metrics, based on calculated statistics, as to whether trending 

should be performed or not.  This metric would be provided to avoid having garbage stored in the 

database.  The metric values would be stored and retrieved from the CPF.  There would be one metric 

per band per SCA which would be compared to the standard deviation statistics for each SCA.  The 

criteria to check for trending are shown in section 5.1 of the Band Accuracy Assessment Processing 

steps section. 

4. Band Accuracy statistics stored within the database will be accessed for analysis. 
a. Accessed according to a specific date range. 
b. Accessed according to a specific band or SCA. 
c. Accessed according to a specific geographic location. 
d. Accessed according to acquisition type (nadir, off-nadir, lunar).  

This data accessed will be retrieved and stored within a comma delimited file.  The 
methodology used to access the database could be an SQL script.  This SQL query code 
could be developed either by the IPE or outside of the IPE. 

5. Data stored within the database will be accessed for time series analysis. 
a. Data would be pulled out by scene/SCA band pairs for a user-specified time period. 
b. Statistics over multiple scenes would be calculated per SCA and/or per band.  Then 

combined them into the SCA and/or band average statistics.   
c. Results could be compared to the band registration spec.  These results could serve as 

triggers to other events, i.e. new CPF generation and testing. 
d. Results could be used to verify conformance with product specifications. 

These calculations could be performed within the methodology used to access the data from 
the database (SQL script). 

6. Tie-point locations could also be stored and used as projection Y and X coordinates.  The 
appropriate conversions must be done when converting between projection coordinates and 
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line and sample locations when extracting image windows between bands.  This 
transformation should also include any rotation due to path orientated projections.  

7. The prototype code uses a library call that maps any input point with a given elevation to 
output space.  For BRAA, the elevation for the mapping point is set to zero.  Since for BRAA 
the reference and search output space are the same, output line/sample in output reference 
space should be line/sample in output search space.   

8. The c and d parallax coefficients are needed for each band or each SCA for every grid cell 
point.  Therefore if the coefficients were stored as arrays stacked by grid column and then grid 
row for a particular input pixel that fell within grid cell column N and grid cell row M the c and d 
coefficients needed for that pixel would be indexed by: index = (M * number of grid columns + 
N) * 2.  The factor of 2 is due to the fact the parallax odd/even effects are mapped as linear 
therefore 2 coefficients are stored for each the odd and even pixels of a grid cell.  

9. The grey scale correlation process, or surface, can be implemented using a Fast Fourier 
Transform (FFT). 

10. The correlation surface could be smaller than the search window depending on the search 
area or maximum offset. 

11. Any kind of "non-WRS" collect; like lunar, should have 000/000 listed as the path/row. This is 
not applicable for TIRS. 

12. Pointing angle for lunar acquisitions would be 0.0. This is not applicable for TIRS. 
13. This tie point residual file structure is also used for the image registration accuracy 

characterization algorithm so it includes fields that are not required for both algorithms. An 
example is the elevation field which is set to 0 for this algorithm. 

14. The correlation result fit method defines the algorithm used to estimate the correlation peak 
location to sub-pixel accuracy. Only the quadratic surface fitting method described in this ADD 
is supported in the baseline algorithm.  The least squares correlation technique is not used for 
TIRS band registration assessment.  Since the source images are oversampled to 30 meter 
resolution, the robustness of the normalized gray scale correlation is more important than the 
sub-pixel precision of the least squares method.  

7.4 Common Radiometry Algorithms 

 

7.4.1 Dropped Frame Characterization   

 

7.4.1.1 Background 

All dropped “frames” (aka dropped “lines” for this ADD), need to be accounted for during Ingest 
System (IS) processing and Product Generation System (PGS) processing.  
 
Dropped frames are typically expected to occur onboard the spacecraft. The instrument will create a 
CRC value at the end of each video line. Once the data is on the ground, ingest will perform a CRC 
check on these values. Any check failure will result in the dropped frame being filled with zeros,  and 
the setting of the CRC flag to fail in the OLI line header dataset. 
Dropped frame conditions may also occur if a file within a given interval is missing. Such intervals will 
be archived for later processing.  If or when selected, the interval may be broken up into two “sub-
intervals” or the data may be filled to complete the interval.  In the latter case, ingest will flag these all 
these frames as zero filled in the OLI line header dataset.  
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This algorithm will check the Line Header data in the ancillary file for all intervals and output any 
dropped frames to a Labeled Mask (LM) aka Artifact Mask (AM) and database.  
 
Note, while this algorithm describes all necessary parameters and functionality required for 
processing,  no prototype code will be developed or delivered by the algorithm developer.  Instead, 
coding will be performed by software developers based upon finalized detailed knowledge of the 
ancillary data file content and structure.  

7.4.1.2 Dependencies  

None 

7.4.1.3 Input  

  

Descriptions Level Source Type 

    

Line Header data   interval 
Ancillary 
Data File   

 

7.4.1.4 Output  

 

Descriptions Level Target Type 

Dropped Frames  

Nband x 

Nframe  AM  Int 

#  of Dropped Frames  

Nband x 

NFrame Db Int 

   

7.4.1.5 Options 

None. 

7.4.1.6 Prototype Code 

None. 

7.4.1.7 Procedure 

1. Read the interval ancillary data file and extract the LineHeader Dataset 
2. Verify CRC check and line fill information from the Line Status field. 

 
{  
For (band=0,band=9,band++)  
 
Num_filllines = 0            ; /*line counter initialization*/  
Int Linearray[9,Num_fillines] ;  /* array containing CRC  check*/  
Int Filltotal[9];  /*array containing # of dropped frames per band*/ 
{ 

             For  (line = 0, line=intervalsize, line++) 
                        { 

If (bit8 == 1)                 ;  /*CRC check successful*/  
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                              { 
                              If  (bit2 ==  1)             ; /*line has fill*/ 
                                     Linearray[band,line] = 1 
                                     num_filllines[band] = num_fillines+1 
                              }  
                         Else           
                              Printf(“CRC check unsuccessful’)  
             } 
             Filltotal[band] = num_fillines;  
             }  
 

3. Output linearray and flag each corresponding AM value 
4. Output Fill total to DB for trending  

Reference 
1.  “L0r DFCB Landsat 8 Operational Land Imager (OLI) Swath Data Format Control Book (DFCB) -Version 

1.0m”, Jan 2009 

   

7.4.2 Impulse Noise Characterization 

7.4.2.1 Background  

Impulse noise (IN) is a randomly occurring aperiodic noise source that appears as a sample with 
signal value notably different (far in excess of that expected due to Total Noise) from values exhibited 
by its nearest neighbors. Sources of IN can include the following: 

 ‘bit flips,’ i.e., an ‘on’ bit that is recorded as ‘off’ or vice versa, due to transmission/recording 
errors affecting the data stream 

 ‘single-event upsets’ (SEUs), i.e., significant increases in the analog output signal produced by 
a detector due to the effects of charged particles striking the detector array. This effect tends to 
appear as a saturated pixel with the value (2N-1) DN (where N is the radiometric resolution of 
the sensor data in bits), followed by a saturated pixel with the minimum possible DN value (0). 
Subsequent pixels tend to manifest the ‘expected’ DN levels. 

 
To detect IN artifacts in Level 0 image and calibration data, this algorithm calculates the absolute 
difference between a pixel value and a median filter value computed using that pixel’s nearest 
neighborhood. This difference is then compared to a threshold value determined from the surrounding 
pixel values, detector total noise level (Detector Noise) and minimum detectable IN (IN Limit). Though 
a linear filter is faster, a median filter is more robust at predicting the true signal value. The median 
filter is one-dimensional, applied in the image pixel column direction. The affected pixel locations and 
their values are recorded in the LMASK to allow exclusion from further radiometric processing.  
 
This algorithm is run only on homogenous data sources, i.e. dark shutter bias or lunar data. In 
addition, the algorithm is run on night image, lamp and solar OLI data and blackbody TIRS data. The 
data are processed serially, detector-by-detector, band after band. 

7.4.2.2 Inputs 

Descriptions Symbol Units Level Source Type 

Level 0 data: 
- Dark Earth (OLI only) 
- Space 

 
 
 

 
 
 

Nbands x 
NSCAs x 
Ndetectors  Int 
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- Shutter 
- Lamp (OLI only) 
- Solar (OLI only) 
- Lunar 
- Blackbody (TIRS only) 

 
Q 

 
DN 

x Nframes 

Median Filter Width  
 
MFW 

 
Pixels 

Nbands x 
NSCAs CPF Int 

Inoperable detectors 

  Nbands x 
NSCAs x 
Ndetectors CPF  Int 

Detector Noise  

  
DN 

Nbands x 
NSCAs x 
Ndetectors CPF Float 

IN Limit 
  

DN 
Nbands x 
NSCAs CPF Int 

Dropped Frames  

  Nbands x 
NSCAs x 
Ndetectors 
x Nframes LM Int 

7.4.2.3 Outputs 

Descriptions  Symbol Units Level Target Type 

Number of pixels affected 
by IN 

  Nbands x 
NSCAs x 
Ndetectors Db Int 

IN Pixel Locations 

  Nbands x 
NSCAs x 
Ndetectors 
x Nframes Db/LM Int 

IN Pixel value 

  
 
DN 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes Report Int  

IN Neighbor-Pixel values 

DNb, 
DNa 

 
 
DN 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes Report Int  

 

7.4.2.4 Options 

A parameter (switch) in work order should provide a possibility to generate a report file, if desired. 

7.4.2.5 Procedure 

For each band, each detector (d): 
1. Ignore pixels corresponding to inoperable detectors, as well as those flagged in LM as dropped 

frames. 
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2. Append (MFW/2 – 1) samples to the beginning and the end of the image, to enable 
characterization of the pixels at, or close to the beginning and end of the image (pixels for 
which the filter would fall off the edge of the image).  

a. Copy (MFW/2 – 1) samples starting from sample #2 of original image to the added 
samples at the beginning of image.  

b. Copy (MFW/2 – 1) samples ending in the second last sample of original image to the 
added samples at the end of image.  

3. Compute Median-Filter Value (Q’) within the MFW for each pixel (i). The median filter is one-
dimensional, applied in the image pixel column direction. For example, for MFW=5, 

 
Q’d,i = Median(Qd,i-2, Qd,i-1, Qd,i, Qd,i+1, Qd,i+2) 

 
a. To characterize pixels surrounding dropped frames, ignore dropped frames. If, for 

example, sample Qd,i+1 were from a dropped frame, compute the Median-Filter value as.  
 

Q’d,i = Median(Qd,i-2, Qd,i-1, Qd,i, Qd,i+2, Qd,i+3) 
 
4. Calculate the absolute difference between the pixel value (Q) and its Q’ for each pixel (i) 
 

A(i) = | Q(i) - Q’ | 
 
5. Calculate the absolute difference between DN values of the neighboring pixels. 
 

Diff(i) = | Q(i+1) - Q(i-1) | 
 
6. If Diff(i) is: 

a. greater than twice the Detector Noise, then 
 

Threshhold = Diff(i) * IN_Limit(SCA) / (2*Detector_Noise(d)) 
 
b. less than, or equal to twice the Detector Noise, then 
 

Threshold = Detector_Noise(d) * IN_Limit(SCA) 
 

7. Identify an occurrence of IN for each pixel where A(i) > Threshold and store in the database 
the number of pixels affected by IN. If the report file generation is selected as an option in the 
work order, store into the report file the scene type, band number, SCA number, detector 
number, frame number (i), and actual output values of the corrupted pixels and their neighbors. 

8. Remove from image data the samples added in step 2 
9. Update the label mask to include the pixels identified as corrupted by IN. 

 

7.4.3 Saturated Pixel Characterization 

7.4.3.1 Background 

This algorithm flags pixels in data that have saturated digital counts. Two types of saturation can be 
observed in the OLI data: digital and analog. In TIRS data, at least one type (digital) is expected, but 
there might also exist a similarly defined analog saturation level. This algorithm is applicable whether 
one or both types of saturation should exist. 
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Digital saturation occurs when the analog input signal represents a radiance level outside of the 
range that the detector’s Analog/Digital (A/D) converter can properly process. The result is that the 
corresponding digital output is set to 0 DN at the lower end (Digital Low Saturation) and (2N-1) DN at 
the upper end (Digital High Saturation) of dynamic range, where N is the signal quantization in bits.  
 
Analog High Saturation occurs when the input signal exceeds the maximum input radiance to which 
the instrument responds (approximately) linearly or according to any other predefined function. A 
similar situation occurs at low saturation levels, defining the Analog Low Saturation. The analog 
saturation levels are determined either from prelaunch measurements or on-orbit characterization and 
saved in CPF. 
 
The saturated output counts have unknown corresponding radiances and using these data can lead 
to erroneous research results. Therefore, it is essential to flag saturated pixels for appropriate 
handling in subsequent processing. 

7.4.3.2 Inputs     

Descriptions Symbol Units Level Source Type 

All Level 0 data Q DN 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

 Int  

Impulse Noise Locations   

Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

LM Int 

Dropped Frame Locations   

Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

LM Int 

Significant Bit Flag 
(least, ‘L’, or most, ‘M’, 
significant 12 bits) 

  1 metadata Char 

Analog Low Saturation 
Level 

 DN 
Nbands x 
NSCAs x 
Ndetectors 

CPF Int 

Analog High Saturation 
Level  

 DN 
Nbands x 
NSCAs x 
Ndetectors 

CPF Int  

Digital Low Saturation Level  DN 
Nbands x 
NSCAs x 
Ndetectors 

CPF Int 

Digital High Saturation Level   DN 
Nbands x 
NSCAs x 
Ndetectors 

CPF Int  

7.4.3.3 Outputs 

Descriptions  Symbol Units Level Source Type 
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Digital Low Saturation Pixel 
Total 

  
Nbands x 
NSCAs x 
Ndetectors 

Db Int 

Digital High Saturation Pixel 
Total 

  
Nbands x 
NSCAs x 
Ndetectors 

Db Int 

Digital Low Saturation Pixel 
Locations  

  

Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

LM Int 

Digital High Saturation Pixel 
Locations  

  

Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

LM Int 

Analog Low Saturation Pixel  
Total 

  
Nbands x 
NSCAs x 
Ndetectors 

Db Int 

Analog High Saturation 
Pixel Total 

  
Nbands x 
NSCAs x 
Ndetectors 

Db Int 

Analog Low Saturation Pixel 
Locations  

  

Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

LM & 
Report 

Int 

Analog High Saturation 
Pixel Locations  

  

Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

LM & 
Report 

Int 

Analog Low Saturation Pixel 
Values 

 DN 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

Report Int 

Analog High Saturation 
Pixel Values 

 DN 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

Report Int 

7.4.3.4 Options 

A parameter (switch) in work order provides the option to generate a report file. 

7.4.3.5 Procedure 

For each detector, d, including inoperable detectors, for all bands and SCAs: 
1. Ignore pixels flagged in LM as dropped frames or corrupted with impulse noise. Thus, if a pixel 

identified as impulse noise affected has a value equal to saturation value, it will not be 
identified as saturated. 

2. Using analog saturation levels from CPF, find and flag each saturated pixel. Analog saturated 
pixels are those pixels that have DN values below Analog Low Saturation Level, but higher 
than the Digital Low Saturation Level, and pixels that have DN values above Analog High 
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Saturation Level, but lower than the Digital High Saturation Level. Thus, if analog and digital 
saturation levels are set to the same value, no analog saturation will be detected. Use different 
flags for low and high saturation. 

3. Using digital saturation levels, 0 DN for low and (2N-1) DN for high saturation, find and flag all 
digitally saturated pixels. Use different flags for low and high saturation and different from flags 
used to identify analog saturation levels. 

4. Output all flags to corresponding pixel locations in LM file 
5. Record the number of low and high saturated pixels per detector to the database for both 

digital and analog types of saturation. Record pixel values from analog saturated pixels to the 
report file, if the report file is generated. 

7.4.4 Histogram Statistics Characterization 

7.4.4.1 Background 

This algorithm serves as a general purpose algorithm occurring at different locations in the L1R 
processing flow. It supports characterization of all active detectors, including the inoperable ones, by 
computing statistics from single images or collects up to ~4.5 minutes long: minimum, maximum, 
mean, standard deviation, skewness, and kurtosis. In addition, the algorithm calculates for each 
detector the mean of squared pixel values and the adjacent detector correlations. To calculate these 
values, the input scene data need to be nominally spatially aligned. All results are stored in the 
database and used in other algorithms. For the OLI panchromatic band, all statistics are calculated 
and saved separately for odd and even frames. Processing of longer collects is described in Long 
Collect Statistics Characterization ADD. 
 

7.4.4.2 Inputs 

Descriptions Symbol Units Level Source Type 

Scene data at any 
processing level, including 
blind detectors and video 
reference pixels (VRP) 

 
 

Q 

 Nbands x 
NSCAs x 
Ndetectors 
x Nframes  

Int or 
Float 

Impulse Noise Locations 

  Nbands x 
NSCAs x 
Ndetectors 
x Nframes LM Int 

Dropped Frame Locations 

  Nbands x 
NSCAs x 
Ndetectors 
x Nframes LM Int 

Saturated Pixel Locations 

  Nbands x 
NSCAs x 
Ndetectors 
x Nframes LM Int 

Detector offsets 

  
 

Pixels 

Nbands x 
NSCAs x 
Ndetectors CPF Int 

Number of frames skipped 
at the top  

  
Pixels 1 CPF Int 
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Number of frames left out 
at the bottom 

  
Pixels 1 CPF Int 

 
 

7.4.4.3 Outputs 

Descriptions  Symbol Units Level Target Type 

Minimum 

 
Qmin 

 
DN 

Nbands x 
NSCAs x 
Ndetectors Db Float 

Maximum 

 
Qmax 

 
DN 

Nbands x 
NSCAs x 
Ndetectors Db Float 

Mean 

 

Q  

 
DN 

Nbands x 
NSCAs x 
Ndetectors Db Float 

Standard deviation 

 
σ 

 
DN 

Nbands x 
NSCAs x 
Ndetectors Db Float 

Skewness 

 
γ1 

 Nbands x 
NSCAs x 
Ndetectors Db Float 

Kurtosis 

 
γ2 

 Nbands x 
NSCAs x 
Ndetectors Db Float 

Number of valid frames 

 
Nvalid_pixels 

 
Pixels 

Nbands x 
NSCAs x 
Ndetectors Db Int 

Mean squared response 

____
2Q  

 
DN2 

Nbands x 
NSCAs x 
Ndetectors Db Float 

Adjacent detector 
correlation 

 
ρ 

 Nbands x 
NSCAs x 
Ndetectors Db Float 

Position in processing flow 
(RPS level) 

  

1 Db String 

Linearization LUT version   1 Db String 

 
Note: For the OLI panchromatic band, all output values need to be generated and saved separately 
for odd and even minor frames. 

7.4.4.4 Options 

Typically these data will be stored in the characterization database. For stand-alone processing, all 
these data may be output to a summary report with a header containing start date and time of 
acquisition, end date and time of acquisition, processing date and time, calculated frame rate, 
filename and entity ID. A report generation should be selectable in work order. 
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7.4.4.5 Procedure 

For each active detector, d, including inoperable detectors, blind detectors and VRPs, for all bands 
and SCAs, except for the OLI panchromatic band: 
 

1. Obtain number of valid pixels, Nvalid_pixels (d), in image or collect. Pixels identified in the label 
mask as saturated, impulse noise affected, or parts of dropped frames, as well as filled pixels 
used to generate detector offsets and pixels corresponding to the Number of frames to be 
skipped at the top and bottom of the image, are considered invalid and need to be taken out of 
calculations. The symbol l is used to denote the list of valid pixels. 

 
2. Find the minimum of valid pixel values, l: 
 

  dlQdQ ,min)(min   

 
3. Find the maximum of the valid pixel values, l: 
 

  dlQdQ ,max)(max   

 
4. Calculate mean as: 
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dlQ
dN

dQ
_

1_

),(
)(

1
)(  

 
5. Calculate standard deviation as: 

 





pixelsvalidN

lpixelsvalid

dQdlQ
dN

d
_

1

2

_

))(),((
)(

1
)(  

 
6. Calculate skewness as: 

 

3

_

1

3

1
)()(

))(),((

)(

_

ddN

dQdlQ

d
pixelsvalid

N

l

pixelsvalid












 

 
If σ(d) = 0, set γ1 = 0. 

 
7. Calculate kurtosis as: 

 

3
)()(

))(),((

)(
4

_

1

4

2

_










ddN

dQdlQ

d
pixelsvalid

N

l

pixelsvalid


  

 
If σ(d) = 0, set γ2 = 99999. 
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8. Calculate correlation between each detector (image column) and the neighbor on its right side 
using only pixel pairs where adjacent pixels from both detectors are valid. This step needs to 
be performed for all detectors except the last one on each SCA.  

 




 
bothvalidN

lbothvalid

dd dlQdlQ
N

d
_

1_

1, )1,(),(
1

)(  

 
where Nvalid_both is the number of valid adjacent pixel pairs. A pixel pair is valid if both adjacent 
pixels in spatially aligned image, generated by two neighboring detectors, are valid. 
 

9. Calculate mean squared response: 
 





bothvalidN

lbothvalid

dlQ
N

dQ
_

1

2

_

____
2 ),(

1
)(  

 
10. Save results to the database and report file (if that option selected in work order) 

 
For each active detector, d, in the OLI panchromatic band: 
 
 Repeat the steps 1 to 10, but separately for odd and even frames. 
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7.4.5 Coherent Noise Characterization 

7.4.5.1 Background/Introduction 

Coherent noise (CN) is typically picked up somewhere in the analog data stream from the detectors 
to the A/D convertors.  Such noise generates a temporally correlated structure, therefore it is most 
easily detected in uniform images. Both TIRS and OLI have a coherent noise requirement. Trending 
of coherent noise parameters from this algorithm will help in monitoring system health and document 
lifetime changes of the LDCM payloads.  The heritage coherent noise characterization algorithm was 
successfully implemented in the ALIAS system.   
 
The algorithm extracts the CN components (as defined in the system level requirements) and stores 
the coherent noise parameters in the trending database.  Once sufficient data have been processed 
using this algorithm and the results stored in the database, additional analysis operations will be used 
to generate lists of detectors that have CN components that are near or exceed system requirements 

(OLI-985 and TIRS-532). 
 
Compliance with the CN requirement will be assessed using low dynamic range scenes, for example: 
OLI shutter, OLI night Earth/ocean , OLI solar diffuser, TIRS deep space, or TIRS on-board BB. Any 
acquisition can be used for the OLI and TIRS blind bands .    
 
The prototype code submitted with this ADD implements the simplest case of 2 scene types:  OLI-
Dark shutter data and TIRS-Cold Space.  
  
Input Data Prerequisites: 
To ensure a low noise floor and low uncertainty a minimum of 6400  lines for OLI and 4200  lines for 
TIRS are required.  An analyst should be able to run this algorithm on any length of data as long as 
the output is not stored into the operational trending database. 
  
The algorithm also allows averaging Power Spectral Densities (PSD) from up to 10 different data 
collects (consistent with the system requirements) of the same size (10 per payload may mean up to 
20 files total).  The number of input files used needs to match the algorithm “Multi_Scene_Counter” 
input parameter.  By default this parameter will be “1” , which pre-launch analysis shows is adequate 
and could be as high as 10 (this limitation to the input parameter valid range will occur only when the 
trending option is selected).   
 
Note: if trending is turned off, any number above 1 is valid for the  “Multi_Scene_counter”, i.e., the 
limit of 1-10 only applies to operational trended data analysis and processing. 
 
The CN processing and analysis will be done for each FPM for OLI and for the entire FPA (all bands 
all SCAs) for TIRS. 
 
CN parameters extracted for trending (for major CN components): 
      (typically only for failing or near failing detectors):  

Relative Amplitude (%),  
Frequency (cycles/pixel),  
Modulation (DN) 
Uncertainty statistics. 

 
Overview characteristics for trending: 
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Master frequency list histogram information – all detectors all bands (all FPMs) 
 
Pass/Fail/uncertain mode determination (implemented internally in code or by post processing DB 
query): 
 
Review plots: 
For OLI -one per Band per FPM of Relative Amplitude vs. Frequency overlaid with the requirement 
thresholds that have been adjusted by noise floor baseline.  
For TIRS –One for the worst detectors in the entire FPA for both bands of Relative Amplitude vs. 
Frequency  overlaid with the requirement thresholds that have been adjusted by noise floor baseline.  
 
 
 
 
Dependencies 
 
The input data used are dependent on the trending flag setting.  For operational trending the input 
data should be processed by IAS RPS up to but not including gain application, while for non-trended 
data the analysis code could also be run on L0ra input data (when the mean data level will be 
subtracted as part of the analysis). 
 Depending on the payload data source, the operational trending processing could 
 include only bias removal, or both non-linearity correction and bias removal. If multiple scenes are 
used they should all be for the same object and the same sensor. 
 
 
 

7.4.5.2 Inputs 

Descriptions Symbol Units Level Source 

Payload image data 
(partially processed)  

 
Float 
[DN] 

Multi_Scene_Counter 
x[NBxNSxNDxNL] 

In-line 

processing 

outputs 

Number of input 
scenes 

Multi_Scene_Counter 
Integer 
[Unitless] 
 

 

ADD 

running 

parameter 

GUI 

Input scenes ID or 
WO ID reference 
table 
 

Ref_files 
String 
array 

[Multi_Scene_Counter 
x 2] 

Excel input 
file 

Sensor (i.e OLI or 
TIRS) 

Stype Char 
[Multi_Scene_Counter 
x 2] 

?(from data 
file name 
/input data 
header 
info) 

Scene object  Sobj Integer 
[Multi_Scene_Counter 
x 2] 

Flag 
indicating 
scene 

  

QB,S,D,L
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object (i.e. 
Dark 
shutter, 
deep space 

Impulse Noise Pixels 
Locations 

LM1 Integer 
Multi_Scene_Counter 
x NBxNSxND xL 

LM 

Saturated Pixel 
Mask6  

LM2 Integer 
Multi_Scene_Counter 
x NBxNSxND  

LM 

Dropped Frames 
Mask  

LM3 Integer 
Multi_Scene_Counter  
x NBxNSxND xL  

LM 

Inoperable Detector 
List  

Dinop Float NBxNS CPF 

SNR scaling factors SNR_scale Float Nb 

Default is 1 
For all 
bands 
Analyst 
input (from 
SER Doc 
Reference) 

Analysis Length7 Ana_leng Integer [2] 

Defaults is 
[6400,4200]  
post OIV 
Analyst can 
select any 
other length 
manually 

Trending Flag TF Boolean On/off 
Analyst 
input 

Max number of 
stored CN candidate 

components 
Freq_bins Integer [2] 

Default is 
[610,400] , 
if Trending 
Flag OFF 
could be 
set by 
analyst. 

 
 
 

7.4.5.3 Outputs 

Descriptions Symbol Units Level Target 

                                            
6
 This mask should include any of the detector samples that were reported by the Saturation characterization processing, 

i.e. high and low saturations. 
7 When trending flag option is ON if the desired analysis length is not met algorithm will not run and 
report the user about input data length error.  By default the scene will be clipped to the number of 
lines defined by this parameter. 
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CN Relative Amplitude Amp% 
Float  
[%] 

NB x NS x N D x 
Freq_bins 

DB  

CN component 
Frequency  

Freq 
Float 
[cycles/pixel] 

NB x NS x N D x 
Freq_bins 

DB  

CN state flag 
uncertain 
/Fail 

Fail – 
uncertain  

NB x NS x N D DB 

Noise floor NF 
Float [DN^2/ 
cycle/pixels] 

NB x NS x N D DB 

Scene Type ( OLI or 
TIRS) 

Stype Char 2 DB  

Analysis length (if trend 
option is not selected) 

Ana_len Integer 
Scene Type  (OLI or 
TIRS) 

DB 

SNR scaling (if option 
was selected) 

Scale_snr Float  [] NB x NS DB  

Scene object Sobj Integer 2 DB 

Reference file WO or 
IDs 

Ref_files String array Multi_Scene_Counter DB 

CN component DN 
modulation and related 
statistics 

CN_amp_dn Float [dn] 

Possible to store only 
Top level CN 
components rather 
than the whole FPA 
data Max size will be 
NB x NS x N D 

DB 

Master Freq list 1 per 
detector per band (For 
OLI) 

Freq_list1 Float [N D x NB x freq_bins] DB 

Master Freq list 2 per 
detector per FPA (for 
TIRS) 

Freq_list2 Float [freq_bins] DB 

Processing Step Pstep Integer [2] DB 

 
Note: the effective number of “Freq_bin” is determined by the analysis and it can be different for 
different detectors within a band, or for different bands the reminder array will be filled with null 
values.  The variable Freq_bin is maximum number of CN components that need to be evaluated 
against the requirements. For TIRS data this value is limited to 400 for OLI it is limited to 610. The 
theoretical maximum is half of the Analysis Length. Typically, up to 30 unique frequencies bins will 
result. 
 
Other outputs that could be stored in analysis archive or be included in a report are: 
Plots of CN Vs Freq  per band per FPM/SCA (for imaging detectors) 
Lists of Frequencies and Amp % of top CNs per band FPM/SCA or entire FPA 
CN state flags (highlighting detectors that are in Fail or uncertain requirement) 

7.4.5.4 Options 

Trending On/Off Switch: If trending is Off, output parameters are written to a dump text file, and 
length of data pre-requisite is not checked, also the maximum number of input file will be unlimited 
and input source is not required to run through IAS processing hence no LM inputs are required. If 
Trending flag is ON output data is to be trended in official operational IAS DB, data will be clipped to 
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the default analysis length, input data should have the accompanying LM and it should be pre-
processed by the IAS RPS to the required level. 
SNR Scaling: Use SNR scaling on/off  (default is off i.e. scaling =1) when SNR scaling is On scaling 
parameters will be provided by the analyst as additional input parameter variable (one scale value per 
band  - as the smallest ratio between all FPM SNRs in that band and requirement SNR – this ratio will 
be calculated from known SNR analysis data in a separate manual analysis)  

7.4.5.5 Procedure 

1) Determine options selected for SNR scaling and trending 

Per Payload data type repeat the sequence from 2-7 

CN analysis preparation steps (2-4) 

2) Get list of input files process them as required (through IAS RPS without gain application if 
trending is selected).  If the trending flag option selected is “no-trending” input files could be also the 
raw-L0ra data and not include LM inputs.  

3) Get input parameters as indicated in the table above – depending on trending flag option and SNR 
scaling option the input parameters list maybe different  

Note that if multiple files are used as input the trending analysis could only be limited for detectors 
that are not included in any of the aggregated (“OR” logic operation) Label Mask lists.    

4) If trending to operational DB is selected check that the requirement of minimum data lines are met 
based on input data type. Cut the data size to the pre-selected default analysis length.  If the 
minimum requirements are not met signal an error to the reviewing analyst. (if no trending selected 
analysis length is equal to shortest data length of the input files)   

Core CN processing steps 

5) For each FPM in OLI or SCA in TIRS: 
5.1  For each Band/Detector: 

5.1.1 Ignore detectors that are inoperable (based on CPF) or are included in the aggregated multi-scene 

outlier list i.e. have any saturated samples, impulse noise or dropped frames as given in the LM if 

all scenes under consideration.  

 5.1.2   Generate a  Power Spectral Density (PSD) for each detector from each data  
            file. 

5.1.3    Average the results of all PSDs for each detector  and filter the average- 
PSD  

 5.1.4   Extract the noise-floor baseline from the average-PSD.  
   Current implement approach uses a 3 step semi-iterative filtering operation 
First the processing constructs a filter kernel using 2 parameters of the filter cut-off and 
the filter cut-off slope. In the current algorithm this is done by a custom filter in the 
mathematical form shown here: 
     

(Eq 1)  
 
 
Where the parameters used are A= 0.0195312 (slightly over 1/25 of Nyqiust) 
And B=10 
 

   

Filter(t) =
1.0

1+ (
tri _ func

data_ len× A
)B
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Next the 3 step filtering occur as follows by the diagram in Figure 1 and the following 
description 
Step 1- use the constructed filter kernel to low pass filter the PSD 
Step 2- smooth the result further with boxcar filtering a.k.a. convolving with Rect function 
with a width C where C=data_length/60 
Step3 – compute noise floor by passing the results once more through the constructed 
filter kernel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Noise floor 
extraction from PSD 

 
5.1.5 Determine  candidate frequency bins for CN evaluation. Based on statistical deviation of the 

average PSD from the noise floor. 

This is done in current code as follows: 

Compute the refined standard deviation and mean od the ratio of the noise_floor corrected PSD 

to the noise_floor. 

The ratio is defined here as Ratio1 

 

Eq (2) 

 

The refined statistic Mean2 and StDev2 are computed after the data the cropped to the range of 

+/-5 sigma from the mean of the initial standard deviation and mean. 

Then the refined statistics on the Ratio1 is used along with the noise floor to construct a 

threshold level to the PSD for detection of PSD spikes that are candidate CN components. 

This ratio is defined here: 

 

Eq (3)  

 

All PSD frequencies where Ratio1 is above Threshold0 are considered candidate CN 

components. 

 

 5.1.6   Calculate the uncertainty (1 sigma) in PSD in both  

   

Ratio1s,b,d =
Absolute_value(PSD - noise_ floor)

noise_ floor

  

Threshold0s,b,d = (mean2 +5× StDev2)× Noise_ floor

Precision  

LOS  

Model 

  

TIRS  

Alignment  

Report 

  

R
ea
d 
C
P
F 

  
CPF 
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DN^2/Hz units and %/Hz units. 
In current code this is computed as described by the two equations. 

 
Eq (4) 
Eq (5) 
 

 5.1.7    If trending flag selected the operational trending, confirm that the analysis  
uncertainty is good enough, based on the analysis uncertainty for the PSD at the 
Nyquist frequency. The criteria is set to be 0.842*Sigma4 (at Nyquist)< 0.5%.  If this is 
not met, then more data collects averaging are needed. Halt processing for analyst 
review. 

 5.1.8   Test the candidate frequency bins  for compliance with CN  
requirement.  This requires a conversion of the average PSD to %Amp. 

         Compute and Store %Amp and frequencies output. 
This is done be defining a threshold1 level 

   Eq (6) 
This threshold defined the confidence level of 80%   
For testing the requirement the CN components are tested against the 
requirement+Threshold1 
Where CN > requiremt+threshold1  : fail 
 CN < requiremt-threshold1  : pass 
   CN between those two conditions then it is in the uncertain-state category – only trending 
may determine if it is pass or failed condition. 
 
 

     5.2   Store summary frequency histograms for all candidate CN components (even  
  if they pass the requirement) 
     5.3   Store the reminder of output parameters 

Evaluation and Analysis steps 
6)   Generate plot of CN per Band per FPM/SCA or per FPA 
7)   Generate Band or FPA level summary report. 

 
The flow of the processing is illustrated in the following diagram: 

  

Threshold1s,b,d = 0.842× Sigma4s,b,d

   

Sigma3s,b,d = StDev2× Noise_ floor

Sigma4 s,b,d = 2× Sigma3
s,b,d

/(3× Scene _ stdevb )/Spec_SNR_ratio× 100[%]
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Figure 2. CN Toolkit processing flow. 
          (ADD steps are indicated on the diagram by the red numbers.) 
 

7.4.5.6 Maturity 

Level 1 (reuse and update).   No major changes anticipated to ADD however various revision to 
code could be implemented for enhancements and accommodation of new input data objects, or 
extraction of more characterization parameters for the non-trending debug and algorithm 
maintenance mode.  

Process Tie Point  
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Compute 
Corrections 
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g1(t)-> G(f) 
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S

Loop 1 time 
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 round? 

No 

Yes 
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Stop 
processing 
and Flag 
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Outputs 
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Thresholds 
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thresholds  

Ingest processing  
DB 
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TIRS: Cold Space 
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** Median filter  
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Butterworth filter 

Confirm PSD uncertainty level @ Nyquist 
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7.4.6 Temperature Sensitivity Characterization 

7.4.6.1 Background 

Focal plane temperature variations affecting gain and offsets, were considered for correction during  Landsat 

and EO-1 ALI processing. A similar correction for gain and bias will be available for both OLI, and TIRS 

during LPGS data processing.  

 

The acquisitions using the on-board cal sources, and their associated focal plane thermistor data, are used to 

determine and characterize the temperature sensitivity coefficients (CT) used in correction.  For OLI, the 

(primary) diffuser  and (primary) stim lamp collects, and average of 2 focal plane thermistor readings will be 

used.  For TIRS, the OBC collects and the average of 4 focal plane thermistor readings will be used. The 

regression slopes of response to temp will provide the coefficients.  

 

Note, while the Focal Plane temperatures are identified, it’s conceivable that Focal Plane Electronics temps 

could also be used.  

 

Note, while all thermistors are assumed to operate nominally at launch, post-launch, these thermistor will be 

continuously characterized i.e. temperatures will be trended and evaluated per interval and over the mission life 

(“globally”)  Should this characterization reveal outliers and/or any thermistors falling “out of family”, that 

thermistor will be evaluated for exclusion. It’s assumed the associated thermistor readings have been converted 

to degs C and any time offset in the temperature telemetry has been corrected prior to extraction into this tool.  

 

7.4.6.2 Input 

Descriptions   Symbol Units Level Source 
Typ
e 

Focal Plane 
Temperatures 
(OLI) 

FPM_7_TEMP_CELSIUS  
(FPM 7 Temp)= T1 
FPM_14_TEMP_CELSIU
S (FPM 14 Interface 
Temp) = T2 

C  Db 
Floa
t 

Focal Plane 
Temperatures 
(TIRS) 

FP_F2_FINE_SENSOR_1_

CELSIUS =T1 

FP_F4_FINE_SENSOR_3_

CELSIUS =T2 

FP_F6_FINE_SENSOR_1_

CELSIUS =T3 

FP_F7_FINE_SENSOR_2_

CELSIUS =T4 

C  Db  
Floa
t 
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OLI Diffuser or 
Lamp (PRIMARY)  
Gains 
 

GOLI-S   or  GOLI-L  

DN/ 

W/m^2-

mu-sr 
Nband x Ndet Db 

Floa
t 

TIRS OBC Gains GTIRS 

DN/ 

W/m^2-

mu-sr 

 
Nband x Ndet Db 

Floa
t 

Start Time, and 
Stop Times   

Ts, Tf Secs 
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7.4.6.3 Output  

Descriptions   Symbol Units Level Source 
Typ
e 

OLI Temp  
(Means and 
Stdevs) 

<Tn>,  
σTn-  where n=1,2 

 

C   
Floa
t 

OLI Mean Temp <T>  C   
Floa
t 

OLI Temp 
Sensitivity Coeff 
and uncertainty 

 
CT-H   

ΔCT-H   

  

 

 

DN/C NBandxNSCAxNDet 

 

 

CPF 
 
 

Floa
t 

TIRS Temp  
(Means and 
Stdevs)  

<Tn> 
σTn-Stdev where n=1,2,3,4 

 

C   
Floa
t  

TIRS Mean Temp <T> C   
Floa
t 

TIRS Temp 
Sensitivity Coeff 
and uncertainty 

 
CT-O   

ΔCT-O   

 

 

 

DN/C 

 

NBandxNSCAxNDet 

 

 

CPF 
 
 

Floa
t 

 

7.4.6.4 Options 

OLI:  Lamp or Diffuser Data Input; Time Range of Data,  
TIRS: OBC temp; Time Range of Data 

7.4.6.5 Procedure 

Preparation:  In advance of running this algorithm the variation in the various focal plane related 
temperatures should be trended.  If variation is observed, then similar variations in these 
temperatures should be looked for in calibration acquisitions (lamp and solar for OLI and OBC at a 
fixed BB temp for TIRS).  If variation is observed in the calibration acquisitions, the appropriate 
temperatures and instrument responses should be extracted from the IAS database.   
 
For each calibration interval selected 
 
            For each thermistor (Tn) 
                       
             1) Generate temperature avg’s (<Tn>) and stdev’s, (σTn) 
 

2) Reject any “outlier” thermistor and set thermistor flags to 0 in CPF.  
 
           End ; thermistor loop  
           
          3) Average across all valid thermistors for the interval (<T>) 
 
End ; cal interval  
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4) For a selected instrument calibration type, over a give range of start (Ts) and stop times (Tf) ,  
extract and regress the instrument gains (GOLI-S/L or GTIRS) to the avg focal plane temperature  (<T>)  
 
5) Calculate  the temperature sensitivity coefficient CT (where CT is inverse of correction factor per 
Jackson and Robinson, (1985),) by ratioing the slope of  the regression to the intercept, when the 
regression is significant. A value of  ‘0’ translates to no temperature correction.  
 

7.4.7 Temperature Sensitivity Correction 

7.4.7.1 Background 

Focal plane temperature variations affecting gain and offsets, were considered for correction during  
Landsat and EO-1 ALI processing. A similar correction for gain and bias will be available for both OLI, 
and TIRS during LPGS data processing.  There are 2 thermistors on the OLI focal plane. The TIRS 
focal plane has 8 thermistors, only 4 of which will be provided as part of the ancillary data.    
 
This algorithm uses an average of each set of focal plane temperatures to derive the temperature 
correction.  This is a linear correction and is done on a per-detector basis. These thermistors are 
available in the ancillary data and are updated every 1 second for OLI. (This is anticipated to be the 
same for TIRS) .  This algorithm assumes that these thermistors readouts have been converted to K 
and any time offset in the temperature telemetry has been corrected prior to usage in this algorithm. 

 

7.4.7.2 Input 

Descriptions   Symbol Units Level Source 
Typ
e 

Temp Sensitivity 
Coefficient  CT - NBandxNSCAxNDet CPF 

Floa
t 

Scene Focal 
Plane 
Temperatures 
(OLI) 

FPM_7_TEMP_CELSIUS  
(FPM 7 Temp)= T1 
FPM_14_TEMP_CELSIUS 
(FPM 14 Interface Temp) = 
T2 

C Per Interval                     Ancillary 
Floa
t 

Scene Focal 
Plane 
Temperatures 
(TIRS) 

FP_F2_FINE_SENSOR_1_C

ELSIUS (SCA-A Edge 

Sensor)=T1 

FP_F4_FINE_SENSOR_3_C

ELSIUS (SCA-B Edge 

Sensor)=T2 

FP_F6_FINE_SENSOR_1_C

ELSIUS (Center FPA Sensor)  

=T3 

FP_F7_FINE_SENSOR_2_C

ELSIUS (Center FPA Edge 

Sensor) =T4 

 
C 

Per Interval Ancillary 
Floa
t 

Reference 
Temperature   

 
TRef 

 

K Per Instrument  CPF  
Floa
t 

Thermistor_Flag  

 
 
TFlag_ - 

Per Instrument 

Thermistor i.e.  

2 OLI, 4 TIRS CPF  Int 
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7.4.7.3 Output  

Descriptions  Symbol Units Level Target 
Typ
e  

Correction Factor  CFT - NBand xNSCAxNDet 

Gain 
Applicatio
n 

 
Floa
t 

 

7.4.7.4 Options 

The invocation of this algorithm and the application of CFT , can be performed at any stage prior 
applying gain  during LPGS processing.  
By default, this correction will be OFF during LPGS processing as specified via work order parameter.    

7.4.7.5 Procedure 

 
1) For each set of instrument thermistors #1 to  #n, extract “scene-equivalent” temperatures based 
upon n-thermistor sample times and scene-start/stop times, where  n=2 for OLI and n=4 for TIRS  

 

 T1 = T1  where  ((t1 GE tsi) and  (t1 LE  tsf) )  
…  
 Tn = Tn  where ((tn GE tsi) and  (tn LE  tsf) )     
 
Where  tSi = Scene Time initial  
    tSf = Scene Time final    
    t1  = Thermistor-#1 times   
    tn  = Thermistor-#n times   
 

2) Average each Focal Plane temperatures (from Step 1) and  derive single average Focal Plane 
temperature (TFP) i.e. 

 

 T1 AVG =  Sum of all T1 / Total # of T1  

… 

 Tn AVG =  Sum of all Tn / Total # of Tn  

 
3) Multiply each single avg Focal Plane temp by its corresponding Thermistor Flag 

value i.e.  
 
 
T1AVG =T1AVG  x T1Flag  
… 
TnAVG =TnAVG  x TnFlag      
 
Where 
 
T1Flag = 1 (default) 
… 
TnFlag = 1 (default) 
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Note, the value of each Thermistor flag is “good” (=1). Should a thermistor become “bad ”, its 
corresponding Thermistor flag will be set = 0.  
 

4) Average all “good” thermistor avg values from Step 3) i.e.  
 
TFP = (T1AVG + … + TnAVG)/n       

 
 

5) For each Band, SCA and detector, using the equation in Step 4) and other input parameters, to 
derive and output the Correction Factor (CFT ) i.e.   

 
CFT = [ (1 + CT*TFP)/(1 +CT*TRef)]      

 
 Where     CT= Temperature sensitivity coefficient   
    (This is the inverse coef used by Jackson etal, 1985) 
   TFP  =  Focal Plane temperature (K) 
   TRef  =  Reference temperature (K)  
 
Suggested implementation during PGS processing 

1) Run algorithm prior to “Apply Gain” algorithm 
2) Input TCorr to “Apply Gain” algorithm and multiply by the applied gain.  

 

7.4.8 Gain Application 

7.4.8.1 Background 

Generation of Level 1r products result in an estimated in-band radiance product in W/m2-sr-m.  This 
conversion occurs in 3 steps/algorithms; bias subtraction, non-linearity correction and gain (Absolute 
and Relative) application.  Processing options allow the generation of intermediate calibrated 
products – e.g. with bias correction only, or non-linearity correction only, etc. 
  
The Gain Application algorithm addresses the final step in generating the L1r radiance product.  The 
type of gain application can be selected by parameters within the processing work order.  Absolute 
gain application applies the same gain to all detectors within a band and SCA.  Relative gain 
application involves absolute gain application, but then an additional gain is applied to each detector, 
to correct for slight differences between individual detector gains. 
 
The last step in gain application allows for the optional processing of gain temperature sensitivity 
corrections.  The Temp Sensitivity Correction Algorithm description describes the calculation of the 
sensitivity correction parameters. 

7.4.8.2 Input 

 

Description Symbol Units Level Source Type 

Scene (bias corrected, 
linearized) 

Q DN Nbands x 
NSCAs x 
Ndetectors 

Response 
Linearization Float 
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x Nframes 

Absolute Gain 

Gabs DN m2 
sr 

m/W 
Nbands x 
NSCAs CPF Float 

Relative Gain 

Grel Unitless Nbands x 
NSCAs x 
Ndetectors CPF Float 

Temperature Sensitivity 
Coefficients 

CFT Unitless Nbands x 
NSCAs x 
Ndetectors 

Temperature 
Sensitivity 
Correction Float 

 
Output 
 

Description Symbol Units Level Target Type 

  Scene (bias corrected, 
linearized, gain applied) 

L W/(m2 

sr m) 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes  Float 

 

7.4.8.3 Options 

 Apply absolute gain (default on) 

 Apply relative gain (default on) 

 Apply temperature sensitivity correction (default off) 
 

7.4.8.4 Procedure 

The first step in gain application is the decision of which method to use.  Work order parameters 
should allow the operator to choose absolute gain application, relative gain application (which 
includes absolute gain application), or no gain application at all.  Once those parameters are parsed, 
the respective gain parameters should be obtained from the CPF. 
 
The absolute gain flag controls whether any gain is applied to the data.  If the absolute gain flag is not 
set, no gain application is performed, although temperature sensitivity correction may still occur.  This 
allows temperature sensitivity correction to be performed by itself, for testing. 
 
If the absolute gain flag is set, the output value (L) is the linearized DN value (Q) for the band divided 
by the absolute gain parameter value (Gabs). 
 
 L(d) = Q(d) / Gabs 
 

where  L(d) =  Output radiance value for detector 'd'. 

 Q(d) = Input DN value (linearized and bias corrected) for detector 'd'. 

 Gabs  = The band absolute gain. 

 
If relative gain application is also desired, the absolute gain value (Gabs) is  multiplied by the detector-
dependent relative gain parameter value (Grel) prior to dividing into the linearized DN value (Q). 
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 L(d) = Q(d) / [Gabs * Grel(d)] 
 

where  Grel(d) =  Relative gain parameter for detector 'd' of this band. 

 
If the temperature sensitivity correction flag is set, temperature sensitivity correction is then 
performed.  The form of this function is hardware-dependent, and may change when the 
characteristics of the instrument become known.  The expected form of the temperature sensitivity 
correction is: 
 
 L*(d) = L(d) * CFT(d) 
 

where  L*(d) =  Output temperature-corrected radiance value for detector 'd'. 

 CFT(d) = Temperature sensitivity correction coefficient for detector 'd'. 

 
The temperature sensitivity coefficients are obtained from the temperature sensitivity characterization 
function, which is described in the Temperature Sensitivity Correction ADD.  Note that the output of 
that characterization function does not currently use the housekeeping temperatures, but the final 
version is expected to require them. 
 

7.4.9 L1R SCA Stitching 

7.4.9.1 Background 

During product generation the OLI and TIRS data are radiometrically processed on an SCA by SCA 
basis, but stitching of data from all SCAs to the instrument’s full-field-of-view product for each band 
does not occur until Geometric Processing. Certain radiometric assessments at various stages in the 
processing flow, e.g. Non-uniformity Characterization, need to be performed on the entire band 
images. 
 
This algorithm uses the SCA offsets to nominally spatially align all SCAs within each band and 
stitches the SCAs together to generate L1R single band images. The generated single band images 
can then be combined to form nominally aligned multispectral images. The algorithm assumes that 
the input data within each SCA are nominally spatially aligned, i.e. the odd/even detector offsets and 
the offsets for the selected non-primary detectors have been applied. Further, it is assumed that 
information about the number of imaging detectors per SCA (SCA width, in pixels) and the SCA 
length, in pixels, are available (Fig. 1). 
 
The stitching can be accomplished by handling the SCA overlap regions in several ways: 

- Method 1 – No Overlap; stitching without overlapping the SCAs (Fig. 1) 
- Method 2 – Left Overlap; SCA1 is complete and all other SCAs miss the overlap region on 

their left side in the image (Fig. 2) 
- Method 3 – Right Overlap; the last SCA is complete and all other SCAs miss the overlap 

region on their right side in the image (Fig. 3) 
- Method 4 – Half-Half, SCA1 misses half of the overlap region on its right side, the last SCA 

misses half of the overlap region on its left side, and all other SCAs miss half of the overlap 
region on their both sides.  While the geometric processing averages the overlap region, this 
method is the closest match. 
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7.4.9.2 Inputs     

Descriptions 
Symb
ol Units Level Source Type 

Scene L1R data, 
except the blind band 

 
L1Rp msrm

W

2

 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes  Float 

SCA overlap width 

SCA_
Overla
p_Widt
h Pixels Nbands CPF Int 

Stitching method 

 
Metho
d  1 

Work 
Order 

Int or 
Strin
g 

Detector offsets Odet Pixels 

Nbands x 
NSCAs x 
Ndetectors CPF Float 

Along Track Legendre 
Polynomial Coefficients   

Nbands x 
NSCAs x 
4 CPF Float 

Inclination Angle  Degrees 1 CPF Float 

Nominal Orbit Radius ro km 1 CPF Float 

Orbital Period To s 1 CPF Float 

Semi Major Axis req m 1 CPF Float 

Semi Minor Axis rp m 1 CPF Float 

Eccentricity E  1 CPF Float 

Earth Angular Velocity Vg Radians/s 1 CPF Float 

Nominal Frame Time ts ms Nsensors CPF Float 

Scene Center Latitude  Degrees 1 
Scene 
Metadata Float 

Nominal Scene 
Elevation* d km 1 DEM Float 

SCA Offsets OSCA Pixels 
Nbands x 
NSCAs CPF Int 

*The nominal scene elevation can be the average of the minimum and maximum elevation of the scene. 
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7.4.9.3 Outputs 

Descriptions  
Symb
ol Units Level Target Type 

Nominally aligned L1R 
band image (L1Rp) 

 
L1R msrm

W

2

 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes  Float 

Stitching method   1 metadata 

Int or 
Strin
g 

7.4.9.4 Options 

The stitching method and list of bands to be stitched are selected through the work order.  
Additionally, the option to use just the SCA offsets from the CPF (OSCA), without doing the extra 
calculations, enables non-Earth scenes to be aligned manually. 

7.4.9.5 Procedure 

6. For Earth scenes, calculate the SCA_Offset according to the algorithm described in the 
appendix.  For non-Earth scenes, the OSCA straight from the CPF is used. 

7. Calculate the stitched product length as: 
 

L1Rp_Length = SCA_Length + max(SCA_Offset) 
 
The SCA length represents the worst case scenario; it is the length of an SCA after the 
maximum possible detector offsets are applied (SCA_Length = Nframes + max(round(Odet))). 
  

8. For the sensor specific number of SCAs per band, NSCA, calculate width of the stitched 
product: 

a. If the Stitching method is “No Overlap” 
 

L1Rp_Width = NSCA x SCA_Width 
 
b. otherwise 
 

L1Rp_Width = NSCA x SCA_Width – (NSCA-1) x SCA_Overlap_Width 
 
Note that this equation assumes that all SCA overlaps have the same width. If that 
assumption proves inadequate, each SCA to SCA overlap width will need to be 
accounted for individually. 

 
9. For each band: 
 

a. Allocate an array, L1Rp, of size L1Rp_Length x L1Rp_Width and fill it with zeros. 
 

b. Load all SCAs 
 
c. If the Stitching method is “No Overlap” (see Fig. 1) 

i. For n = 1 to NSCA,  
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1. Copy the SCA(n) data to the sub-array of the L1Rp array defined in the 1-
based coordinate system as: 

 

 x (Column) y (Row) 

Upper Left 
Corner 

(n-1) x SCA_Width + 1 SCA_Offset(n)* 
+1 

Lower 
Right 
Corner 

n x SCA_Width SCA_Offset(n)*  
+ SCA_Length 

 
 

d. If the Stitching method is “Left Overlap” (see Fig. 2) 
i. For n = NSCA to 1 with step of -1, 

1. Copy the SCA(n) data into the sub-array of the L1Rp array defined in the 
1-based coordinate system as: 

 

 x (Column) y (Row) 

Upper 
Left 
Corner 

L1Rp_Width – (NSCA – 
n) x (SCA_Width – 
SCA_Overlap_Width) - 
SCA_Width + 1 

SCA_Offset(n)* 
+1 

Lower 
Right 
Corner 

L1Rp_Width – (NSCA – 
n) x (SCA_Width – 
SCA_Overlap_Width) 

SCA_Offset(n)*  
+ SCA_Length 

PSD  E&A 

tools 
 DB outputs 

Repeat for 

all 

** - 

2
 

2 

3 

4 & 5.1.1 

5
.1

.2
 &

 

5
.1
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5

.

5
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e. If the Stitching method is “Right Overlap” (see Fig. 3) 

i. For n = 1 to NSCA, 
1. Copy the SCA(n) data into the sub-array of the L1Rp array defined (in the 

1-based coordinate system) as: 
 

 x (Column) y (Row) 

Upper 
Left 
Corner 

(n-1) x (SCA_Width - 
SCA_Overlap_Width) + 
1 

SCA_Offset(n)* 
+1 

Lower 
Right 
Corner 

n x (SCA_Width - 
SCA_Overlap_Width) 

SCA_Offset(n)*  
+ SCA_Length 

5.1.5 5.1.6 & 

5.1.7 
5.1.7 5.1.8 5.1.8 5.2& 

5.3 

5.1.8 

6 & 7 

SCA14 
sub-SCA13 
sub-

SCA1 sub-array 

SCA2 sub-
array 

S
C

A
3

 

s
u

b
-a

rr
a

y
 

S
C

A
4

 

s
u

b
-a

rr
a

y
 

S
C
A

L
1
R
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f. If the Stitching method is “Half-Half” (see Fig. 4) 

i. Copy the SCA1 data into the sub-array of the L1Rp array defined in the 1-based 
coordinate system as: 

 

 x (Column) y (Row) 

Upper Left 
Corner 

1 SCA_Offset(1)* 
+1 

Lower 
Right 
Corner 

SCA_Width SCA_Offset(1)*  
+ SCA_Length 

 
ii. For n = 2 to NSCA,  

1. If SCA_Overlap_Width is an odd number 
a. Skip the first (SCA_Overlap_Width + 1) / 2 columns and copy the 

rest of the SCA(n) data into the sub-array of the L1Rp array defined 
in the 1-based coordinate system as: 

 

 x (Column) y (Row) 

Upper 
Left 
Corner 

(n-1) x (SCA_Width - 
SCA_Overlap_Width) + 
1 + 
(SCA_Overlap_Width + 
1) / 2 

SCA_Offset(n)* 
+1 

Lower 
Right 
Corner 

(n-1) x (SCA_Width - 
SCA_Overlap_Width) + 
SCA_Width 

SCA_Offset(n)*  
+ SCA_Length 

 

SCA_Len
gth 

Band_Offs
et 

SCA_Of
fset 

Fig.1: 
“No 

Overl
ap” 

L1Rp_L
ength 
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x 
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2. Else 
a. Skip the first SCA_Overlap_Width / 2 columns and copy the rest of 

the SCA(n) data into the sub-array of the L1Rp array defined in the 
1-based coordinate system as: 

 

 x (Column) y (Row) 

Upper 
Left 
Corner 

(n-1) x (SCA_Width - 
SCA_Overlap_Width) + 
1 + 
SCA_Overlap_Width/2 

SCA_Offset(n)* 
+1 

Lower 
Right 
Corner 

(n-1) x (SCA_Width - 
SCA_Overlap_Width) + 
SCA_Width 

SCA_Offset(n)*  
+ SCA_Length 

 
 
 

10. Record the used Stitching method to metadata 
  

SCA_Off
set 

Fig.2: 
“Left 

Overlap
” 
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7.4.10 Striping Characterization 

7.4.10.1 Background 

Evaluation of the effectiveness of relative gain correction to remove striping is typically performed in a 
qualitative sense, through visual inspection of imagery before and after correction.  This method has 
several limitations, the primary one being that it relies on subjective human interpretation for the 
evaluation.  In addition, inspection of large numbers of corrected images is not realistic. 
Consequently, a quantitative characterization of striping is needed. 
 
Algorithms have been developed to quantitatively characterize striping through frequency-domain 
analyses (mostly FFT-based).  These can produce an average estimate (across a focal plane 
module) of the amount of striping at the Nyquist frequency (corresponding to detector-to-detector 
variation).  The disadvantage of this approach is that the results provide no real information about 
striping at a detector level (i.e. which detectors are more sensitive to striping, etc). 
 
This algorithm determines a quantitative metric for the amount of striping present in an image through 
calculation of spatial-domain statistics for each detector.  These statistics are further processed to 
obtain a “final” striping metric.  In the initial development work it has been found that larger values for 
this metric tend to positively correlate with more visually apparent striping. 
 
This algorithm will also produce a Striping Correction Matrix that may be used by the Residual 
Striping Correction algorithm to reduce that amount of striping in the image. 
 

7.4.10.2 Inputs  

Description Symbol Units Level Source Type 

Scene 

Q DN or 
W/m2 sr 

m 

Nbands x 
NSCA x 
Ndetectors x 
Nframes  Float 

Saturated pixels 

  Nbands x 
NSCA x 
Ndetectors x 
Nframes LM Int 

Impulse noise 

  Nbands x 
NSCA x 
Ndetectors x 
Nframes LM Int 

Dropped Frames 

  Nbands x 
NSCA x 
Ndetectors x 
Nframes LM Int 

Inoperable detectors 

  Nbands x 
NSCA x 
Ndetectors CPF Int 

Striping metric cutoffs   Nband CPF Float 
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The Striping Metric Cutoffs have a default of 2% of the standard deviation of “all” the images in the 
archive. This will be fairly constant, so there is not a need to query the database and calculate it every 
time. A value in the CPF should function adequately.   Initialization of this parameter may be done 
after 100 images are in the archive/database. 
 

7.4.10.3 Outputs 

Description  Symbol Units Level Destination Type 

Overall Striping Metric  

 DN or 
W/m2 
sr µm Nband Db  Float 

Scene Striping 
Correction Matrix 
(optional) 

  Nband, 
Nsca, 
Ndet, 
Nframe 

Residual 
Striping 
Correction 
Algorithm Float 

Detector Striping 
Metric (optional) 

  Nband, 
NSCA Report Float  

Scene Striping Metric  
(optional) 

  Nband, 
NSCA Report Float  

 
The Overall Striping Metric is a single number measure of the amount of striping found in the image. 
The Scene Striping Correction Matrix is a matrix roughly the same size as the image. It can be 
subtracted from the image to remove striping.  
The Detector Striping Metric is an Ndet-2 array measure of the amount of the striping in each individual 
detector. 
The Scene Striping Metric is an Ndet-2 x Nframes-fill-2 measure of the amount of striping at each individual 
pixel. 

7.4.10.4 Options 

Write the Overall Striping Metric to database (On by Default) 
If the Residual Striping Correction Algorithm is being run the Scene Striping Correction 

Matrix needs to be calculated and outputted. If the Residual Striping Correction Algorithm is 
not being run, the Scene Striping Correction Matrix does not need to be calculated or 
outputted.  

Summary Report (Off by Default) 
a) Detector striping metric 
b) Scene striping metric 
c) Overall striping metric 

7.4.10.5 Procedure 

1. Read in the processing parameters. 
2. Read in an SCA. 
3. Find the difference between every pixel in the image and the average of its two neighbors (left 

and right). When a pixel in the artifact mask or a sample from an inoperable detector is 
encountered, the Cross-Track Difference (CTDiff should be set to zero. So a pixel in the 
artifact mask or a sample from an inoperable detector will cause three entries to be zeros in 
CTDiff (the pixel itself and its two neighbors). 
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2
CTDiff

1,1,

,

 


nmnm

nm

xx
x  

Where x denotes a pixel and m and n denote row (frame) and column (detector) respectively. 
This difference is calculated for all pixels in the image except border pixels (one pixel on all 
sides).  

4. Since scene content will cause the largest magnitudes in CTDiff, we will calculate a 
homogeneity filter. 

a. The first step is to check the Cross-Track Homogeneity (CTHom) by calculating the 
difference between pixels in the image on either side of the current pixel. 

1,1,n)CTHom(m,   nmnm xx  

This difference is calculated for all pixels in the image except border pixels (one pixel on 
all sides). Whenever a pixel in the artifact mask or a sample from an inoperable detector 
is encountered, CTHom should be zero, so all pixels in the artifact mask and their left 
and right adjacent pixels will have zero values in CTHom. Thus, inoperable detectors 
will cause three columns of zeros in CTHom. 

b. Next we will check the Along-Track Homogeneity (ATHom) by taking the vertical 
difference between the current pixel and its top and bottom neighbors. 

2
n)ATHom(m,

,1,1

,

nmnm

nm

xx
x

 
  

This difference is calculated for all pixels in the image except border pixels (one pixel on 
all sides). Whenever a pixel in the artifact mask or a sample from an inoperable detector 
is encountered, ATHom should be zero, so all pixels in the artifact mask and their top 
and bottom adjacent pixels will have zero values in ATHom. Thus, inoperable detectors 
will cause one column of zeros in ATHom. 

c. To help reduce noise, we will average CTHom over five pixels. 















n)2,CTHom(mn)1,CTHom(mn)CTHom(m,

n)1,-CTHom(mn)2,-CTHom(m

5

1
n)ACTHom(m,  

ACTHom stands for Average Cross-Track Homogenity. This is done for the entire 
CTHom image. Pixels in the artifact mask or a sample from an inoperable detector and 
their left and right adjacent pixels should not be used to calculate this average. Border 
pixels are averaged with their inside neighbors, this can be seen below for pixels on the 
left side. Pixels on the right side use similar equations.  

3

n)2,CTHom(mn)1,CTHom(mn)CTHom(m,
n)ACTHom(1,




4

n)2,CTHom(mn)1,CTHom(mn)CTHom(m,n)1,-CTHom(m
n)ACTHom(2,


  

d. To reduce noise in ATHom, we will average over three pixels. 

3

1)nATHom(m,n)ATHom(m,1)-nATHom(m,
n)AATHom(m,


  

AATHom stands for Average Aross-Track Homogenity. This is done for the entire 
ATHom image. Pixels in the artifact mask or a sample from an inoperable detector and 
their top and bottom adjacent pixels should not be used to calculate this average. 
Border pixels are averaged with their inside neighbors, this can be seen below for pixels 
along the top border. Pixels along the bottom border use a similar equation. 

2

1)nATHom(m,n)ATHom(m,  
)AATHom(m,1


  
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e. To complete the homogeneity filter, plug ACTHom and AATHom into the equation 
below. 

  4

Cutoff Metric Striping

2

n)AATHom(m,n)ACTHom(m,abs

1

1
n)HomFilt(m,

















 



  

HomFilt stands for Homogeneity Filter. This will generate a filter mask of roughly 1s and 
0s the same size as the original image minus one border pixel from all sides. All pixels 
in the artifact mask and samples from inoperable detectors and left and right adjacent 
pixels should be zeroed out. This filter should remove scene content from the 
calculation of the striping metric.  

5. The scene correction matrix is the individual pixel product of the HomFilt and CTDiff. The 
scene striping metric is essentially the absolute value of the scene correction matrix, but 
without the divide by two. The scene striping metric shows where, spatially, in the image 
stripes are located. The higher the value the more striping present.  

2

n)HomFilt(m,n)CTDiff(m,
 Matrix  Correction Striping Scene




 n)HomFilt(m,n)CTDiff(m,abs  Metric Striping Scene   

6. The detector striping metric is the mean of the columns of the scene striping metric.  Each of 
the individual SCA scene striping metric arrays are concatenated to produce a single band 
array for the detector striping metric. This tells us how stripy a single detector is. The detector 
striping metric has individual values for each detector except for the first and last detectors.  
Figure 1 shows an example detector striping metric. 

 
Figure 1: Example Detector Striping Metric. 

 
7. The overall striping metric is derived from the detector striping metric.  

a. First the mean of the entire detector striping metric is found.  
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Figure 2: Mean of Detector Striping Metric. 

 
b. Then a 75 length median filter is applied to the detector metric, and smoothed with a 15 

length averaging filter.  

 
Figure 3: Averaged Median Fit to Detector Striping Metric. 

 
For border detectors on the left side, the median filter will find the median of 37 
detectors to the right and however many detectors there are to the left. So for the first 
detector, it will find the median of the first detector and the 37 detectors to the right. For 
the second detector it will find the median of the first and second detector and the 37 
detectors to the right, and so on until the 38 detector when it find the median of the 
current detector and 37 detectors to the left and right.  
Border detectors on the right side are handled the same way except reversed. So for 
the last detector it will find the median of the last detector and 37 detectors to the left. 
The average filter works in a similar way. For the first detector it will take the average of 
the first detector and 7 detectors to the right.  

c. This averaged median fit is subtracted out from the detector striping metric.  
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Figure 4: Median Subtracted Detector Striping Metric. 

 
d. The next factor used for the overall striping metric is the maximum peak from this 

median filter subtracted detector metric.  

 
Figure 5: Maximum of the Median Subtracted Detector Striping Metric.  

 
e. The last factor used is then the mean of the top 15 peaks, including the maximum peak, 

from the median filter subtracted detector metric. (There are only six peaks circled, but 
the algorithm should find 15).  

 
Figure 6: Top Peaks of the Median Subtracted Detector Striping Metric. 

 
It is important to find the top 15 individual peaks. Detectors part of a higher spike should 
not be used. A detector’s two adjacent detectors are considered for determining peaks. 
If detector x has a neighboring detector with a higher value, detector x is not a peak. 
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There is no amount a peak must be larger then its neighbors; it must only be larger. 
One approach to do this is to arrange the detector striping metric numbers in 
descending order while maintaining the detector to which the metric numbers 
correspond. Then one can go down the list and if there is neighboring detector above 
the current detector, the current detector is not an individual peak. Figure 7 shows this 
more clearly.  

 
Figure 7: Individual Peak Detectors. 

 
f. The overall striping metric is the cube root of the product of the mean, maximum peak, 

and mean of the top 15 peaks. This number will be in radiance units (W·sr-1·m-2·µm). It 
is also desired to capture this value in DN, so it will have to be backed out of radiance 
space. 

3 fifteen  topofmean max mean   Metric Striping Overall   

- The mean of the detector striping metric measures the amount of striping present 
throughout the entire image, odd/even striping being the largest portion.  

- The worst single detector stripe is measured by the maximum peak.  
- The mean of the top 15 peaks measures the amount of single detector striping 

throughout the image. 
8. If the write striping metric option is on, write the overall striping metric to the database. 
9. If the summary report option is on write the overall metric, scene striping metric and detector 

striping metric to a report. 
10. Repeat all steps for all SCAs and Bands. 
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7.4.11 Non-uniformity Characterization 

7.4.11.1 Background 

Streaking, Banding, and Full Field Of View (FFOV) Uniformity characterizations provide 4 different 
measures of detector uniformity.  All characterizations will generate metrics for uniformity and stability 
of uniformity assessments, both pre-launch and post-launch.  In the latter case, these will be 
characterizations will be used for Key Performance Requirement verification.   

 
FFOV Uniformity: the standard deviation of all detector column average radiances across the FFOV 
within a band shall not exceed 0.5% of the average radiance 

 
There are 2 methods for characterizing Banding.  
Method A: The root mean square of the deviation from the average radiance across the full FOV for 
any 100 contiguous detector column averages of radiometrically corrected OLI image data within a 
band. This banding specification is met when the metric is less than or equal to 1.0% for OLI and 
0.5% for TIRS of the band average radiance.  
 
Method B: The standard deviation of the radiometrically corrected values across any 100 contiguous 
detector column averages of OLI image data within a band. This banding requirement is met when 
the metric is less than or equal to 0.25% for OLI and 0.5% for TIRS of the average radiance across 
the 100 detector columns.  
 
Streaking is measured across any 3 contiguous detector column averages, across the FOV. The 
streaking requirement is met when the metric is less than 0.005 for OLI bands 1-7 and 9, and 0.01 for 
the OLI panchromatic band or 0.005 for the TIRS bands. The streaking parameter is defined below. 
 
For OLI, this algorithm is intended to work primarily on solar scenes, though the capability to process 
uniform earth scenes should be included; verification of the requirements at 2*Ltyp will require extra 
analysis.  For TIRS, this algorithm should be run on blackbody scenes with a temperature set point 
between 260 and 330K .   
 
Based on the current process flow:  These characterizations should be performed on radiance data.  
The Histogram Statistics Characterization module is performed on bias-corrected and linearized 
image data, but before the gains and relative gains have been applied.  The non-uniformity 
characterization will not operate on the image data, but rather will use the Histogram Statistics in the 
database.  Therefore, the algorithm will need to apply the gains from the database/CPF to convert the 
histogram means to radiance. 
 
Analysis of the output data will determine whether, initially, the Non-Uniformity specification is being 
met and then, later, whether there are changes in uniformity across the focal plane.  This algorithm 
requires a uniform scene or a scene of known non-uniformity.  For OLI, the only target that is 
expected to meet this requirement is the solar diffuser.  Therefore this algorithm may only be useful 
for characterizing the non-uniformity performance, particularly the full field of view uniformity, on one 
spectral target, as opposed to the three indicated in the requirement.  For TIRS, the blackbody will be 
operated at multiple temperature set points.  Each of these blackbody images should be useful in 
characterizing the banding and streaking over the range of typical Earth temperatures 
 
Note: the notation in this version of the banding equations has been modified from the OLI 
Requirements Document for clarification. 
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7.4.11.2 Inputs 

The inputs to this algorithm come from either the output of other algorithms (DB) or from a set of 
calibration parameters (CPF).  Table 12 lists the inputs of this algorithm. 
 

Table 12:  Algorithm Inputs 

Descriptions Symbol Units Level  Source Type 

Detector means (bias 
corrected, linearized 
only)  

Qi DN Nband 
x 
NSCA 
x Ndet 

DB 
(histogram 
statistics 
table) float 

Gains 
G DN/(w/m2 

sr um) Nband   float 

Relative gains 

ri [] Nband 
x 
NSCA 
x Ndet CPF float 

Inoperable detectors, 
out-of-spec detectors 

  Nband 
x 
NSCA 
x Ndet CPF integer 

Solar or blackbody 
non-uniformity scaling 
factors  

i [] Nband 
x 
NSCA 
x Ndet CPF float 

 
 

7.4.11.3 Outputs 

The outputs of this algorithm are typically stored in the characterization database.  However, an 
option to store this data to an ASCII text file is needed to support testing.  This reduces inserts into 
the database as well as speeding up calibration updates.  Table 13 lists the outputs of this algorithm. 
 
 
 

Table 13: Algorithm Outputs 

Descriptions Symbol Units Level  Target  Type  

BandingMetric_FFOV  

BFFOV_i_percent % Nband x 
NSCA x 
Ndet  Db, report float 

BandingMetric_per100pix  

Bper100det_i_percent % Nband x 
NSCA x 
Ndet Db, report float 
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Full FOV Uniformity Metric  FFOV_metric_percent % Nband Db, report float 

Streaking Metric  

Si [] Nband x 
NSCA x 
Ndet Db, report float 

 

7.4.11.4 Options 

- Apply non-uniformity scaling factors 
- Output ASCII text file summary in addition to reporting data to the database 

7.4.11.5 Procedure 

For each solar collect, for each band: 

1. Determine per-detector radiances (Li’) as given in Equation 1 for selected scene by 
applying the per-detector gains to the per-detector scene means (Qi).  .   

a. 
i

i

i
rG

Q
L

×
='  (1) 

i. where G is the band-average gain, ri is the per-detector relative gain and i is the 
detector counter.  In this algorithm, it is meant to count across the entire focal 
plane, not just across a single SCA. 

b. An option would be to calculate radiance straight out of the database operation.  For 
example select histogram_mean / detector_gain from hist_stats, cpf where 
cpf.date=now() and hist_stats.detector = cpf.detector 

2. For solar and blackbody data:  Correct per-detector radiance for non-uniformity (Equation 

2) of the solar panel or the blackbody using the per-detector scaling factor (i).  For non-
solar, non-blackbody data, the scaling factors are set to 1.0 for all detectors. 

a. 

   

Li =
Li '

n i

 (2) 

b. Note:  the solar uniformity values in the CPF may be in terms of per-detector 
reflectance.  If that is the case, the reflectances should be normalized to the average 
before applying them to the radiance.  

c. Note: it is unclear what form the non-uniformity scaling factors will take in the CPF.  
Once these are defined, we will be able to specify whether the radiances are multiplied 
or divided by the scaling factors. 

3. Stitch the radiance data together in order across the focal plane. Include all imaging 
detectors.  Include overlap detectors.  Do not include dark or redundant detectors. 

a. Each SCA will have several detectors that image the same portion of the ground as the 
adjacent SCA.  For example, let’s say the SCAs each have 500 detectors and the last 
10 detectors of SCA1 image the same ground as the first 10 detectors of SCA2.  The 
radiance array should include both SCA1 detectors 491-500 and SCA2 detectors 1-10. 

b. The redundancy of the overlap detectors should not affect the banding and streaking 
results of the solar data though it means that we are not measuring the image SCA-to-
SCA discontinuity. 
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4. Calculate Full FOV Uniformity Metric as given below in Equation 3 for the band.  Do not 
include detectors flagged as inoperable or out-of-spec in the calculation. 

a. FFOV_metric_percent = stdev(

   

L) / mean(L)*100 (3) 

b. Record FFOV_metric_percent to the database or optionally to a file. 

5. Calculate banding metrics as given below in Equations 4 and 6 for each imaging detector 
(i). Do not include detectors flagged as inoperable or out-of-spec in the calculation for 
operable detectors.  Skip the banding calculation for inoperable and out-of-spec detectors. 

a. Method 1) 

 

   

BFFOV _ i = (Ln
n= i

i+99

å - L)2 /100  (4) 

 

   

BFFOV _ i _ percent =
BFFOV _ i

L
*100 (5) 

 Where: 

   

Li is the radiance of detector i 

   

L is the scene average radiance: 

  

L = mean(L) 
 

b. Method 2) 

 

   

Bper100det_ i = (Ln
n= i

i+99

å - L 100 det )
2 /99 (6) 

 

   

Bper100det_ i _ percent =
Bper100 det_ i

L
*100 (7) 

Where: 

   

Li is the radiance of detector i 

  

L100det  is the average radiance across 100 detectors 

 

  

L100 det = Li
i= n

n +99

å /100 (8) 

c. Record per-detector banding arrays to database or optionally to a file. 

d. In both of these calculations, the calculation cannot be performed for the detectors at 
the final edge (i.e., the last 99 detectors). As a result of the banding metrics not being 
associated with the center detector of the window, it is really the first 50 and last 50 
detectors that are not characterized.  However, it is the banding entries for the last 99 
detectors that are left blank. 

e. In the case where i…i+99 includes inoperable and/or out-of-spec detectors, the 
summation should be taken for fewer detectors rather then increasing maintaining the 
100 detector average.  

6. Calculate streaking metric (Equation 9) for each imaging detector.  Do not calculate the 
streaking metric for detectors flagged as inoperable and out-of-spec.  Also, do not calculate 
streaking metric for detectors adjacent to inoperable or out-of-spec detectors. 

 

   

Si = Li -
1

2
Li-1 + Li+1( ) /Li

 (9) 

Where: 

   

Li is the radiance of detector i; 

   

Li-1 and 

   

Li+1 are similarly defined for the (i-1)th and (i+1)th detector columns. 
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a. Record per-detector streaking array to database or optionally to a file. 

 
 

7.4.12 Signal-to-Noise Characterization Noise Equivalent Delta-Temperature 
Characterization 

7.4.12.1 Background 

Signal-to-Noise (SNR) characterization and the Noise Equivalent Delta-Temperature (NET) provide 
an estimate of the overall noise behavior of the OLI and TIRS, respectively. These noise 
characterizations will be performed both pre- and post-launch.  After launch, the SNR characterization 

will be used for OLI Key Performance Requirement (KPR) verifications and the NET characterization 
will be used to assess TIRS performance. 
 
TIRS Metrics: For uniform scene temperatures between 240 K and 360 K extending over the full 
FOV of TIRS, and for a data collection period corresponding to a WRS-2 scene (~ 25 seconds at 
the nominal frame rate), the median detector standard deviation when converted into radiance 
units shall be ≤ 0.059 W/m2 sr μm for the 10.8 μm channel and ≤ 0.049 W/m2 sr μm for the 12.0 
μm channel. This includes quantization noise.   

 
The specification temperatures are defined in Appendix A. 

 

The SNR and NET will be calculated on targets of per-detector uniform radiance, in order to have a 
good estimate of the noise level at a specific radiance.  For OLI the SNR characterization will be 
performed on the diffuser panel and stim lamp collections, including their associated dark collects.  
For TIRS, the characterization will be performed on the blackbody and deep space collects. 
 
Some OLI lamp collects will barrel-shifted in order to monitor the lower 12-bits of the instrument.  This 
results in saturation in the SWIR bands (SWIR1, SWIR2, and Cirrus).  The results from these bands 
should be removed from the analysis.  
 
These characterizations are performed on bias-corrected and linearized Histogram Statistics 
Characterization algorithm generated means and standard deviations (in units of digital number) 
stored in the IAS database; they do not require separate analyses of image data.  However, the SNR 
specification is written in terms of radiance, so for the final SNR report, either the SNR model or the 
spec values need to be converted to radiance using the appropriate gains and/or relative gains. 
Similarly for TIRS data, the noise model must be converted to radiance and temperature. The 
temperature conversion will require use of a Planck equation approximation; a module exists from 
Landsat thermal band processing (external to the IAS) but requires the relative spectral response 
function of the TIRS bands as an input. 
 
Analysis of the output data will determine whether the SNR requirement is being met and as time 
progresses, whether there are changes in SNR across the focal plane.   
 

7.4.12.2 Dependencies 

Histogram Statistics Characterization  
(Lamp Characterization) 
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(Diffuser Characterization) 
 
Inputs 
The inputs to this algorithm come from either the output of other algorithms (DB) or from a set of 
calibration parameters (CPF).  Table 12 lists the inputs of this algorithm. 
 
 
 

Table 14:  Algorithm Inputs 

Descriptions Symbol Units Level  Source Type 
Scene identifiers, 
date, time, lamp pair, 
diffuser   1 DB  
Detector means for 
illuminated collects 
(bias corrected, 
linearized only)  Qi DN 

Nband x 
NSCA x 
Ndet 

DB 
(histogram 
statistics 
table) float 

Detector standard 
deviation for 
illuminated collects σi DN 

Nband x 
NSCA x 
Ndet 

DB 
(histogram 
statistics 
table) float 

Detector standard 
deviation for paired 
dark collect σ0,i DN 

Nband x 
NSCA x 
Ndet 

DB 
(histogram 
statistics 
table) float 

Number of valid 
frames for illuminated 
collect Nvalid count 

Nbands x 
NSCAs x 
Ndetectors 

Db 
(histogram 
statistics 
table) Int 

Number of valid 
frames for paired dark 
collect Nvalid_dark count 

Nbands x 
NSCAs x 
Ndetectors 

Db 
(histogram 
statistics 
table) Int 

Gains G 
DN/(W/m2 
sr um) Nband   float 

Relative gains ri [] 

Nband x 
NSCA x 
Ndet CPF float 

Inoperable detectors, 
out-of-spec detectors   

Nband x 
NSCA x 
Ndet CPF integer 

Relative Spectral 
Response curves for 
TIRS bands RSR []    
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7.4.12.3 Outputs 

The outputs of this algorithm are typically stored in the characterization database.  However, an 
option to store this data to an ASCII text file is needed to support testing.  This reduces inserts into 
the database as well as speeding up calibration updates.  Table 13 lists the outputs of this algorithm. 
 

Table 15: Algorithm Outputs 

 Symbol Units Level  Target  Type  
Scene identifiers, date, 
time, lamp pair, diffuser   1 DB  
Mean Signal Level of 
illuminated collect 
(duplicate of histogram 
stat input)  DN 

Nband x 
NSCA x 
Ndet  

IDL save 
file, report float 

Signal standard 
deviation of illuminated 
collect (duplicate of 
histogram stat input) σi DN 

Nband x 
NSCA x 
Ndet 

IDL save 
file, report float 

Signal level of paired 
dark collect (assume 0 
for OLI, but use real 
data for TIRS) Q0 DN 

Nband x 
NSCA x 
Ndet 

IDL save 
file, report float 

Standard deviation of 
paired dark collect σ0,i DN 

Nband x 
NSCA x 
Ndet 

IDL save 
file, report float 

Number of valid frames 
(duplicate of histogram 
stat input) Nvalid count 

Nband x 
NSCA x 
Ndet 

DB, IDL 
save file, 
report int 

Number of valid frames 
for paired dark collect Nvalid_dark count 

Nbands x 
NSCAs x 
Ndetectors 

DB, IDL 
save file, 
report  Int 

Noise model 
coefficients a, b 

[DN], 
[DN2] 

Nbands x 
NSCAs x 
Ndetectors 

DB, IDL 
save file, 
report float 

Uncertainty in Noise 
model coefficients unca, uncb 

[DN], 
[DN2] 

Nbands x 
NSCAs x 
Ndetectors 

DB, IDL 
save file, 
report float 

Relative Uncertainty in 
Noise model 
coefficients 

rel_unca, 
rel_uncb 

[DN], 
[DN2] 

Nbands x 
NSCAs x 
Ndetectors 

IDL save 
file, report float 

OLI: SNR at spec levels 
(Ltyp and Lhigh) 

SNRLtyp, 
SNRLhigh  [] 

Nbands x 
NSCAs x 
Ndetectors 

 

DB, IDL 
save file, 
report float 

OLI: uncertainty in SNR 
at spec levels uncSNR [] 

Nbands x 
NSCAs x 
Ndetectors 

DB, IDL 
save file, 
report float 

TIRS: NEDT at spec NEDT K Nbands x IDL save float 

Q
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levels (5 temperatures) NSCAs x 
Ndetectors 

file, report 

TIRS: uncertainty at 
spec levels uncNEDT K 

Nbands x 
NSCAs x 
Ndetectors 

IDL save 
file, report float 

TIRS: NEDL at a single 
spec temperature NEDL [radiance] 

Nbands x 
NSCAs x 
Ndetectors DB float 

TIRS: uncertainty in 
NEDL at spec 
temperature uncNEDL [radiance] 

Nbands x 
NSCAs x 
Ndetectors DB float 

Band-average Mean 
signal QBA

 DN Nbands DB float 
 

7.4.12.4 Options 

- Report data to ascii report files as well as IDL save file and plots. 

7.4.12.5 Procedure 

For each appropriate uniform collect, for each band: 

7. Extract Histogram Statistics database table for each detector; Qi, σi, Q0,i, σ0,i, Nvalid, and 
Nvalid_dark. Extract gains and relative gains from the CPF database table: G and r. 

a. Queries will generate a list of solar, lamp and blackbody collects acquired since the last 
time the query was run.  A second query will generate the database output necessary to 
run snr.pro for all new collects. 

b. For the SWIR1, SWIR2 and Cirrus bands, filter the lamp collections with the lower 12-bit 
barrel shift.  These bands have an additional filter in the query for the truncation flag: 
only extract data from the database if the truncation flag is 0.  The 12-bit barrel shifted 
data are included in the data set for the other bands. 

8. Calculate band-average means from database query output: 

i. QBA = mean( Qi ) 

ii. Q0,BA = mean( Q0,i ) 

9. Calculate Signal-to-Noise ratio for each detector 

a.  (1) 

10. Calculate noise model coefficients using illuminated data and paired dark data.  The 

equation for the noise model is  

a.       
  (2) 

b.   
  
   

  
 (3) 

11. Calculate uncertainty on the fit coefficients 

   

SNRi =
Qi

s i

  

s i

2
= a + b*Qi
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a.      
  

√  (             )
 (4) 

b.      
 

  

√      
 (5) 

c.      
 

   

√            
 (6) 

d.        √(
     

  
)
 

 (
√    

       
 

  
   

)

 

 (7) 

12. FOR OLI BANDS: 

a. Convert Ltyp and Lhigh to DN using the CPF for the scene. 

i.                (8) 

ii.                 (9) 

b. Calculate SNR at Ltyp and Lhigh for each detector using the fit coefficients  

i.        
 

     

√         
 (10) 

ii.         
 

      

√          
 (11) 

c. Calculate the uncertainties on the spec SNR values (propagation of error).   

i. 
    

  
 

      

          
 

ii. 
    

  
 

         

          
 

iii.        √(
    

  
    )

 

 (
    

  
    )

 

   
    

  

    

  
         

iv. where  is the correlation coefficient on the regression of Q and noise2, which will 
always be 1, since there are only two points in the regression 

d. There are cases in the pre-launch data where the dark noise is greater than the noise in 
the illuminated data.  These data result in an SNR model that is negative (b is negative), 
and the SNR at Lhigh was output as –NaN, which the database would not ingest.  In the 
cases where b is less than zero, all SNR parameters are set to -999, a bad-value flag. 

e. Count the number of detectors that do not meet specification and those that are less 
than 80% of specification, taking into account the uncertainty for each detector. 

i.                                                  

ii. Note that while this algorithm will detect out-of-spec detectors, the responsibility 
of counting and reporting them falls to the Detector Operability algorithm, via the 
data in the SNR database table. 

f. Assess if the median SNR at the Ltyp meets specification. 

13. FOR TIRS bands: 
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a. Calculate the slope and offset (mplanck and bplanck) of the Planck equation for the 
specification temperatures using planck.pro, a module written long ago for Landsat 
thermal band processing. [requires a spectral curve for each band] 

b. Convert specified temperature (see Appendix C) to counts: 

i.     (                     )    

c. Calculate NEDL and NEDT and uncertainties at each specified temperature 

i.      
√       

 
 

ii.      
    

       
 

iii. 
      

  
 

 

  √       
 

iv. 
      

  
 

   

  √       
 

v.          √(
      

  
    )

 

 (
      

  
    )

 

   
      

  

      

  
         

d. Assess the NEDT at each temperature against the specification requirements.  Count 
and flag failing detectors, taking into account the uncertainty for each detector. 

i.                                                     

14. Output SNR, fit coefficients and uncertainties for every detector to IDL save file and make 
associated plots.  See below for plots and Appendix B for output reports. 

15. Ingest the SNR and NEDL ascii files into the SNR Characterization and NEDL 
Characterization tables. 

 

 

 

 

7.4.12.6 Maturity 

The code is meant for the IAS tool box and thus, is not robust and hands-off as are the usual IAS 
algorithms. I expect that I will watch the output pop-up as I run this on a monthly basis and will add 
and subtract functionality as I see fit. 
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Appendix A.  SNR Requirements 
 
Table 1.  Radiance Levels for SNR Requirements (from OLI Requirements Document) 

# Band Radiance Level for SNR, L 
(W/m2 sr µm) 

Saturation Radiances, 
LMax 

(W/m2 sr µm) 

  Typical, 
LTypical 

High, Lhigh Requirement 

1 Coastal 
Aerosol 

40 190 555 

2 Blue 40 190 581 

3 Green 30 194 544 

4 Red 22 150 462 

5 NIR 14 150 281 

6 SWIR 1 4.0 32 71.3 

7 SWIR 2 1.7 11 24.3 

8 Panchromatic 23 156 515 

9 Cirrus 6.0 N/A 88.5 

 
Table 2.  SNR Requirements 

# Band SNR Requirements 

  At LTypical* At LHigh* 

1 Coastal Aerosol 130 290 

2 Blue 130 360 

3 Green 100 390 

4 Red 90 340 

5 NIR 90 460 

6 SWIR 1 100 540 

7 SWIR 2 100 510 

8 Panchromatic 80 230 

9 Cirrus 50  N/A 

 
Table 3.  NEDT Requirements 

 NEDT at 
240K 

NEDT at 
260K 

NEDT @ 
300K 

NEDT @ 
320K 

NEDT @ 
360K 

TIRS1 0.80 
 

0.61 0.40 0.35 0.27 

TIRS2 0.71 0.57 0.40 0.35 0.29 
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Appendix B 

Sample output text files. There is a summary file reporting if the band median numbers meet 
specification and a per-band file reporting the individual detectors that do not meet specification. 

 
 

7.4.13 Detector Operability Characterization 

7.4.13.1 Background 

Per the LDCM Acronym List and Lexicon (GSFC 427-02-06):  
 
A detector is considered operable, even if out of spec, when it meets the following requirements:  
 

a. The detector is sensitive to photons within its spectral band and not saturated at expected 
operating temperatures under dark conditions. 

 
b. The detector's noise is less than 5 times the mean noise level for the band on which it occurs. 

 
c. The detector's dark current remains within +/- 5 times the RMS noise over the period between 
dark frame references. 

 
d. The detector's actual dynamic response range is greater than 25% of the specified dynamic 
range; such that the Actual Dynamic Range >= 0.25 * Specified Dynamic Range.  

 
For OLI, requirement “a.”, the phrase “detector is sensitive to photons” was refined to “detector’s 
count/radiance slope is greater than 20% of the mean count/radiance slope for the band” 

 
This algorithm determines the operability status of OLI and TIRS detectors based on these criteria, 
and in addition, for two of these criteria, noise level and dynamic range, assesses whether operable 
detectors are also within specifications.  An additional complication is that “dynamic range” is not 
used in the OLI requirements document.  Saturation radiance, though not strictly the same, is used in 
place of dynamic range. 
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Determination of the operability status of the detectors requires data from histogram statistics that are stored in 

the characterization database.  The statistics derived from specific scene types (e.g. shutter and solar) will be 

used to derive various metrics including total noise and dynamic range.  The signal-to-noise ratio (SNR) and 

noise equivalent delta radiance (NEdL) are other derived statistics that are useful for detector operability 

characterization.  The SNR values for OLI and NEdL for TIRS for each detector will come from the 

SNR/NEdL characterization algorithm, which itself requires data from histogram statistics. 

 

Based upon the trending and evaluation of these metrics, a per-detector status will be assigned describing by 

which criteria the detector was deemed inoperable.   

 

Finally, the detector operability status will be used to populate and validate the per detector operability flags in 

the calibration parameter file. The process to do any updates is currently manual after review by an analyst. 

When a detector is flagged as inoperable, the data for that detector is replaced prior to producing the final 

radiometric product (see Correct Dead Detectors ADD). 

 

7.4.13.2 Dependencies 

Histogram Statistics Characterization  

SNR Characterization 

 

Input  

Descriptions  Symbol Units Level Source Type 

Minimum Qmin DN 
Nbands x 
NSCAs x 
Ndetectors 

Histogram 
Statistics 

Float 

Maximum Qmax DN 
Nbands x 
NSCAs x 
Ndetectors 

Histogram 
Statistics 

Float 

Mean Q  DN 
Nbands x 
NSCAs x 
Ndetectors 

Histogram 
Statistics 

Float 

Standard deviation σ DN 
Nbands x 
NSCAs x 
Ndetectors 

Histogram 
Statistics 

Float 

Signal-to-noise ratio SNR n/a 
Nbands x 
NSCAs x 
Ndetectors 

SNR Char. Float 

Band mean SNR     n/a 
NSCAs x 
Ndetectors 

SNR Char. Float 

Within-band standard 
deviation of SNR 

σSNR n/a 
NSCAs x 
Ndetectors 

SNR Char. Float 

Signal-to-noise ratio 
uncertainty 

SNRunc n/a 
NSCAs x 
Ndetectors 

SNR Char. Float 

Relative Gain relG  n/a 
Nbands x 
NSCAs x 
Ndetectors 

CPF Float 
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Absolute Gains absG  
msrmW

DN

2
 Nband x 

NSCA 
CPF Float 

Noise equivalent delta 
radiance 

NEdL   
NEDL Char. Float 

Noise equivalent delta 
radiance uncertainty 

NEdLunc   
  

 

7.4.13.3 Output  

Description Level Target Type 

Detector Status 
Nbands x 
NSCAs x 
Ndetectors 

Db Int 

 

7.4.13.4 Procedure 

The procedure for marking detectors as inoperable or out-of-spec is a simple gamut of threshold 
tests.  In order to keep track of all of the ways that a detector could be marked inoperable, the 
detectors will be assigned a status.  The status is a 16-bit number, where each bit represents a 
different reason for which a detector could be flagged (see table).   

Table 3. Summary of Operability Metrics 

Metric Equation Number Specification 
Status Bit 

KPR 

Inop- Too Noisy 1 0 12 

Inop- Weak 
Response 

2 1 12 

Out-of-Spec - Noise 3 2 12, 13 

Inop- No Response 4 3 12 

Inop-No Response, 
No Noise 

5 4 12 

Inop-No Response, 
Saturated 

6 5 12 

Inop-Low 
Saturation 
Radiance 

8 6 12 

Out-of-Spec – 
Saturation 
Radiance 

9 7 13 

Inop-unstable dark 10 8 12 

Inop- noisy (TIRS 
only) 

11 9 - 

Out-of-spec- (TIRS 
only) 

12 10 - 
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7.4.13.4.1 Noisy Response 

 As stated in the requirements, a detector is flagged as inoperable if noise greater than 5 
times the mean in-band noise level.   
 

   bdsb avg 5,,   (1) 

 
where b is band, s is sensor chip assembly (SCA) and d is detector.  If a detector is flagged for 
being too noisy by this metric, the specification status bit for this metric will be set to 1.   
 

7.4.13.4.2 Unresponsive 

 As stated in the requirements, a detector should be flagged as inoperable if the 
count/radiance slope is less than 20% of the mean count/radiance slope for that band.   
 

    bgdsbg avg2.0,,   (2) 

 
However, since OLI has a much higher signal to noise ratio than was required.  

Therefore, it is possible for a detector to fail this requirement, but still be acceptable.  Detectors 
flagged by (2) will be considered out of spec and the specification status bit for this metric will 
be set to 1.  In order to evaluate the responses of the detectors to light and make sure that 
they are behaving acceptably, a detector will be declared inoperable and the status bit for this 
metric (unresponsive) will be set to 1 if the detector’s SNR is less than the 20% of the band 
median specified SNR as stated in the requirements. If less than 80% of the band median 
specified SNR, the detector flag of out-of-spec for SNR will be set to 1. The SNR requirements 
can be found in Table 1.  Note this check is done only for OLI detectors.   

 

     bSNRdsbSNRdsbSNR requnc  ,,2,,  (3) 

 
Table 1.  SNR Requirements 

Band 
SNR Requirements 

(band median) 
Out-of-Spec  

 SNR (80%) 

Inoperable  

SNR (20%) 

 At LTypical At LHigh At LTypical At LHigh At LTypical At LHigh 

1 130 290 104 232 26 58 

2 130 360 104 288 26 72 

3 100 390 80 312 20 78 

4 90 340 72 272 18 68 

5 90 460 72 368 18 92 

6 100 540 80 432 20 108 

7 100 510 80 408 20 102 

8 80 230 64 184 16 46 

9 50  N/A 40 N/A 10 N/A 
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A detector is flagged as inoperable if the detector is no longer sensitive to photons.  
This is evident when the detector's DN value never changes beyond random noise levels(4), or 
has no signal whatsoever (5).   
 

     dsbdsbQsdbQ ,,3,,,, minmax   (4) 

 

      0,,,,,,, minmax  dsbdsbQdsbQ   (5) 

 
A detector is flagged as Inoperable if the detector is saturated at expected operating 

temperatures under dark conditions.   The saturation value is (1111 1111 1111 binary) in 12-bit 
space, but this procedure is run on data that has been barrel-shifted into 14-bit space.  The 
nature of the barrel-shifting fills the lower bits with zero, so the saturation value is (11 1111 
1111 1100 binary) in 14-bit space, or Qsat = 16,380 DN. 
 

  satQdsbQ ,,min  (6) 

 

7.4.13.4.3 Dynamic Response[Saturation Radiance] 

Dynamic response is the range of radiances that a detector is capable of detecting.  In 

addition, a detector is flagged as inoperable if the detector’s actual dynamic response is less 
than 25% of the maximum radiance that it should detect.  To determine a detector’s operability 
in this sense, the per-detector gains are applied to Qsat to estimate the radiances at which 
each detector saturates.   
 

  
   
   sbGdsbG

dsbQdsbQ
dsbL

absrel

sat
,,,

,,,,
,, max 



 (7) 
 
This value is then compared 25% of the maximum radiance that a detector should detect (Lmax) 
and declared inoperable if it is less than that value.  If the detector is flagged as inoperable, the 
status bit for that metric is set to 1 
 

    bLdsbLsat max25.0,, 
 (8) 

 
 A detector is defined as out of spec if the detector’s saturation radiance is less than 
Lmax.  If the detector is flagged as out of spec, the status bit for that metric is set to 1.   

   bLdsbLsat max,, 
 (9)

 

7.4.13.4.4 Dark Current 

Dark Current is equivalent to the mean DN reported by a detector during a dark 
collection, as measured by Histogram Statistics.  The drift of dark current is measured as the 
absolute difference between the averages of two dark collects.  A detector is flagged as 
inoperable of the drift is greater than 5 times that detector’s noise.   
 

     ),,(5,,,, 21 dsbdsbQdsbQ   (10) 
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7.4.13.4.5 Thermal Noise Equivalent Delta Radiance (TIRS Only) 

 For TIRS, one detector operability test is a check of the median per detector standard 
deviation of uniform on-board calibrator scenes in terms of radiance against the noise 
equivalent delta radiance (NEdL) threshold listed in the table.   

 

 

median
1

N
Li b, s,d( ) - L b, s,d( )( )

2

i=1

N

å
æ

è
ç

ö

ø
÷ > NEdLthresh b( )   (11) 

 
Table 2.  NEdL Requirements 

TIRS Band NEdL threshold radiance 

1 0.059 

2 0.049 

 
 Also, a TIRs detector is flagged as out of spec if the NEdL minus twice the noise 
uncertainty is greater than the 5 times the spec value.   

 

     bNEdLdsbNEdLdsbNEdL threshunc 5,,2,, 
 (12) 

 

7.4.14 Relative Gain Characterization (Histogram Method) 

 

7.4.14.1 Background 

This function calculates the relative gain of a detector for a given band and SCA from the lifetime 
scene histogram statistics. There are four different algorithms to calculate the relative gain: classical 
average mean, classical average standard deviation, SMA-1, and SMA-2.   
 
The relative gains obtained from any method can be applied to the image to correct the striping due 
to differences in detector response. Some combination of methods may also be used to generate a 
single set of relative gains.  
 

7.4.14.2 Inputs   

Descriptions Level Type 
Histogram Statistics    

     Detector Mean, detQ  

 
Nband, 
Nsca, Ndet Float 

     Detector Standard Deviation, σdet 

 
Nband, 
Nsca, Ndet Float 

     Adjacent Detector Correlation, ρ 
 

Nband, 
Nsca, Ndet Float 

     Number of Valid Frames, #frames 

 
Nband, 
Nsca, Ndet Int 
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Threshold values   
     Minimum Mean Nband, Nsca Int or Float 
     Maximum Mean Nband, Nsca Int or Float 
     Minimum Standard Deviation Nband, Nsca Int or Float 
     Maximum Standard Deviation Nband, Nsca Int or Float 
     Minimum Number of Frames Nband Int 
     Maximum Number of Frames Nband Int 
   

 

7.4.14.3 Outputs 

Descriptions Level Type 
Relative Gain   
     Ratio of Means   
          Classical Average 
 

Nband, 
Nsca, Ndet 

Float 
 

     Ratio of Standard Deviation   
          Classical Average 
 

Nband, 
Nsca, Ndet 

Float 
 

     SMA 1 
 

Nband, 
Nsca, Ndet 

Float 
 

     SMA 2 
 

Nband, 
Nsca, Ndet 

Float 
 

 
 

7.4.14.4 Procedure 

 
1. Read in the processing parameters. 
2. Read in an SCA.  
3. Determine if each scene in the data interval is valid. 

a. A scene must have data for all SCAs. 

b. Each SCA mean, SCAQ , for a scene must be within the minimum and maximum mean 

thresholds. 
c. Each SCA standard deviation, σSCA, for a scene must be within the minimum and 

maximum standard deviation thresholds. 
d. The number of frames in a scene must fit within the number of frames thresholds. 
If a scene does not meet each of these conditions it is invalid and its data will not be used.  

4. For every scene in the interval, weight each detector mean, detQ , standard deviation, σdet, sum 

of squares, SumQ2, and adjacent detector correlation, ρ with the number of valid frames, 
#frames. 

framesweight QQ #det  framesweight #det    

framesweight SumQSumQ #22   framesweight #   

5. Calculate global weighted detector statistics by summing each weighted factor in the interval, 
and dividing that sum by the total number of frames.  
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mframesframesframes

mweightweightweight

global

QQQ
Q

,2,1,

,2,1,

### 







 

mframesframesframes

mweightweightweight

global

,2,1,

,2,1,

### 






 
  

mframesframesframes

mweightweightweight
global

SumQSumQSumQ
SumQ

,2,1,

,
2

2,
2

1,
2

2

### 







 

mframesframesframes

mweightweightweight

global

,2,1,

,2,1,

### 






 
  

where 1 and 2 are the first scenes in the interval and m is the last. 
6. Once the global detector statistics are calculated, the relative gain can be calculated using the 

different methods. 
 

a. The SCA average mean method is calculated by taking the ratio between the global 
detector means and the SCA average mean. The SCA average mean is the mean of all 
the global detector means in the SCA. 

SCAQ

mQ

SCAQ

Q

SCAQ

Q

global

global

global

global

global

global

,

,
,,

,

2,
,

,

1,
  

b. For the SCA average standard deviation method, the gains are calculated by taking the 
ratio between the global detector standard deviations and the SCA average standard 
deviation. The SCA average standard deviation is the mean of all the global detector 
standard deviations in the SCA. 

SCA

m

SCASCA global

global

global

global

global

global

,

,
,,

,

2,
,

,

1,












  

c. The SMA 1 method gains are calculated by solving a matrix equation that contains the 
SumQ2 and ρ products. 

i. First the global SumQ2 and ρ products should be put into a matrix as shown 
below. Besides the last row, the matrix only has nonzero entries along two 
diagonals.  





























1111

1,1,00

0002,2,0

00001,1,

2

2

2











mmSumQ

SumQ

SumQ

globalglobal

globalglobal

globalglobal







 

where m is the number of detectors. 
ii. A reciprocal relative gain matrix is multiplied with this matrix, and their product is 

set equal to a zero matrix. The last entry in the zero matrix is set to the number of 
detectors to ensure that the mean of the relative gain estimations will be equal to 
one. 
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where r is the relative gain. 
iii. Once these matrices are set up, any matrix solution method can be used to solve 

the equation.  
iv.  The element-by-element reciprocal of the relative gains vector will have to be 

taken to get the relative gains.  
 
 
 
 
 
 
 
 
 

d. The SMA 2 method is similar to the SMA 1 method. 
i. The global SumQ2 and ρ products should be put into the matrix a little differently 

as shown below. This (tri-diagonal) matrix has values along three diagonals, 
except for the first and last rows which only have two entries.  





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
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2


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
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

 

ii. A reciprocal relative gain vector is multiplied with this matrix, and their product is 
set equal to a zero matrix. The zero matrix here is not actually zero but the 
smallest possible positive non zero number the computer can use. 



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iii. Once these matrices are set up, any matrix solution method can be used to solve 
the equation.  

iv.  The element-by-element reciprocal of the relative gains vector will have to be 
taken to get the relative gains.  

v. After the relative gains have been found, they will have to be normalized to one. 
 
 

7. Repeat Steps 2-6 for all SCAs and Bands. 
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7.4.15 Relative Gain Characterization (90-Degree Yaw) 

 

7.4.15.1 Background 

For whiskbroom imaging sensors such as the Landsat TM/ETM+, relative gain estimates for each 
detector can be derived from the summary statistics of an individual scene.  This approach is not 
feasible for pushbroom imaging sensors such as the LDCM TIRS and the LDCM OLI, because the 
nominal pushbroom focal plane orientation (orthogonal to the direction of platform motion) does not 
allow all detectors to measure the same radiance levels in a statistical sense.  However, having the 
platform perform a 90° yaw maneuver re-orients the sensor’s focal plane essentially parallel to the 
direction of platform motion and, with adequate compensation for Earth rotation, allows all detectors 
to respond to essentially the same radiance levels.  Such a maneuver would then permit derivation of 
relative gain estimates from the summary statistics of an individual scene on an FPM by FPM level. 
 
This algorithm derives relative gain estimates for each operable detector from 90° yaw image data.  
Given sufficient similarity between the current simulated data and the anticipated flight data, the 
algorithm can be adapted for use by the LDCM Image Processing Element’s Image Assessment 
Subsystem (IAS).    
 
Figure 1 illustrates a simple flow chart for the estimation of relative gains through use of the 90 
degree yaw maneuver.  Included in this flow is a step to produce a simulated yaw image, a image 
manipulation step to properly align detector responses, followed by the user’s choice of algorithms for 
estimation of relative gains—an approach based on the statistics obtained from each detector and a 
method using the SMA algorithm. 
 

yaw_simulation.m

Plaid_rotation.m

Step size = 1

Yaw_classic.m Yaw_sma2.m

plaidcorrectionSMA2.m

 
Figure 1.  Flow chart for relative gain estimation using the 90 degree yaw maneuver. 
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7.4.15.2 Input 

Descriptions Level Source Type 

Yaw Scene Nband  Float 

 
Output 
 
Descriptions Level Destination Type 

Relative Gain 

 

Nband, Nsca, 

Ndet 

Db  

 

Float 

 

 

7.4.15.3 Procedure 

1. Create a simulated yaw image. The linear imaging array for TIRS results in a one pixel lag 
between adjacent detectors. The offset between even and odd detectors of the OLI focal plane 
results in a two pixel lag between adjacent even and adjacent odd detectors, which are 
analyzed separately. Figure 2 shows a simulated image. 
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   Figure 
2: Sample of a TIRS Yaw Scene (Simulated). 

2. Shift all pixels so corresponding samples line up. Because of the yaw maneuver and the layout 
of the focal plane, all detectors will see the same spot on the ground with a one pixel lag for 
TIRS and a two pixel lag for OLI. Because of this pixel lag all samples need to be shifted by 
increasing multiples of one or two. Figures 1 and 2 show how the pixels need to be shifted for 
TIRS. Whether the pixels are shifted up or down depends on the orientation of the instrument. 
(At this time it is thought that the instrument will be yawed at -90o) 

a. As a result of shifting, the frames at the top and bottom will contain invalid image data. 
Any frame which does not contain all image data is considered excess here. All excess 
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pixels need to be removed from the analysis. Figure 3 shows these excess pixels. If 
there are 640 detectors in a TIRS SCA there will be 640 excess frames on the top and 
bottom of the image after shifting.  

 

 

 

Figure 3: Sample of a TIRS Yaw Scene (Detectors Shifted with Added Fill Data). 

3. Run the SMA algorithm on the detector samples to find the detector relative gain estimations. 

SMA 2 

a. First square all pixel values. (Samples from the last detector do not need to be 
considered). 

2

ijQ  

where Q is the pixel value in DN, i is the row, and j is the column. 

b. Then multiply all adjacent pixels. (The maximum value of j here is one less than the 
number of detectors.) 

1ijijQQ   

c. Both of these products are summed all each column. 

 

ii

1ijij
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ij QQ,Q  
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d. We now should have a summed square product and summed cross product for each 
detector except for the last. These summations are put into a matrix with the adjacent 
pixel multiplication product set negative.  
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where m is the number of detectors 

e. The reciprocal relative gain matrix and the zero matrix are added to the summation 
matrix again, so the relative gains can be solved for. The zero matrix here is not actually 
zero but the smallest possible positive non zero number the computer can use. 
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f. The reciprocal of the reciprocal relative gains will have to be taken in order to obtain the 
relative gains. 

g. After the relative gains have been found, they will have to be normalized to one. 

4. Run the histogram algorithm on the detector samples to find the classic detector relative gain 
estimations. 

The detector response is assumed to follow the linear model: 

 
After subtraction of the detector bias to obtain Qi,j’ The relative gain of the detector would be: 

      
    

 ̅
 

    
́

 ̅
 

 

5. Repeat steps 2 to 4 for all SCAs and bands. 

 

7.4.16 SCA Overlap Statistics Characterization 

7.4.16.1 Background 

Each SCA as collected exhibits a different overall brightness when compared to other SCAs. This 
algorithm will derive SCA to SCA ratios that will be used to normalize the gain of all the SCAs. Once 
these ratios are used to correct the discontinuities, all the SCAs should exhibit the same relative 

  , =   , ∙  𝜆 +   ,  
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brightness for a uniform input radiance field.  Ratios are calculated on a per-scene basis, and then 
stored in the trending database.  
 

7.4.16.2 Input 

Descriptions 
Symb
ol Units Level Source Type 

Scene   

Nbands x 
NSCAs x 
Ndetectors 
x Nframes  Float 

Nominal Detector Shifts   
Nbands x 
NSCAs CPF Int 

Valid Correlation Shift 
Maximum   Nbands CPF Int 

Minimum Valid 
Neighboring Segments    Nbands CPF Int 

Artifact Mask   

Nbands x 
NSCAs x 
Ndetectors 
x Nframes LM Int 

     Saturated Pixel List   

Nbands x 
NSCAs x 
Ndetectors 
x Nframes LM Int 

     Impulse Noise   

Nbands x 
NSCAs x 
Ndetectors 
x Nframes LM Int 

     Dropped Frames   
Nbands x 
NSCAs LM Int 

Inoperable Detector List   
Nbands x 
NSCAs CPF Int 

Systematic Model   

Nbands x 
NSCAs x 
2 CPF Int 

Nominal Scene 
Elevation* d km 1 DEM Float 

SCA Offsets OSCA Pixels 
Nbands x 
NSCAs CPF Int 

SCA_Overlap_Threshol
d  

STRban

d  Nband CPF Float 

Default_SCA-SCA 
ratios   

Nband x 
NSCA CPF Float 

*The nominal scene elevation can be the average of the minimum and maximum elevation of the scene. 
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7.4.16.3 Output 

Descriptions 
Symb
ol Units Level Target Type 

SCA-SCA ratios   
Nbands x 
NSCAs Db Float 

Overlap Pixel Standard 
Deviations    

Nbands x 
NSCAs Db Float 

Segment Percentage   
Nbands x 
NSCAs Db Float 

Invalid SCA Correlation 
Flag   

Nbands x 
NSCAs-1 Db Int 

SCA Overlap Threshold 
Flag   Nband Db Int 

 

7.4.16.4 Options 

Write ratios, standard deviations, and percentages to database (On by Default) 
Summary Report (Off by Default).  Additionally, the option to use just the SCA offsets from the CPF 
(OSCA), without doing the extra calculations, enables non-Earth scenes to be aligned manually. 
 

7.4.16.5 Procedure 

1. Read in the processing parameters. 
2. Read in SCA #1 and #2. 
3. Using the systematic model, with nominal scene elevation, compute the along- and across-track offsets 

to align the SCAs.  This nominal SCA alignment will be similar to the "left Overlap" method described 

in the L1R SCA Stitching algorithm; the difference is using the model instead of the Legendre 

coefficients for alignment.  The along-track offset is how many lines to add to the trailing SCA to align 

it with the leading SCA.  The across-track offset is the number of samples of overlap.  These two values 

will be added to the CPF values for SCA overlap and offset (default zero) to allow the user to adjust the 

overall alignment on a per-scene basis. 

a. Calculate the geodetic latitudes and longitudes of the trailing (search) SCA on the first line of 

data.  Only a subset of the line of samples need to be calculated, just enough to extend beyond 

the expected overlap. 

b. Calculate the geodetic latitude and longitude of either the first or last sample of the leading 

(reference) SCA line index 0. 

c. Find the sample in the search SCA with the minimum distance to the reference sample.  Save the 

distance and search sample index and reference line index for the next iteration. 

d. Repeat b, incrementing the line index and step c. until the saved distance is smaller than the 

minimum distance found. 

e. Calculate the along- and across-track offsets based on the line and sample indices of the two 

pixels with minimum distance found in step c. 

 
4. Calculate cross-track and along-track correlations.  

a. Match the detector responses of the overlap region (The overlap region is described in 
Figure 1). This is basically calculating and applying relative gains, but the gains are only 
derived from the current image, and only the detectors in the overlap region are used. 
Relative gains have already been applied, but depending on the scenes adjacent 
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detectors may still not be perfectly matched. The stripes caused by the lack of matching 
causes problems with correlating the two SCAs. So the overlap detectors must be 
matched here to ensure there aren’t any stripes in the overlap region. 

n

54321

,,
x

Region OVLapin  Detectors Operable #

L

nmnm

xxxxxx

xx







 

Where x  is a pixel in the overlap region after it has been matched, x  is a pixel in the 
overlap region before being matched, m is a row (frame), and n is a column (detector). 

1x  is the mean of the first detector in the overlap region, Lx  is the mean of the last 

detector in the overlap region, and nx is the mean of the detector containing the nmx ,  

pixel.  
Pixels in the artifact mask and samples from inoperable detectors should be ignored 

when they are encountered. (If nmx ,  is a pixel in the artifact mask or a sample from an 

inoperable detector it should not be changed, nmx ,
 = nmx , ). Pixels in the artifact mask and 

samples from inoperable detectors should also not be used in the calculation of the 
detector means.  
 
As shown in Figure 1, the overlap region is defined as the region of image data between 
adjacent SCAs that is 18 + # of overlap detectors wide (9 adjacent detectors in SCA #1 
+ overlap detectors + 9 adjacent detectors in SCA #2) by # of frames common to both 
SCAs after nominal detector shift alignments. 

 
Figure 1: Overlap Region. 

 
b. After SCA 1’s overlap region detectors are matched, the overlap region should be 

broken up into 101 frame segments taken every 50 frames. (This means the first pixel in 
every segment is the middle pixel from the previous segment, and the last pixel in every 
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segment is the center pixel of the next segment. So every segment overlaps with 50% 
of its neighbor segments.) A 10 frame buffer should be left at the top of the overlap 
region, so the first segment will start at the 11th frame of the overlap region. At least a 
10 frame buffer should also be left at the bottom of the image. This buffer could be 
larger if there are any remainder frames left from the segmenting process.  

c. After SCA 2’s overlap region is matched, it will be divided up into 119 frame segments 
with centers “equal” to the left SCA segment centers. The total number of segments 
from each SCA will be equal to the number of complete segments that can be obtained 
from the right SCA or  











50

119-shiftdetector  nominal-frames#
segments# floor . 

Figure 2, below, shows how each SCA should be segmented. All dimensions are inclusive (contains 
both top and bottom frames) so each alternate”101” segment contains the frame between them. The 
dotted lines do not indicate the center of the segments, but rather the start and end of segments. In 
SCA 1 the centers of segments are equal to the first frames of other segments within SCA 1, but in 
SCA 2 the centers do not match up with the first frames of other segments with in SCA 2. 

 
Figure 2: SCA Segmentation. 

d. Once the two overlap regions are segmented, we will find horizontal and vertical 
differences within each segment. (The horizontal difference is the right pixel minus left 
pixel. We do this for every pixel in the segment. The resultant difference matrix will have 
one less column than the segment. The vertical difference is the same but with the 
bottom pixel minus the top pixel. So the dimensions of these difference matrices will be 
the #overlap detectors +8 x 100 for left SCAs and #overlap detectors + 8 x 118 for the 
right SCAs). These horizontal and vertical differences are explained more below. Every 
time a pixel in the artifact mask or a sample from an inoperable detector is encountered, 
the difference should be set to zero. (So every pixel in the artifact mask will produce 4 
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zero entries in the difference matrix, and inoperable detectors will cause two columns to 
contain all zeros).  
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Vertical Difference 

(Difference Matrix) 
x represents a pixel.  
 

e. Now correlate each difference matrix from SCA 1 with each difference matrix from SCA 
2. Each difference matrix from SCA 1 is only correlated with the one corresponding 
difference matrix from SCA 2.  

i. Start with the last column from SCA 1’s difference matrix overlapping the first 
column of SCA 2’s difference matrix, and the first row of SCA 1’s difference 
matrix overlapping the first row of SCA 2’s difference matrix. There will only be 
100 “pixels” (these “pixels” are actually the four pixel difference elements from 
the difference matrix) overlapping at this point. This corresponds to a shift of -8 
horizontal and -9 vertical. To find the correlation product for this shift, multiply 
all the overlapping “pixels” and find the mean of their products. Figure 3 shows 
the overlapping “pixels” of two example difference matrices. 

 

 
Figure 3: Two Overlapping Difference Segments (Red = SCA 1 Diff. Mat., Blue = SCA 2 Diff. Mat., 

and Green = Overlapping “Pixels”). 
 

The correlation product of the above figure is the mean of the product of the  1st 
overlapping “pixel” pair,  the product of the 2nd overlapping “pixel” pair, the 
product of the 3rd overlapping “pixel” pair, the product of the 4th overlapping 
“pixel” pair, and the product of the 5th overlapping “pixel” pair. 
 

ii. Shift the two difference matrices, and find the correlation products by finding 
the mean of the individual overlapping “pixel” products. Continue doing this until 
all columns of both difference matrices are overlapping, and the bottom frames 
of each matrix are overlapping. (This corresponds to a shift of 9 horizontal and 
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9 vertical). Figure 4 shows the two example difference matrices at different 
shifts. The red or the matrix from SCA 1 can not be seen in the images on the 
right side since it is completely overlapped with the blue or SCA 2’s matrix. 

 

 
Figure 4: Two Overlapping Difference Matrices. 

Each of the different shifts seen above will have a different correlation product. In 
this example there should be 20 different correlation products. In the actual 
scene there will be 342 different correlation products between two difference 
matrices as the shifts range from -8 horizontal and -9 vertical and 9 horizontal 
and 9 vertical. 

 
One must be careful when calculating the mean of the overlapping “pixels”. If the 
product between two “pixels” is zero, that pair must be removed from calculating the 
mean. 

 
iii. After all 342 correlation products have been found for the two difference 

matrices, the correlation shifts should be found for the maximum correlation 
product. Figure 5 is an example of the correlation products from one set of 
difference matrices. The maximum correlation product is represented by the 
brightest white pixel and corresponds to a shift of 0 horizontal and 1 vertical. 



LDCM-ADEF-001 
Version 3 

 

 
Figure 5: Correlation Products. 

 
iv. Steps 4.e.i-iii should be run for each set of difference matrices. 
v. Now we have a horizontal and vertical correlation shift for all the difference 

matrices. If either the absolute vertical or horizontal shift is larger than the Valid 
Correlation Maximum, that correlation will not be considered valid. Also a 
correlation, both horizontal and vertical shifts, must be equal to the correlation 
shifts of its neighboring difference matrices to be valid. The number of neighbor 
shifts it must equal is set with the Minimum Valid Neighboring Segments 
variable. If the Minimum Valid Neighboring Segments is even, the current 
correlation shifts are compared to the same number of higher and lower 
correlation shifts. (Since the image is segmented from top to bottom, higher and 
lower correlation shifts denote the correlation shifts belonging to the adjacent 
difference matrices on the top and bottom of the current difference matrix.) If 
the Minimum Valid Neighboring Segments is odd, the current correlation shifts 
are compared to one more higher correlation shift than lower correlation shift. 
So if the Minimum Valid Neighboring Segments is set to 1, the current 
correlation product is compared to only its adjacent higher correlation shift. The 
edge correlation products should only be compared to the same number of 
higher and lower correlation shifts as the central correlation shifts. If the 
Minimum Valid Neighboring Segments is set to 2, all the central correlation 
shifts are compared to one higher and one lower correlation shift, and the edge 
correlation products are only compared to one either higher or lower correlation 
shift. Figures 6 and 7 show some example correlation shifts (Minimum Valid 
Neighboring Segments is set to 2, and the Valid Correlation Maximum is set to 
6).  
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Figure 6: Correlation Shifts. 

 
Figure 7: Close-up of Correlation Shifts. 

In Figure 7 (a), all of the correlation shifts are invalid. The 1st shifts are invalid because neither the 
horizontal (Red Dot) nor the vertical shifts (Blue Cross) are the same as the 2nd shifts. The 2nd shifts 
are invalid because both the horizontal and vertical shifts are different from the 1st shifts; these shifts 
are also invalid because they are different from the 3rd shifts, and the absolute horizontal shift is 
greater than 6. The 3rd shifts are invalid because both the horizontal and vertical shifts are different 
from the 2nd shifts. The 4th set of shifts is valid because both the horizontal and vertical shifts are the 
same as the 3rd and 5th, and both the absolute horizontal and vertical shifts are less the Valid 
Correlation Maximum.  The 5th shifts are invalid because the horizontal shift is different from the 
horizontal shift of the 6th set of shifts. The 6th shifts are invalid because they are not equal to the 5th. 
The 7th set of shifts is valid because both shifts are equal to both the 6th and 8th shifts, and they are 
less then 6. The 8th, 9th, 10th, and 11th are all invalid because their shifts are not equal to both of their 
neighbor’s shifts. 
 

5. Once all the valid correlation shifts have been found, those shifts are used to line up the 
corresponding segments. Individual pixel-pixel ratios can now be calculated by taking each 
overlapping pixel in SCA 1 and dividing it by each overlapping pixel in SCA 2. If there were 
not any valid correlated segments, we cannot find an SCA-SCA ratio, and the Invalid 
SCA Correlation Flag needs to be set, and steps 7-9 can be skipped.   
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6. If the SCA-SCA ratio exceeds the SCA Overlap Threshold for that band, then the SCA Overlap 
Threshold  Flag needs to be set, and the SCA ratio should not be updated.  The SCA 
Threshold Flag is a value around the mean Default SCA-SCA ratio. 

7. Calculate the mean of all the overlapping pixel ratios; this is the SCA-SCA ratio.  
8. Calculate the standard deviation of all the overlapping pixel ratios. 
9. Calculate the percentage of valid segments of the total segments.  
10. Keep SCA 2 and read in SCA 3. 
11. Repeat steps 2-10 for all Bands and SCAs.  
12. If the writing to database option was selected, write the SCA-SCA ratios, standard deviations, 

and percentages to the database. (These are not updated if the SCA Overlap Threshold Flag 
is set).   If the SCA Correlation Flag was set for this SCA-SCA pair, the SCA-SCA ratio and 
standard deviation should be set to some value to indicate this. (-1?) 

13. If the summary report option was selected, write the SCA-SCA ratios, standard deviation, and 
percentages to a report. The report will include a line for the SCA Overlap Threshold Flag that 
has a 1 if the STR is violated and a 0 otherwise. 

 

7.4.17 SCA Discontinuity Correction 

7.4.17.1 Background 

Image data obtained from the EO-1 Advanced Land Imager (ALI) used to simulate expected OLI data 
sets exhibited significant residual “discontinuities” in overall response across SCAs after relative gain 
correction and absolute radiometric correction. It is anticipated that actual OLI and TIRS data will 
have the same issues; hence a need for the correction algorithm discussed herein is anticipated. The 
SCA overlap statistics algorithm calculates SCA-SCA ratios which measure the difference in 
brightness between two adjacent chip assemblies. The characterization algorithm uses these ratios to 
calculate SCA discontinuity correction factors, which are applied in the correction algorithm, thus 
creating a more uniform cross track data product. 

7.4.17.2 Input 

Descriptions Symbol Units Level Source Type 

 Scene Q 
W·sr-1·m-2 

·µm) 

Nbands x 
NSCAs x 
Ndetectors x 
Nframes 

 Float 

SCA-SCA Ratios      

     a) CPF Model  Unitless Nbands CPF Float 

     b)Scene Specific  Unitless Nbands Db Float 

Saturated Pixel List   

Nbands x 
NSCAs x 
Ndetectors x 
Nframes 

LM Int 

Impulse Noise   

Nbands x 
NSCAs x 
Ndetectors x 
Nframes 

LM Int 

Dropped Frames   
Nbands x 
NSCAs 

LM Int 
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Inoperable Detectors   
Nbands x 
NSCAs 

CPF Int 

7.4.17.3 Output  

Descriptions Symbol Units Level Destination Type 

 Scene  
W·sr-1 

·m-2 

·µm) 

Nbands x 
NSCAs x 
Ndetectors x 
Nframes 

 Float 

7.4.17.4 Options 

SCA Discontinuity-ratios 
a) CPF Model (Selected if any database “Invalid SCA Correlation Flags” are found set by the 

SCA Overlap Statisics Characterization algorithm for any SCA pair in the current scene 
band), CPF values will initially be set equal 1, effectively disabling a correction to the 
scene, yet allowing for a future “static” correction if a suitable set of CPF correction 
parameters can be determined. This option should also be selectable during work order 
creation regardless of flag states. (Default-Off) 

b) Scene Specific SCA-SCA Ratios (Default-On) 
 

Summary Report (Default-Off) 

7.4.17.5 Procedure 

14. Read in the processing parameters. 
15. For each band do the following: 

a. Check if any Invalid SCA Correlation Flags are set, and if not then execute using the 
SCA-SCA ratios. If any flags are set, then execute using the CPF correction 
parameters. 

b. Set the leftmost (westernmost) SCA discontinuity correction factor to 1. For all other 
SCAs, set the discontinuity correction factor to its SCA-SCA ratio and propagate these 
ratios to the right. (This means the discontinuity correction factor for the second SCA is 
equal to its SCA-SCA ratio. The discontinuity correction factor of the third SCA is equal 
to its SCA-SCA ratio multiplied by the discontinuity correction factor of the second SCA. 
The discontinuity correction factor for any SCA is its own SCA-SCA ratio multiplied by 
the discontinuity correction factor of the SCA to the west or left) 

c. Normalize all the SCAs’ discontinuity correction factors to 1. (This is done on the 
correction factors and not the ratios. Simply add up all the discontinuity correction 
factors, including the 1 used for the westernmost SCA, and divide by the amount of 
SCAs in the band. Take the reciprocal of this division, and multiply it with all the 
discontinuity correction factors). 

d. Multiply each pixel, excluding any problem pixels from the Artifact Mask, in an SCA by 
its discontinuity correction factor.  

e. If the summary report option was selected, write the discontinuity correction factors to a 
summary report.  
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7.4.18 Inoperable Detectors Fill 

7.4.18.1 Background 

An inoperable detector is one that provides no change in output DN value when radiance on its input 
is changed. The data from inoperable detectors appear as very distinct stripes in final image 
products. This algorithm replaces image data generated by the inoperable detectors with the data 
from neighboring detectors, in order to enhance visual appearance of OLI and TIRS images. It does 
not replace data generated by the “out-of-spec” detectors (TIRS may have different way of dealing 
with “out-of-spec” detectors). The algorithm assumes that the input scene data are nominally spatially 
aligned and that a list of known inoperable detectors is available within the CPF. The algorithm 
operates within the normal Level 1R data processing flow.  

7.4.18.2 Inputs 

Descriptions Symbol Units Level Source Type 

Scene (L1R) Earth data 

 
 
L 

 

msrm

W

2

 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes  

Float 
 

Inoperable detectors 

  Nbands x 
NSCAs x 
Ndetectors CPF  Int 

7.4.18.3 Outputs 

Descriptions  Symbol Units Level Target Type 

  Scene (L1R-corrected)  

 
 
L 

 

msrm

W

2

 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes  

Float 
 

7.4.18.4 Options 

None. 

7.4.18.5 Procedure 

For each inoperable detector, di, listed in the CPF  
 

1. If the inoperable detector’s immediate neighbors are operable, replace each pixel in the image 
column generated by the inoperable detector with the mean of two adjacent pixels in the same 
line, l, of the same SCA: 

 

2

),(),(
),( 11  
 ii

i

dlQdlQ
dlQ  

 
- If the inoperable detector is the first (d1) or last (dmax) on an SCA, its data will be replaced 

with the data from the nearest neighboring operable detector from the same SCA. 
 

),(),( 21 dlQdlQ   
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),(),( 1maxmax  dlQdlQ  

 
2. If there are two consecutive inoperable detectors, di and di+1, on the same SCA, then the 

correction of corresponding image data needs to be accomplished by interpolating data from 
the available adjacent operable detectors:  
 

3

),(),(2
),( 21  
 ii

i

dlQdlQ
dlQ  

 

3

),(2),(
),( 21

1





 ii

i

dlQdlQ
dlQ  

 
For example, if detectors 23 and 24 are inoperable, then their outputs need to be replaced with 
the result of linear interpolation of data from detectors 22 and 25, for each line of L1R image.  
 
- If the two inoperable detectors are the first and second detector on an SCA, their data will 

be replaced with the data from the third detector from the same SCA. 

),(),( 31 dlQdlQ   

),(),( 32 dlQdlQ   

 

- If the two inoperable detectors are the last and second last detectors on an SCA, their data 
will be replaced with the data from the third last detector from the same SCA. 

 

),(),( 2maxmax  dlQdlQ  

 

),(),( 2max1max   dlQdlQ  

 
3. If there are more than two consecutive inoperable detectors on an SCA, then the pixel values 

for the affected detectors need to be filled with zeros. 
 
Note: To replace inoperable detector data, this algorithm uses pixels affected by artifacts, e.g. 
impulse noise or saturation, and fill pixels (on top and bottom of images that support the nominal 
image alignment) the same way as regular pixels. 
 

7.4.19 Residual Striping Correction 

7.4.19.1 Background 

Many algorithms exist to estimate relative detector gain.  These algorithms can generate estimates 
that do a good job of striping correction in typical scenes most of the time.  However, scenes can still 
contain observable striping after radiometric correction (including relative gain correction).  The most 
likely causes include: 

 underestimation or overestimation of detector bias levels, leading to errors in bias removal 

 underestimation or overestimation of relative gains, due to algorithmic issues and/or potential 
issues relating to scene content 
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 underestimation or overestimation of absolute gains at the band and/or focal plane module 
level 

Correction of residual striping in a scene may be desirable for cosmetic reasons and/or required for 
some analytical studies. 
 
The algorithm described herein implements a cosmetic approach for residual striping removal in 
radiometrically corrected image data assuming a standard relative gain correction has already been 
applied. Data obtained from the striping characterization algorithm will be used to drive the Residual 
Striping Correction algorithm. 
 

7.4.19.2 Inputs  

Descriptions Symbol Units Level Source Type 

Scene 

  Nbands x 
NSCAs x 
Ndetectors 
x Nframes  Float 

Scene Striping Correction 
Matrix  

  Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

Striping 
Characterization 
Algorithm Float 

 

7.4.19.3 Outputs 

Descriptions 
Symb
ol 

Unit
s Level Destination Type 

Scene  

  Nbands x 
NSCAs x 
Ndetectors 
x Nframes  Float 

7.4.19.4 Options 

No Options 

7.4.19.5 Procedure 

1. Read in the image. 
2. Read in the Scene Striping Correction Matrix from the Striping Characterization Algorithm. 
3. Subtract the Striping Correction Matrix from the image. For each FPM, the Striping Correction 

Matrix will have one less pixel on all sides (not including fill data, so the first and last columns 
and rows should be unchanged. All artifacts and inoperable detectors were zeroed out in the 
Striping Characterization algorithm; hence no special handling is required in this algorithm. The 
Striping Correction Matrix simply needs to be aligned with the image data and subtracted. 
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7.4.20 Saturated Pixel Replacement 

7.4.20.1 Background 

The saturated pixels determined in L0R data using the Saturated Pixel Characterization algorithm 
may change their values during radiometric processing. As a result, they may not be easily identified 
in final L1R product. To avoid erroneous interpretation of radiometric data in L1R products, it is 
important to clearly locate originally identified saturated pixels. 
 
This algorithm describes the post-1R correction to replace high-end saturated pixels in image data 
with the band-maximum radiance (Lsat_max) values and low-end saturated pixels with the band-
minimum radiance (Lsat_min) values. The algorithm operates within the normal Level 1R data 
processing flow.      

7.4.20.2 Inputs   

Descriptions Symbol Units Level Source Type 

Scene (L1R) Earth data 

 
 
L 

 

msrm

W

2

 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes  

Float 
 

Saturated pixel locations 

  Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

LM 
 

Int 
 

Low Saturation Radiance 
Level 

 
Lsat_min msrm

W

2

 Nbands CPF Float 

High Saturation Radiance 
Level  

 
Lsat_max msrm

W

2

 Nbands CPF Float  

7.4.20.3 Outputs 

Descriptions  Symbol Units Level Target Type 

  Scene (L1R-corrected)  

 
 
L 

 

msrm

W

2

 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes  

Float 
 

7.4.20.4 Options 

By default, the digitally low and high saturated pixels will be replaced with the corresponding low and 
high saturation radiance levels. In addition, the following options need to be selectable through work 
order parameters: 

- replace pixels only at the high saturation level or only at the low saturation level  
- replace both analog and digitally saturated pixels (with same radiance saturation levels).  
- no saturated pixel replacement. 

7.4.20.5 Procedure 

For each detector (d): 
1. Based on the selected options and Labeled Mask record, find each pixel originally identified in 

Saturated Pixel Characterization algorithm as low and/or high saturated  
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2. Replace the pixel values with the corresponding Low and High Saturation Radiance Levels, 
given in CPF 

 

7.4.21 Radiance Rescaling 

7.4.21.1 Background 

The standard LDCM products are OLI reflectance and TIRS radiance products in 16-bit integer 
format. The OLI and TIRS data are radiometrically and geometrically processed using floating point 
operations. For OLI, this algorithm scales and converts the resultant L1G reflectance from floating 
point format to 16-bit integer format using scaling parameters from the CPF. In addition, the algorithm 
provides rescaling coefficients for direct conversion from 16-bit integer reflectance to floating point 
radiance. For TIRS, the algorithm scales and converts radiance values from floating point format to 
16-bit integer format. The algorithm assumes that no scaling is applied during the Geometric 
Processing.  

7.4.21.2 Inputs 

Descriptions  
Symb
ol 

Units 
Level  Source Type 

For OLI: 

Reflectance scene (L1G)  

 
 
ρ 

 Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

Geometric 
Processing float 

Reflectance Rescaling 
Gain 

Gρ DN-1 
Nbands CPF float 

Reflectance Rescaling 
Bias 

Bρ  
Nbands CPF float 

Reflectance to Radiance 
conversion coefficient 

 
ρR msrm

W

2

 
Nbands 

Reflectanc
e 
Conversion float 

For TIRS: 

Radiance scene (L1G) 

 
 
L 

 

msrm

W

2

 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

Geometric 
Processing float 

Radiance Rescaling Gain 
 
GL DN

msrm

W

2  
Nbands CPF float 

Radiance Rescaling Bias 

 
BL msrm

W

2

 Nbands CPF float 

7.4.21.3 Outputs 

Descriptions  Symbol Units Level Target  Type  

For OLI: 

Scene L1G 

 
 
ρint 

 
 
DN 

Nbands x 
NSCAs x 
Ndetectors  

Int 
(16-
bit)  
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x Nframes 

Reflectance Rescaling 
Gain 

Gρ DN-1 
Nbands Metadata float 

Reflectance Rescaling 
Bias 

Bρ  
Nbands Metadata float 

Radiance Rescaling Gain 
 
GL DN

msrm

W

2  
Nbands Metadata float 

Radiance Rescaling Bias 

 
BL msrm

W

2

 Nbands Metadata float 

For TIRS: 

Scene (L1G) 

 
 
Lint 

 
 
DN 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes  

Int 
(16-
bit) 

Radiance Rescaling Gain 
 
GL DN

msrm

W

2  
Nbands Metadata float 

Radiance Rescaling Bias 

 
BL msrm

W

2

 Nbands Metadata float 

7.4.21.4 Options 

 

7.4.21.5 Procedure 

1. For each band, apply scaling to each image pixel, except to fill data, of geometrically corrected 
(L1G) floating point OLI reflectance and TIRS radiance images: 

 
a. For OLI 

 






G

B
scal


  

 
b. For TIRS 

 

L

L
scal

G

BL
L


  

 
2. Convert scaled OLI reflectance (ρscal), TIRS radiance (Lscal) and fill data pixel values from 

floating point to 16-bit integer format through rounding to the closest 16-bit integer values 
 

a. For OLI 
 

 scalround  int  

 
b. For TIRS 
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 scalLroundL int  

 
3. Under the assumption that 0 will be reserved for fill data, convert all zeros in ρint and Lint 

images to Qcalmin = 1. More generally, convert all pixels with value less than Qcalmin to Qcalmin. 
 
4. Only for OLI, calculate rescaling coefficients that will be used for direct conversion from 16-bit 

integer reflectance to floating point radiance 
 









BB

GG

RL

RL




 

 
5. Write the following rescaling parameters to the product metadata 
 

a. For OLI: 
i. Reflectance Rescaling Gain, Gρ 
ii. Reflectance Rescaling Bias, Bρ  
iii. Radiance Rescaling Gain, GL  
iv. Radiance Rescaling Bias, BL 

 
b. For TIRS: 

i. Radiance Rescaling Gain, GL  
ii. Radiance Rescaling Bias, BL 

 

7.4.22 Cloud Cover Assessment  CCA – control 

7.4.22.1 Background/Introduction 

 
The Landsat Data Continuity Mission (LDCM) Cloud Cover Assessment (CCA) system will be tasked 
with creating full resolution cloud masks for every LDCM scene.  Unlike previous Landsat cloud cover 
assessment algorithms, CCA for LDCM will be composed of several intermediate algorithms put 
together in a modular fashion. 
 

7.4.22.2 Inputs 

Descriptions  Units Level  Source Type 

OLI scene data (L1G), as 
TOA reflectance  

DN Scene, all 
OLI bands 

 long 

TIRS scene data (L1G), 
as TOA radiance 

DN Scene, all 
TIRS 
bands 

 long 

Solar elevation angle degrees Scene Metadata float 

Solar azimuth angle degrees Scene Metadata float 

L1G rescaling LMAX none 
(OLI) or 
radiance 
(TIRS) 

Nbands CPF or 
Metadata 

float 

L1G rescaling LMIN none Nbands CPF or float 
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(OLI) or 
radiance 
(TIRS) 

Metadata 

L1G rescaling QCALMAX DN Nbands CPF or 
Metadata 

long 

L1G rescaling QCALMIN DN Nbands CPF or 
Metadata 

long 

CCA Algorithm weights none Nalgorithm x 
Nclasses 

CPF or 
ODL file 

float 

 
Some intermediate CCA components may have additional inputs.  These are discussed in the ADD 
for each CCA. 
 
The CCA component algorithms may use any or all of the OLI and TIRS bands.  The individual ADDs 
for these algorithms will refer to OLI Band numbers, which for clarity are named here: 
 

OLI Band 
Number 

Band Name 
Equivalent 

Landsat 7 Band 

1 Coastal Aerosol n/a 

2 Blue 1 

3 Green 2 

4 Red 3 

5 NIR 4 

6 SWIR 1 5 

7 SWIR 2 7 

8 Pan 8 

9 Cirrus n/a 

 
TIRS bands are referred to as TIRS Band 1 and TIRS Band 2, and the Landsat 7 equivalent band for 
both is Band 6.  (The equivalent Landsat 7 bands are provided as an aid to future CCA ADD writers 
and editors). 
 

7.4.22.3 Outputs 

The final output of the CCA system is a scene-wide cloud score that will be reported in the L1G 
metadata, and a quality band (QB) mask file – a 16 bit image of the same dimensions as the L1G 
scene. 
  

Bit Flag description Values 

0 Designated Fill 
0 for image data 
1 for fill data 

1 Dropped Frame (Reserved) 
0 for normal data 
1 for dropped frame 

2 Terrain Occlusion 
0 for normal data 
1 for terrain occlusion 

3 Reserved 
Reserved for a future 1-bit 
artifact designation. 

4-5 Water confidence 
00 = Not set. 
01 = 0-35% confidence 
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10 = 36-64% confidence 
11 = 65-100% confidence 

6-7 Reserved 
Reserved for a future 2-bit 
class confidence 
designation. 

8-9 
Vegetation confidence 
(Reserved) 

same as water confidence 

10-11 Snow/Ice confidence same as water confidence 

12-13 Cirrus confidence same as water confidence  

14-15 Cloud confidence same as water confidence 

 
 
There are several reserved bits in the quality band mask file: 
 
The 'Dropped Frame' flag depends on the existence of a recognizable fill pattern or reserved pixel 
value (or an artifact mask, which is not planned) for dropped frame data in the L1G image.  If dropped 
frame data is resampled without a fill pattern or reserved pixel value, then bit 1 of the QB mask file 
will be left unused and will be reserved for a future 1-bit artifact designation. 
 
Bit 3 is reserved for a possible future 1-bit artifact designation. 
 
Bits 6 and 7 are reserved for a possible future 2-bit class confidence designation. 
 
Bits 8 and 9 are a 2-bit confidence designation for pixels classified as Vegetation.  The CCA 
algorithms that are known to be capable of creating a vegetation classification are AT-ACCA and 
ACCA, but they are poor classifiers for this class and their vegetation designations are not currently 
enabled.  In the future it is expected that their classification will be refined and they will use these bits 
in the quality band mask.  Also, there may be future CCA algorithms that perform vegetation 
classification.  Until then, these bits are reserved. 
 
The QB mask file format may change as development continues, but the basic structure will remain.  
Bits will be allocated for some artifacts that are distinguishable at the L1G stage of processing.  
Several classification types will exist and some range of confidence levels will be provided for each 
classification type. 
 
The two-bit confidence levels are as follows: 

00  No confidence level set.  (Used for fill or for class not reported.) 
01  Low confidence. 
10  Mid confidence. 
11  High confidence. 

 
A QB value of 1 (00 01 hex) is reserved for fill data.  It should not be possible to reach this QB value 
when processing a non-fill pixel. 
 
In addition to the CCA final mask, each individual CCA component will create mask images, which 
may be held in memory or may be written to temporary files.  A processing option should be available 
to save these mask image files for analysis.  The format for the intermediate CCA mask image is the 
same as the final QB cloud mask structure, although the CCA components may leave many bits 
unused. 
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7.4.22.4 Options 

The CCA system will coordinate the intermediate CCA modules via the control parameters, which will 
exist in either the CPF or an ODL file.  An example set of parameters is: 
 
 

 
CCA_Algorithms = { "AT-ACCA", "See5-CCA", "ACCA", "Cirrus" } 
CCA_Run_If_Thermal = { "No", "Always", "Yes", "Always" } 
 
CCA_CLASS_TYPE = { "Cloud", "Cirrus", "Snow", "Veg", "Water" } 
AT-ACCA_WEIGHTS = { 0.7, 0.0, 0.7, 0.0, 0.7 } 
See5-CCA_WEIGHTS = { 1.0, 0.0, 0.0, 0.0, 0.0 } 
ACCA_WEIGHTS = { 0.7, 0.0, 0.7, 0.0, 0.7 } 
Cirrus_WEIGHTS = { 0.0, 1.0, 0.0, 0.0, 0.0 } 
 
CREATE_INTERMEDIATE_CCA_MASKS = 0 
CCA_INTERMEDIATE_MASK_FILE_NAMES = { "cca_atacca.img", 
"cca_treecca.img", "cca_acca.img", "cca_cirrus.img" } 
 

An example of CCA parameters. 
 

7.4.22.5 Procedure 

The CCA control system is a shell that runs, in any sequence, the intermediate CCA processes. 

 

Flowchart describing the LDCM CCA control system. 

 

First, the CCA algorithm weights are accessed to get a list of the CCA modules and their class-
specific weights.  Then each CCA module is called to create their intermediate cloud masks.  Finally 
those intermediate masks are read back in and merged into a final cloud mask. 

The detailed procedure is as follows: 
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1. The CCA algorithm weights are read in.  This specifies the CCA algorithms to be run, the 
name of the intermediate cloud mask files, and the weights to be used later when merging 
them together. 

2. The band image files and scene metadata are opened, and the solar angle information is read 
from the metadata. 

3. The parameter 'CCA_Run_If_Thermal' specifies which CCA algorithms are dependent or 
contraindicated in the event that TIRS data is available. 

a. If the parameter is "No", do not run this CCA algorithm if TIRS data exists.  If TIRS data 
do not exist, this algorithm should be run. 

b. If the parameter is "Yes", run this CCA algorithm only if TIRS data exists.  If TIRS data 
do not exist, this algorithm should not be run. 

c. If the parameter is "Always", this CCA algorithm should always be run. 

4. For each CCA algorithm to be run, an intermediate cloud mask is created: 

a. The intermediate mask output file is opened. 

b. For each pixel in the scene: 

i. One pixel value is read in from each band necessary for this CCA algorithm. 
ii. If any of the bands contain fill for this pixel, set the output mask value to fill (00 01 

hex).  Fill will be detected if a pixel value is equal to the reserved pixel value 
designating fill in L1G imagery. 

iii. If the pixel is not fill, the pixel value is converted to TOA reflectance (for OLI 
bands) or TOA radiance (for TIRS bands).  Note that this must be the true TOA 
reflectance, including the scene-wide sun angle adjustment.  (The LDCM L1G 
product is 'psuedo-reflectance', which can be converted to true TOA reflectance 
by dividing it by the sine of the solar elevation angle.) 

iv. The CCA evaluation function is called with the TOA values and the solar angle 
values for this pixel. 

v. Set this pixel in the output mask to the returned value from the evaluation 
function. 

vi. Write out the output mask pixel value. 
c. Once this CCA algorithm is finished processing, close this intermediate mask file and 

rewind all the band files used so the next CCA algorithm can start at the beginning of 
the scene. 

5. When all CCA algorithms are finished processing, the band image files are closed.  The 
intermediate CCA mask files are opened for input. 

6. The resolver algorithm takes the pixel values from all intermediate CCA mask files and merges 
them into a final QB mask file: 

a. For each pixel in the scene: 

i. One pixel value is read in from each intermediate mask file. 

ii. If this pixel is fill (a reserved value of zero in any of the intermediate mask 
images), then set the final mask to a fill value and continue with (iv), below.  No 
confidence scores need be calculated for this pixel. 
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iii. If this pixel is not fill, a score is created for this pixel for each class and 
confidence level.  (This assumes that the weight is zero for classes not used by 
the associated algorithm). 

1. For each class (water, snow, cloud, cirrus): 

a. For each CCA algorithm's intermediate mask value: 

i. If the CCA algorithm has set high confidence bits for this 
class, add this CCA algorithm's weight value to a high 
confidence score for this class. 

ii. If the CCA algorithm has set mid confidence bits for this 
class, add this CCA algorithm's weight value to a mid 
confidence score for this class. 

iii. If the CCA algorithm has set low confidence bits for this 
class, add this CCA algorithm's weight value to a low 
confidence score for this class. 

b. The within-class confidence scores are then compared.  The score 
with the largest value is designated as the confidence value in the 
final mask for this class.  The mid confidence level wins any and all 
ties.  (Thus, if the mid score is lowest, but the high and low scores 
are tied, the pixel is designated mid confidence.) 

c. Set the appropriate bits in the final mask for the chosen class 
confidence value. 

2. If this pixel has not been designated as fill, then a valid scene pixel count 
is incremented. 

3. If this pixel has been designated as high confidence in either cloud or 
cirrus, then a cloud pixel count is incremented. 

iv. If a L1G artifact mask is available and the artifact mask file indicates this pixel 
contains an artifact, set the artifact bits in the final mask.  Currently a L1G artifact 
mask is not planned. 

v. The final mask value for this pixel is written to the final QB mask file. 

b. After all pixels have been processed, the scene-wide metadata cloud score for this 
scene is calculated by dividing the cloud pixel count by the valid scene pixel count. 

7. When the resolver algorithm is finished, all open files are closed. 

8. The intermediate CCA mask files are deleted. 
 

7.4.23 Cloud Cover Assessment CCA – Artificial Thermal (AT)-ACCA 

7.4.23.1 Background/Introduction 

Cloud cover assessment for LDCM will be performed via a series of intermediate CCA algorithms, 
whose outputs will be resolved into a final mask.  The Expanded AT-ACCA (Artificial Thermal 
Automated Cloud Cover Assessment) algorithm is one such intermediate process.  It is a two-phase 
algorithm:  The first phase is a decision tree based on the L7 ACCA algorithm, with the thermal band 
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replaced by a combination of reflective bands.  The second phase is a voting schema to resolve 
ambiguous pixels.  The output of these two algorithms are combined into an intermediate CCA mask. 
 

7.4.23.2 Inputs 

Descriptions  Units Level  Source Type 

OLI Scene data (L1G), as TOA 
reflectance 

none 
(reflectance) 

Scene, 
OLI Bands 
2-7. 

 float 

Solar elevation angle degrees Scene Metadata float 

 

7.4.23.3 Outputs 

 
The output of each CCA component is an intermediate cloud mask file – a 16 bit image of the same 
dimensions as the L1Gs scene.  The standardized format of the cloud mask file is: 
  

Bit Flag description Values 

0 Designated Fill 
0 for image data 
1 for fill data 

1 Unused  

2 Unused  

3 Unused  

4-5 Water confidence 

00 = Not set 
01 = Low confidence 
10 = Mid confidence 
11 = High confidence 

6-7 Unused  

8-9 Unused  

10-11 Snow/Ice confidence same as water confidence 

12-13 Unused  

14-15 Cloud confidence same as water confidence 

Cloud mask file bit format, as used by AT-ACCA. 
 
A byte value of  1 (00 01 hex) is reserved for fill data.  It should not be possible to reach this value 
when processing a non-fill pixel. 
 

7.4.23.4 Procedure 

 
The main loop of the CCA process opens the band files and output files, and reads information from 
the metadata.  It then – for each non-fill pixel – passes the band reflectance values to the evaluation 
function for each CCA algorithm.  The return value from the algorithm is written to the intermediate 
CCA mask file.  The detailed procedure for the CCA main loop can be found in the CCA Control 
System ADD. 
 
The Expanded AT-ACCA evaluation function is a two-phase algorithm based on the L7 ACCA 
algorithm. 
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The first phase of the AT-ACCA algorithm follows the structure of phase 1 of the Landsat 7 ACCA 
algorithm.  Because the ACCA algorithm uses the L7 thermal band, in AT-ACCA an artificial thermal 
(AT) band is created from the OLI reflective bands.  The AT band is then used with the other OLI 
bands to classify the scene pixels and assign a confidence score to them.  This phase may classify a 
pixel as Water or Snow/Ice; flags for those classes are reserved in the cloud mask file structure.  The 
AT-ACCA algorithm is also capable of Vegetation classification, but because the accuracy is poor it is 
not planned to use this algorithm for that purpose. 
  
The second phase of Expanded AT-ACCA is known as the 'gD02' algorithm.  It is a voting algorithm, 
intended to resolve some of the pixels designated as ambiguous by the earlier phases.  The gD02 
algorithm is a series of threshold tests using the reflective bands and the AT band.  Each successful 
test carries one vote.  2 or more votes indicates that a pixel is clear, 0 votes indicates that it is cloudy, 
while 1 vote allows the ambiguous designation to stand. 
 
 
The detailed procedure for the Expanded AT-ACCA evaluation function is: 
 

1. Calculate the AT (Artificial Thermal) band. 
The AT band is calculated from the Landsat-like reflectance bands. 
 
AT = -92.7*ND(B4,B6) + 261.4*ND(B3,B7) - 48.8*ND(B3,B6) - 17.5*ND(B5,B3) - 
146.9*ND(B2,B7) + 58.7*ND(B4,B2) - 117*ND(B3,B2) + 172*CSA*B6 + 76*CSA*B5 + 
151*CSA*B4 - 951*CSA*B3 + 539*CSA*B2 + 28*B7 - 132*B6 - 106.2*B5 - 22.4*B4 + 
633.1*B3 - 443.6*B2 + 302.0986 
 
where ND(x,y) = The normalized difference between x and y. 

  = (x – y)/(x + y) 

 CSA = The cosine of the solar zenith angle. 

   (Note that the metadata may only provide the solar elevation angle.  Zenith = 

90 degrees – Elevation.) 

 Bx = The reflectance in OLI band x. 

 AT = The calculated AT band value. 

 
The equation used to calculate the AT band was arrived at by an empirical fit to a test set of 
over 1 million pixels of L7 data.  It has no scientific derivation. 
Prototype code for the AT band calculation is provided in the cubist_therm.c routine. 

2. Phase 1:  Perform the AT-ACCA cloud detection algorithm. 
a. B4 test #1:  If B4 > 0.08, go to 2.a.i. 

i. NDSI test #1:  If ND(B3,B6) > -0.25 and < 0.7, go to step 2.a.i.1. (ND(B3,B6) is 
known as NDSI, the Normalized Differential Snow Index.) 

1. AT test:  If AT < 300, go to 2.a.i.1.a. 
a. B6composite test:  If (1-B6)*AT < 225, go to step 2.a.i.1.a.i. 

i. B54 ratio test:  If B5/B4 < 2.25, go to step 2.a.i.1.a.i.1. 
1. B53 ratio test:  If B5/B3 < 2.2, go to step 

2.a.i.1.a.i.1.a. 
a. B56 ratio test:  If B5/B6 > 1, then this pixel is a 

cloud.  Set the output value to high confidence 
cloud.  (CCA_INT_CLOUD_HIGH) 
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ii. If any of the B56, B53, or B54 ratio tests fail, the pixel is 
temporarily designated as ambiguous, and proceed to Phase 
2. 

b. If the B6composite test fails, perform the B6 test:  If B6 < 0.08, then 
this pixel is clear.  Set the output value to clear of unknown class.  
(Low value for cloud confidence and low value for class confidence.  
This is set by the value CCA_INT_UNKNOWN_LOW + 
CCA_INT_CLOUD_LOW.) 

c. If the B6 test fails, temporarily designate the output value as 
ambiguous, and proceed to Phase 2. 

2. If the AT test fails, this pixel is clear.  Set the output value to clear.  
(CCA_INT_UNKNOWN_LOW + CCA_INT_CLOUD_LOW) 

ii. If the NDSI test #1 fails, perform NDSI test #2:  If ND(B3,B6) > 0.8, then the pixel 
is snow or ice.  Set the output value to high confidence snow.  
(CCA_INT_SNOW_HI  + CCA_INT_CLOUD_LOW) 

iii. If NDSI test #2 fails, the pixel is not snow but is not a cloud.  Set the output value 
to clear.  (CCA_INT_UNKNOWN_LOW + CCA_INT_CLOUD_LOW) 

b. If B4 test #1 fails, perform B4 test #2:  If B4 < 0.07, then the pixel is water.  Set the 
output value to mid confidence water.  (CCA_INT_WATER_MID + 
CCA_INT_CLOUD_LOW)  The confidence is set to mid instead of high because the 
ACCA algorithm does not do a good job at water discrimination, so this test is not very 
effective. 

c. If B4 test #2 fails, the pixel is not water but is not a cloud.  Temporarily designate the 
output value as ambiguous, and proceed to Phase 2. 

3. If the output from Phase 1 is non-ambiguous, skip Phase 2. 
4. Phase 2:  gD02 tests.  The gD02 tests are a series of threshold tests arrived at by statistical 

analysis of L7 data.  They have no scientific derivation.  They are only run when the output of 
the AT-ACCA algorithm (Phase 2) is ambiguous. 

a. Before running the gD02 tests, A 'g score' is initialized to zero.  Every successful test 
increments the g score by 1. 

b. The gD02 tests can be run in any sequence.  All of them must be performed.  The tests 
are: 

 Test is successful if 
parameter 

Test Parameter is less 
than 

or is greater 
than 

B2 0.140 n/a 

B3 0.111 n/a 

B4 0.093 n/a 

B6/nfac 0.087 0.481 

B4/B2 0.640 1.034 

ND(CSA*B2,B5) -0.454 0.262 

ND(B2,B6) -0.138 0.716 

CSA*B2/B7 0.736 3.914 

B4/B3 0.810 1.075 

ND(B3,B5) -0.404 0.160 

ND(B3,B6) -0.186 0.716 

ND(B3,B7) -0.018 0.754 
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ND(CSA*B4,B5) -0.566 -0.016 

ND(B4,B6) -0.232 0.692 

ND(B4,B7) -0.030 0.738 

ND(B6,B7) -0.050 0.300 

 
where nfac = The normalization factor for OLI bands 2 through 7.  This is the square root of 

the sum of the square of the band reflectances. 

  =  

 
c. When all tests have been performed, the g score is examined.  If it is equal to 0 (none of 

the tests were successful) then the pixel is a high confidence cloud  
(CCA_INT_CLOUD_HIGH).  If the g score is 2 or larger (2 or more of the tests were 
successful), the pixel is clear  (CCA_INT_UNKNOWN_LOW + 
CCA_INT_CLOUD_LOW).  For all other outcomes (g=1), the pixel remains ambiguous. 

d. If the pixel is still considered to be ambiguous, it is set to mid confidence cloud.  
(CCA_INT_CLOUD_MID) 

5. Return the output value. 
 

7.4.23.5 Cloud Cover Assessment - See5 

7.4.23.6 Background/Introduction 

Cloud cover assessment for LDCM will be performed via a series of intermediate CCA algorithms, 
whose outputs will be resolved into a final mask.  The See5 CCA algorithm is one such intermediate 
process.  It is a decision tree test using thresholds derived with the COTS package C5 by Rulequest 
Research.  The C5 software is a development tool only – it is not required to run the See5 CCA 
module, nor would it be used in operational verification of the algorithms. 

7.4.23.7 Inputs 

 
Descriptions  Units Level  Source Type 

OLI Scene data (L1G), as TOA 
reflectance 

none 
(reflectance) 

Scene, 
OLI Bands 
2-7. 

 float 

Solar elevation angle degrees Scene Metadata float 

 

7.4.23.8 Outputs 

 
The output of each CCA component is an intermediate cloud mask file – a 16 bit image of the same 
dimensions as the L1Gs scene.  The standardized format of the cloud mask file is: 
  

Bit Flag description Values 

0 Designated Fill 
0 for image data 
1 for fill data 

1 Unused  






7

2

2
x

x

Bx
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2 Unused  

3 Unused  

4-5 Unused  

6-7 Unused  

8-9 Unused  

10-11 Unused  

12-13 Cirrus confidence 

00 = Not set 
01 = Low confidence 
10 = Mid confidence 
11 = High confidence 

14-15 Cloud confidence same as cirrus confidence 

Cloud mask file bit format, as used by See5 CCA. 
 
A byte value of  1 (00 01 hex) is reserved for fill data.  It should not be possible to reach this value 
when processing a non-fill pixel. 
 

7.4.23.9 Procedure 

 
The main loop of the CCA process opens the band files and output files, and reads information from 
the metadata.  It then – for each non-fill pixel – passes the band reflectance values to the evaluation 
function for each CCA algorithm.  The return value from the algorithm is written to the intermediate 
CCA mask file.  The detailed procedure for the CCA main loop can be found in the CCA Control 
System ADD. 
 
The See5 evaluation function is a complicated decision tree with 245 branches.  It was created using 
the COTS package C5 by Rulequest Research.  The package takes input data – with no a priori 
knowledge of the data's contents or physical meaning – and splits the data into sections that minimize 
the information entropy in the dataset.  It then splits those sections into smaller and smaller 
subsections, creating a decision tree that can be used to classify the dataset into a user-defined 
number of branches.   
 
The See5 CCA function was created with a 6.5 million point dataset derived from a global selection of 
Landsat 7 scenes, and was constrained to less than 255 branches in the final decision tree for 
debugging purposes.  The function uses as input OLI bands 2-7 and the solar elevation angle from 
the metadata.  Validation on a 4 billion point global dataset has shown that the See5 CCA function is 
89% accurate in the detection of clouds. 
 
Because it was derived from a simple statistical model with no knowledge of radiometry, the See5 
CCA algorithm has no scientific derivation and is not meant to be comprehended as anything but a 
large decision tree.  The function presented may be replaced with a new one in the future, when the 
characteristics of the OLI instrument become known and the model can be refined. 
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7.4.24 Automated Cloud Cover Assessment ACCA 

7.4.24.1 Background/Introduction 

Cloud cover assessment for LDCM will be performed via a series of intermediate CCA algorithms, 
whose outputs will be resolved into a final mask.  The ACCA (Automated Cloud Cover Assessment) 
algorithm is one such intermediate process.  It is a decision tree based on the L7 ACCA algorithm.  
The output of the ACCA algorithms is an intermediate CCA mask. 
 

7.4.24.2 Inputs 

 
Descriptions  Units Level  Source Type 

OLI Scene data (L1G), as TOA 
reflectance 

none 
(reflectance) 

Scene, 
OLI Bands 
2-7. 

 float 

TIRS scene data (L1G), as 
TOA radiance 

radiance Scene, 
TIRS 
Band 1. 

 float 

 

7.4.24.3 Outputs 

 
The output of each CCA component is an intermediate cloud mask file – a 16 bit image of the same 
dimensions as the L1Gs scene.  The standardized format of the cloud mask file is: 
  

Bit Flag description Values 

0 Designated Fill 
0 for image data 
1 for fill data 

1 Unused  

2 Unused  

3 Unused  

4-5 Water confidence 

00 = Not set 
01 = Low confidence 
10 = Mid confidence 
11 = High confidence 

6-7 Unused  

8-9 Unused  

10-11 Snow/Ice confidence same as water confidence 

12-13 Unused  

14-15 Cloud confidence same as water confidence 

Cloud mask file bit format, as used by ACCA. 
 
A byte value of  1 (00 01 hex) is reserved for fill data.  It should not be possible to reach this value 
when processing a non-fill pixel. 
 

7.4.24.4 Procedure 
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The main loop of the CCA process opens the band files and output files, and reads information from 
the metadata.  It then – for each non-fill pixel – passes the band reflectance values to the evaluation 
function for each CCA algorithm.  The return value from the algorithm is written to the intermediate 
CCA mask file.  The detailed procedure for the CCA main loop can be found in the CCA Control 
System ADD. 
 
The ACCA algorithm follows the structure of phase 1 of the Landsat 7 ACCA algorithm.  In addition to 
clouds, this algorithm may classify a pixel as Water or Snow; flags for those classes are reserved in 
the intermediate cloud mask file structure.  The ACCA algorithm is also capable of Vegetation 
classification, but because the accuracy is poor it is not planned to use this algorithm for that purpose. 
 
The ACCA algorithm makes use of the following band-derived values: 
 

 Bx = The reflectance in OLI band x. 

 T = The radiance of the thermal band. 

 ND(x,y) = The normalized difference between x and y. 

  = (x – y)/(x + y) 

 
The procedure for the ACCA evaluation function is: 
 

6. Phase 1:  Perform the ACCA cloud detection algorithm. 
a. B4 test #1:  If B4 > 0.08, go to step 1.a.i. 

i. NDSI test #1:  If ND(B3,B6) > -0.25 and < 0.7, go to step 1.a.i.1.  (ND(B3,B6) is 
known as NDSI, the Normalized Differential Snow Index.) 

1. Thermal test:  If T < 9.390745, go to step 1.a.i.1.a. 
a. B6composite test:       If (T < 

666.09/(exp(5.70093*(1-B5) - 1)), go to step 1.a.i.1.a.i. 
i. B54 ratio test:  If B5/B4 < 2.25, go to step 1.a.i.1.a.i.1. 

1. B53 ratio test:  If B5/B3 < 2.2, go to step 
1.a.i.1.a.i.1.a. 

a. B56 ratio test:  If B5/B6 > 1, then this pixel is a 
cloud.  Set the output value to high confidence 
cloud.  (CCA_INT_CLOUD_HIGH) 

ii. If any of the B56, B53, or B54 ratio tests fail, the pixel is 
designated as ambiguous. (CCA_INT_CLOUD_MID) 

b. If the B6composite test fails, perform the B6 test:  If B6 < 0.08, then 
this pixel is clear.  Set the output value to clear of unknown class.  
(Low value for cloud confidence and low value for class confidence.  
This is set by the value CCA_INT_UNKNOWN_LOW + 
CCA_INT_CLOUD_LOW.) 

c. If the B6 test fails, designate the output value as ambiguous.  
(CCA_INT_CLOUD_MID) 

2. If the thermal test fails, this pixel is clear.  Set the output value to clear.  
(CCA_INT_UNKNOWN_LOW + CCA_INT_CLOUD_LOW) 

ii. If the NDSI test #1 fails, perform NDSI test #2:  If ND(B3,B6) > 0.8, then the pixel 
is snow or ice.  Set the output value to high confidence snow.  
(CCA_INT_SNOW_HI  + CCA_INT_CLOUD_LOW) 

iii. If NDSI test #2 fails, the pixel is not snow but is not a cloud.  Set the output value 
to clear.  (CCA_INT_UNKNOWN_LOW + CCA_INT_CLOUD_LOW) 
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b. If B4 test #1 fails, perform B4 test #2:  If B4 < 0.07, then the pixel is water.  Set the 
output value to mid confidence water.  (CCA_INT_WATER_MID + 
CCA_INT_CLOUD_LOW)  The confidence is set to mid instead of high because the 
ACCA algorithm does not do a good job at water discrimination, so this test is not very 
effective. 

c. If B4 test #2 fails, the pixel is not water but is not a cloud.  Designate the output value as 
ambiguous.  (CCA_INT_CLOUD_MID) 

7. Return the output value. 
 

7.4.24.5 Maturity 

Level 1.  Changes will be made to this procedure when the characteristics of the OLI and TIRS 
instruments are known.   
 
Other possible changes that may occur in the ACCA algorithm are: 
 

 Disambiguation – A disambiguation algorithm may be appended to the output of the ACCA 
algorithm, to clean up the ambiguous results.  This disambiguation algorithm may be the 
gD02 algorithm used in Expanded AT-ACCA, or may be a new algorithm designed for use 
with LDCM ACCA.   

 Surface Temperature – The ACCA algorithm may be re-engineered to use a split window 
algorithm, which uses two thermal bands to calculate an approximate surface temperature.  
This will require converting two of the TIRS bands into a surface temperature before 
passing through the ACCA decision tree.  The surface temperature algorithm is TBD. 

 Whole Scene Processing – The above procedure assumes that each pixel is read in, 
processed, and written back out in sequence.  This method uses less system memory and 
is parallelizable.  However, for performance reasons, it may be desirable to read in all (or a 
portion) of the bands and process them in memory before writing out the mask.  This will 
require changes to the main loop process flow and to the process flow of the CCA control 
system. 

 Classification Improvements –  The AT-ACCA algorithm can be altered to output 
Vegetation classification for each pixel in the cloud mask.  This is not expected to be 
studied in detail until after the launch of LDCM. 

 Band 2 – This ADD has been specified with TIRS Band 1 as the input thermal data.  As of 
this writing it is not clear which band will be best for deriving thermal brightness 
temperature.  In the future TIRS Band 1 may be replaced with TIRS Band 2 to improve the 
algorithm. 

 Additional parameters – Any of the above changes to this algorithm may require additional 
input parameters, most likely including (but not limited to) the Solar Elevation Angle. 
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7.4.25 Cloud Cover Assessment  CCA- See5 

7.4.25.1 Background/Introduction 

Cloud cover assessment for LDCM will be performed via a series of intermediate CCA algorithms, 
whose outputs will be resolved into a final mask.  The See5 CCA algorithm is one such intermediate 
process.  It is a decision tree test using thresholds derived with the COTS package C5 by Rulequest 
Research.  The C5 software is a development tool only – it is not required to run the See5 CCA 
module, nor would it be used in operational verification of the algorithms. 

7.4.25.2 Inputs 

  
Descriptions  Units Level  Source Type 

OLI Scene data (L1G), as TOA 
reflectance 

none 
(reflectance) 

Scene, 
OLI Bands 
2-7. 

 float 

Solar elevation angle degrees Scene Metadata float 

 

7.4.25.3 Outputs 

 
The output of each CCA component is an intermediate cloud mask file – a 16 bit image of the same 
dimensions as the L1Gs scene.  The standardized format of the cloud mask file is: 
  

Bit Flag description Values 

0 Designated Fill 
0 for image data 
1 for fill data 

1 Unused  

2 Unused  

3 Unused  

4-5 Unused  

6-7 Unused  

8-9 Unused  

10-11 Unused  

12-13 Cirrus confidence 

00 = Not set 
01 = Low confidence 
10 = Mid confidence 
11 = High confidence 

14-15 Cloud confidence same as cirrus confidence 

Cloud mask file bit format, as used by See5 CCA. 
 
A byte value of  1 (00 01 hex) is reserved for fill data.  It should not be possible to reach this value 
when processing a non-fill pixel. 
 

7.4.25.4 Procedure 

 
The main loop of the CCA process opens the band files and output files, and reads information from 
the metadata.  It then – for each non-fill pixel – passes the band reflectance values to the evaluation 



LDCM-ADEF-001 
Version 3 

 

function for each CCA algorithm.  The return value from the algorithm is written to the intermediate 
CCA mask file.  The detailed procedure for the CCA main loop can be found in the CCA Control 
System ADD. 
 
The See5 evaluation function is a complicated decision tree with 245 branches.  It was created using 
the COTS package C5 by Rulequest Research.  The package takes input data – with no a priori 
knowledge of the data's contents or physical meaning – and splits the data into sections that minimize 
the information entropy in the dataset.  It then splits those sections into smaller and smaller 
subsections, creating a decision tree that can be used to classify the dataset into a user-defined 
number of branches.   
 
The See5 CCA function was created with a 6.5 million point dataset derived from a global selection of 
Landsat 7 scenes, and was constrained to less than 255 branches in the final decision tree for 
debugging purposes.  The function uses as input OLI bands 2-7 and the solar elevation angle from 
the metadata.  Validation on a 4 billion point global dataset has shown that the See5 CCA function is 
89% accurate in the detection of clouds. 
 
Because it was derived from a simple statistical model with no knowledge of radiometry, the See5 
CCA algorithm has no scientific derivation and is not meant to be comprehended as anything but a 
large decision tree.  The function presented may be replaced with a new one in the future, when the 
characteristics of the OLI instrument become known and the model can be refined. 
 

7.4.25.5 Verification Methods 

The See5 CCA prototype code will be used to generate cloud masks for a standardized set of data.  
Masks created by the operational algorithm will be verified by comparison with the prototype masks of 
the same data set, and by manual inspection with the imagery to verify its accuracy in cloud 
detection. 
 

7.4.25.6 Maturity 

Level 2.  The format and operation of the See5 CCA algorithm will not change.  The algorithm 
functions themselves may change when the characteristics of the OLI instrument are known. 
 
Other possible changes that may occur in the See5 CCA algorithm are: 
 

 Debug Output – Because of the complexity of the See5 decision trees, it would be useful to 
have an additional byte image created for debug purposes.  The pixel values in this debug 
image would correspond to the index of the decision tree branches that evaluated the pixel.  
This would require changes to the main loop (to open a new file, and to pass data to and 
from the evaluation functions as a structure, so both cloud mask and debug data is 
returned) and to the evaluation functions.  Prototype code with debug output enabled is 
available, but is not presented in this ADD.  Because code already exists, the main impact 
of this option lies in writing out a new debug image; the effort required to modify the code 
would be negligible. 

 Saturation Splitting – The evaluation functions given in this ADD were created over 
exclusively non-saturated L7 data.  It is expected that OLI will not have widespread 
saturation in bands 2-7.  (Small areas of saturation due to fires or specular solar reflection 
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will not adversely affect cloud scores.)  If saturation turns out to be a major issue with OLI 
data, then the See5 CCA algorithm will need to be broken into two functions – one for 
saturated data and one for non-saturated data – and a switch will need to be implemented 
to call the correct function based on the amount of saturation in the data.  This will require 
adding a saturated data algorithm, and a wrapper for both algorithms that will detect 
saturation and call the appropriate function. 

 Whole Scene Processing – The above procedure assumes that each pixel is read in, 
processed, and written back out in sequence.  This method uses less system memory and 
is parallelizable.  However, for performance reasons, it may be desirable to read in all (or a 
portion) of the bands and process them in memory before writing out the mask.  This will 
require changes to the main loop process flow and to the process flow of the CCA control 
system, which must be retained, and an option provided in the CCA Control file to flag the 
correct form of processing for each CCA algorithm. 

 Classification Improvements –  The See5 CCA algorithm can be altered to output a 
predicted classification for each pixel in the cloud mask.  Currently, other classifications in 
the cloud mask format include Water, Vegetation, and Snow/Ice.  The current 
implementation of See5 does not use them, but it could if the requisite training data 
becomes available.  In addition, Cirrus classification in the See5 CCA algorithm will likely 
be improved once OLI data becomes available.  Detailed classification is not expected to 
be implemented by the See5 CCA algorithm by the launch of LDCM. 

 Land Cover Lookup – The See5 CCA algorithm can take a global land cover database as 
additional input, with per-pixel latitude/longitude coordinate labels, thus giving the algorithm 
more information by which to classify pixels.  This would require a global database to be 
linked to the Level 1 processing system.  It is not expected to be implemented by the 
launch of LDCM. 

 

 

7.4.26 Cloud Cover Assessment CCA – Cirrus 

7.4.26.1 Background/Introduction 

Cloud cover assessment for LDCM will be performed via a series of intermediate CCA algorithms, 
whose outputs will be resolved into a final mask.  The Cirrus algorithm is one such intermediate 
process that tests for Cirrus clouds using the OLI cirrus band. 
 

7.4.26.2 Inputs 

Descriptions  Units Level  Source Type 
OLI Band 9 (Cirrus) 
Scene data (L1G), as 
TOA reflectance  

none (reflectance) Scene, OLI 
band 9 
(Cirrus) only. 

 float 

Cirrus Threshold none  CPF float 
 
The Cirrus Threshold is a CPF parameter that has a default value of 0.02.  It may change after 
launch. 
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7.4.26.3 Outputs 

 
The output of each CCA component is an intermediate cloud mask file – a 16 bit image of the same 
dimensions as the L1G scene.  The standardized format of the cloud mask file is: 
  

Bit Flag description Values 

0 Designated Fill 
0 for image data 
1 for fill data 

1 Unused  

2 Unused  

3 Unused  

4-5 Unused  

6-7 Unused  

8-9 Unused  

10-11 Unused  

12-13 Cirrus confidence 

00 = Not set. 
01 = Low confidence 
10 = Mid confidence 
(currently unused) 
11 = High confidence 

14-15 Unused  

Cloud mask file bit format, as used by Cirrus CCA. 
 
A byte value of 1 (00 01 hex) is reserved for fill data.  It should not be possible to reach this value 
when processing a non-fill pixel. 
The 'Mid' confidence level is currently unused by the Cirrus algorithm, but it is retained in the cloud 
mask file format for possible future use. 
 

7.4.26.4 Procedure 

 
The main loop of the CCA process opens the band files and output files, and reads information from 
the metadata.  It then – for each non-fill pixel – passes the band reflectance values to the evaluation 
function for each CCA algorithm.  The return value from the algorithm is written to the intermediate 
CCA mask file.  The detailed procedure for the CCA main loop can be found in the CCA Control 
System ADD. 
 
The Cirrus evaluation function is a simple threshold test, with a threshold value defined by a CPF 
parameter.  The procedure for the Cirrus evaluation function is: 
 

8. Perform the Cirrus detection algorithm. 
a. If  OLI Band 9 (Cirrus band) reflectance > the Cirrus threshold from the CPF, then add 

the high confidence cirrus flag to the output value.  (CCA_INT_CIRRUS_HIGH) 
b. Otherwise, add the low confidence cirrus flag to the output value.  

(CCA_INT_CIRRUS_LOW) 
9. Return the output value. 
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7.4.26.5 Maturity 

Level 1.  Changes will be made to this procedure when the characteristics of the OLI instrument are 
known.   
 
Other possible changes that may occur in the Cirrus algorithm are: 
 

 Algorithm Refinement – The cirrus evaluation function may change once the characteristics 
of the OLI instrument are known.   

 Whole Scene Processing – The above PDL for the main loop assumes that each pixel is 
read in, processed, and written back out in sequence.  This method uses less system 
memory and is parallelizable.  However, for performance reasons, it may be desirable to 
read in all (or a portion) of the bands and process them in memory before writing out the 
mask.  This will require changes to the main loop process flow and to the process flow of 
the CCA control system.. 

 

 

7.5 OLI Radiometry Algorithms 

7.5.1 OLI Bias Model Calibration 

7.5.1.1 Background 

 
The focal plane assembly for the OLI includes 14 sensor chip assemblies (SCA’s) (or focal plane 
modules (FPM’s) when the bandpass filters are included).  Each SCA contains the active detector 
elements for all the 9 imaging bands and a blind band, plus video reference pixels (VRP’s) at both 
ends of each row of active detectors.  The VRP’s consist of all the electronics of a normal active 
detector minus the detector itself, which is replaced by a capacitor. These VRP’s thus are sensitive to 
most of the same electronic variation as the active pixels, minus photo sensitivity.  There are 6 VRP’s 
at each end of each row for a total of 12 per band, with the exception of the Pan band which has 12 at 
each end for a total of 24. Although included as a design feature, these VRP’s were not indicated for 
use in the initial algorithm description for the bias model.  The plan had been to use the blind band 
(full HgCdTe detectors, though masked from light), to track the dark response of the HgCdTe 
detectors. Long dark collects taken during Engineering Design Unit (EDU) as well as Flight Unit 
testing did not show a good correlation of these blind detectors’ response to the active response in 
the absence of light.  However, frame to frame variation as well as variation in the collect to collect 
mean in the dark response of the active pixels was observed to be tracked well by the VRPs.  Since 
these data indicate that the frame to frame and scene to scene behavior of the VRPs is related to that 
of the imaging detectors, the data from them are used to estimate a per frame bias for the imaging 
detectors.   
 
This algorithm calculates three sets of coefficients to estimate the bias of the VNIR and SWIR 
imaging detectors.  First, a per-band, per-SCA scaling factor is calculated that relates the frame to 
frame behavior of the VRP data to that of the dark response of the imaging detectors.  The coefficient 
is the slope resulting from a linear regression of the per-band, per-SCA, per-frame averages of the 
imaging detector data and the per-band, per-SCA, per-frame averages of the VRP data from N0 
shutter collects (excluding long shutter collects) acquired near (in time) to the Earth acquisition being 
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corrected.  This coefficient is used to estimate the frame to frame variation of the bias within an 
image.  Second, two coefficients, a scaling factor and a constant are determined which are used to 
estimate the mean of the dark response within an image.  These coefficients are from a linear 
regression of the per FPM means of VRP data and the per-detector means of the imaging detector 
data from of N1 shutter collects (excluding long shutter collects) acquired near (in time) to the Earth 
acquisition being corrected.  Saturated pixels and impulse noise pixels, as well as pixels from 
dropped frames and inoperable detectors, are rejected from the data (both imaging and VRP) prior to 
fitting the selected model.  This algorithm is anticipated to be run for every Earth acquisition as part of 
processing to produce a level 1R product.  Note that the shutter collects included in the N0 collects 
are also included in what is anticipated to be the larger group of N1 shutter collects, and again also 
that no long shutter collects will be used in this algorithm.   
 
This algorithm should also be implemented as a stand-alone process to enable bias model 
parameters to be determined for an arbitrary date/time range.  This allows for testing the accuracy of 
the bias estimates. 
 

7.5.1.2 Input 

Descriptions Symbol Unit Level Source  Type  

Impulse Noise locations 
in VRPs in shutter 
collects† 

  
N0 x Nbands x NSCAs x 
NVRPs x Nlines Mask Integer 

VRP Operability List† 
  N1 x Nbands x NSCAs x 

NVRPs CPF Integer 

Saturated VRP 
locations in shutter 
collects† 

  
N0 x Nbands x NSCAs x 
NVRPs x Nlines Mask Integer 

Dropped Line locations 
in VRPs in shutter 
collects† 

  
N0 x Nbands x NSCAs x 
NVRP x Nlines Mask Integer 

Impulse Noise locations 
in shutter collects† 

  N0 x Nbands x NSCAs x 
Ndetectors x Nlines Mask Integer 

Saturated Pixel 
locations in shutter 
collects† 

  
N0 x Nbands x NSCAs x 
Ndetectors x Nlines Mask Integer 

Dropped Line locations 
in shutter collects† 

  N0 x Nbands x NSCAs x 
Ndetectors x Nlines Mask Integer 

Shutter Histogram 
Statistics for N1 collects 
immediately preceding 
current interval and one 
collect immediately after 
VRP data included  

S DN 

(N1+1)x(Nbands +1)x 
NSCAs x Ndetectors 

Histogram 
Statistics Float 

Cross track averages of 
VRP data from shutter 
collects 

AVRP DN 
N1 x(Nbands +1)x 
NSCAs x Nlines 

Histogram 
Statistics  Float 

Shutter Data-VRP 
included 

Q and 
QVRP 

DN N0 x Nbands x NSCAs x 
Ndetectors x Nlines L0R Integer 
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*for N 
pre-
acquisiti
on 

shutter acquisitions; includes VRP data as well.  Nbands+1 due to the Pan band.   
Nbands does not include the blind band 

 

7.5.1.3 Output  

 

Descriptions  Symbol Unit Level Target  Type  

Pre-acquisition shutter 
average (SA)* 

SA* DN (Nbands +1) x NSCAs x 
Ndetectors BPF Float 

Post-acquisition 
shutter average (SB)* 

SB* DN (Nbands +1) x NSCAs x 
Ndetectors BPF Float 

Per-SCA cross-track 
VRP averages 

AVRP DN (Nbands +1) x NSCAs x 
Nframes DB Float 

Bias Model Parameter 
(a0)* 

a0 N/A 
(Nbands+1) x NSCAs BPF Float 

Bias Model Parameter 
(a1)*  

a1 N/A (Nbands +1) x NSCAs x 
Ndetectors BPF Float 

Bias Model Parameter 
(C1)*  

C1 N/A (Nbands +1) x NSCAs x 
Ndetectors BPF Float 

R-squared values from 
calculating a0 (R0

2)* 

R0
2 N/A 

(Nbands +1) x NSCAs 

Characte
rization  
DB Float 

R-squared values from 
calculating a1 and C1 

(R1
2)* 

R1
2 N/A 

(Nbands +1) x NSCAs 

Characte
rization  
DB Float 

*Nbands+1 accounts for the separation of odd and even lines in the Pan band 
Nbands does not include the blind band 
 

7.5.1.4 Options 

 Number of pre-acquisition shutter collects (N0) and shutter averages (N1) used for bias model 
parameter determination (default is N0=1 and N1=40) 

 Output BPF to file (default off) 

 Start and stop date/time of desired bias model parameters (T0 and T1) 
o Normally this is the date/time of the scene being processed.   

 The standalone version of this code should have the following options.  Two, and only 2 of the 
3 options must be chosen. 

o Start date for scenes to be included in N1 
o End date for scenes to be included in N1 
o Number of scenes to be included in N1 

The newest scene within the selected range of scenes will be used for N0. 

Nominal Integration 
Times (MS and Pan) 

 Micro-
seconds 2 CPF Integer 

Collection Integration 
Times (MS and Pan) 

 Milli-
seconds 2 L0R Float 
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7.5.1.5 Procedure 

This algorithm can be divided into three sections.  In the first section statistics needed for calculations 
done later in the algorithm are calculated or pulled from histogram statistics and stored to the 
database.  In the second section the coefficient a0 which is used for per frame correction is 
calculated.  In the third section the coefficients used to estimate the per detector bias mean, a1 and 
C1 are calculated.   
 
Section 1.   

For all bands 

1. Compare the integration time of the data with nominal integration time.  Proceed if they are the 
same.   

2. Retrieve the pre-and post-acquisition shutter histogram statistics collected prior to the desired 
start date/time (T0) and after the desired stop date/time (T1).  These statistics are included in 
S, but are now known as SA and SB.   

3. Send SA and SB to the BPF database.  This is all that is done with SB in this algorithm, although 
SA is used in later steps. 

4. Retrieve N0 shutter collects (Q and QVRP) prior to the desired start date/time (T0).  The first 
shutter collect before the desired start time will be the pre-acquisition shutter collect.  Note that 
only nominal integration times are used as shutter collects taken during integration time 
sweeps will vary.  Also note that anomalous pixels are excluded from ALL calculations in this 
algorithm.  Pixels from inoperable detectors and VRPs are considered anomalous pixels.   

5. For each band (except for the pan band) and for each SCA, and treating the data from all 
selected collects as a single data set 

a. Find the cross-track average of all of the VRP detectors. 
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is the VRP detector response for the specific band, Nd is the number of operable VRP 
detectors in a band, and AVRP is the VRP average for frame f.   
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 (2) where Q is the 
imaging detector response for a specific band, Nd here is the number of operable 
imaging detectors in the specific band, and A is the imaging detector average for frame 
f..   

6. For the pan band, calculate cross track averages in the same way as in (1) and (2), only treat 
odd and even frames separately.   
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    ,...5,3,1,,,,
1

,,
1

,  


ffdsbQ
N

fsbA
dN

d

VRP

d

oddVRP  (5) 

    ,...5,3,1,,,,
1

,,
1

 


ffdsbQ
N

fsbA
dN

dd

odd  (6) 

7. Write the per-SCA VRP cross-track averages to the database.   

8. Retrieve N1 collects of per detector means (S) and per frame VRP averages (AVRP) from 
histogram statistics from before the desired start date/time.  This includes SA.  Note that all N1 
collects should have been collected at nominal integration time.   

9. For each band (except for the Pan band) and each of the N1 collects, find the per-SCA mean 
of the VRP data.   

   



fN

f

VRP

f

VRP fsbcA
N

csbA
1

,,,
1

,,  (7) 

where AVRP here is the per detector VRP average from histogram statistics, Nf is the number of 
frames, and c is collect.   

10. Calculate the per-SCA VRP means for the pan band in the same way as (7), only treat the 
averages from odd and even frames separately.   

    ,...6,4,2,,,,
1

,,
1

,,  


ffsbcA
N

csbA
fN

f

evenVRP

f

evenVRP
 (8) 

    ,...5,3,1,,,,
1

,,
1

,,  


ffsbcA
N

csbA
fN

f

oddVRP

f

oddVRP
 (9) 

 

Section 2.   

1. For each band (except for the pan band) and for each SCA, and treating the data from all 
selected collects as a single data set 

a. Using a least squares fit, find the coefficient a0 that relates AVRP  to A.  

     fsbAsbafsbA VRP ,,,,, 0  (10) An example of this 

is plotted in Figure 1.  The offset determined by the linear regression is ignored, except 
in calculating the R-squared values.   
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Figure 1.  VRP cross track average plotted against the imaging detector cross track average for one 
SCA of one band 

 

b. Calculate the R-squared values of the fit, R0
2       CfsbAsbafsbA VRPestimate  ,,,,, 0

 (11)  

       



fN

f

estimateerr fsbAfsbAsbSS
1

2
,,,,,  (12) 

    



fN

ff

fsbA
N

sbA
1

,,
1

,

 (13)

 

       



fN

f

tot sbAfsbAsbSS
1

2

,,,,

 (14) 

 

 
 
 sbSS

sbSS
sbR

tot

err

,

,
1,

2

0 

 (15)

 

where Aestimate is the estimate of the of the A, Nf  is the number of frames, and C is the 
offset calculated during the linear regression.  The value will no longer be used after 
these calculations.   

2. Calculate these values for the pan band in the same way as in (10)-(15), only first separate the 
even frames from the odd frames and calculate two values for both a0 and R0

2.   

a.       ,...6,4,2,,, ,,0  ffsAsafsA evenVRPeveneven  (16) 

      ,...6,4,2,,, ,,0  ffsAsafsA oddVRPoddodd  (17) 

b.       ,...6,4,2,,, ,,,0,  fCfsAsafsA evenlrevenVRPevenevenestimate  (18) 
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       ,...6,4,2,,,,,,
1

2

,, 


ffsbAfsbAsbSS
fN

f

evenevenestimateevenerr

 (19) 

    ,...6,4,2,,,
1

,
1

 


ffsbA
N

sbA
fN

f

even

f

even

 (20) 

       ,...6,4,2,,,,,
1

2

, 


fsbAfsbAsbSS
fN

f

eveneveneventot

 (21)
 

 
 

 sbSS

sbSS
sR

eventot

evenerr
even

,

,
1

,

,2

0   (22) 

      ,...5,3,1,,, ,,,0,  fCfsAsafsA oddlroddVRPoddoddestimate  (23) 

       ,...5,3,1,,,,,,
1

2

,, 


ffsbAfsbAsbSS
fN

f

oddoddestimateodderr

 (24) 

    ,...5,3,1,,,
1

,
1

 


ffsbA
N

sbA
fN

f

odd

f

odd

 (25) 

       ,...5,3,1,,,,,
1

2

, 


fsbAfsbAsbSS
fN

f

oddoddoddtot

 (26)
 

 
 

 sbSS

sbSS
sR

oddtot

odderr
odd

,

,
1

,

,2

0   (27) 

Section 3.   

1. For each band (except for the Pan band), each SCA and each detector  

a. Using a least squares fit calculate a coefficient a1 and constant C1 that relates the 
means over N1 collects to the per-SCA VRP means from the same SCA as that detector 
over the same N1 collects.   

       dsbCcsbAdsbacdsbS VRP ,,,,,,,,, 11   (28) 

b. Calculate the R-squared values from the fit, R1
2  

       dsbCcsbAdsbacdsbS VRPestimate ,,,,,,,,, 11   (29) 

      



cN

c

estimateerr cdsbScdsbSdsbSS
1

2
,,,,,,,,

 (30) 

   



cN

cc

cdsbS
N

dsbS
1

,,,
1

,,

 (31) 

      



cN

c

tot dsbScdsbSdsbSS
1

2

,,,,,,,

 (32) 
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 
 
 dsbSS

dsbSS
dsbR

tot

err

,,

,,
1,,

2

1   (33) 

2. Calculate these values for the pan band in the same way as in (28)-(33) only first separate the 
even frame means from the odd frame means and calculate two values for each a1, C1, and 
R1

2.   

a.        dsbCcsbAdsbacdsbS evenevenVRPeveneven ,,,,,,,,, 1,,,1 
 

(34) 

       dsbCcsbAdsbacdsbS oddoddVRPoddodd ,,,,,,,,, ,1,,1   (35) 

b.        dsbCcsbAdsbacdsbS evenevenVRPevenevenestimate ,,,,,,,,, ,1,,1,   (36) 

      



cN

c

evenevenestimateevenerr cdsbScdsbSdsbSS
1

2

,, ,,,,,,,,

 (37) 

   



cN

c

even

c

even cdsbS
N

dsbS
1

,,,
1

,,

 (38) 

      



cN

c

eveneveneventot dsbScdsbSdsbSS
1

2

, ,,,,,,,

 (39) 

 
 

 dsbSS

dsbSS
dsbR

eventot

evenerr

even
,,

,,
1,,

,

,2

,1 

 (40)

 

       dsbCcsbAdsbacdsbS oddoddVRPoddoddestimate ,,,,,,,,, ,1,,1,   (41) 

      



cN

c

oddoddestimateodderr cdsbScdsbSdsbSS
1

2

,, ,,,,,,,,

 (42)

 

   



cN

c

odd

c

odd cdsbS
N

dsbS
1

,,,
1

,,

 (43) 

      



cN

c

oddoddoddtot dsbScdsbSdsbSS
1

2

, ,,,,,,,

 (44) 

 
 

 dsbSS

dsbSS
dsbR

oddtot

odderr

odd
,,

,,
1,,

,

,2

,1 

 (45)

 

3. Write a0, a0,even, a0,odd, a1, a1,even, a1,odd, C1,even, and C1,odd, to the BPF.  Write R0
2, R0

2
,even, 

R0
2
,odd, R1

2, R1
2
,even, and R1

2
,odd to the characterization database.   

4. If selected, write the BPF to a file 

Note that for any pixel marked as inoperable, dropped, or having been affected by impulse 
noise or saturation will be excluded from all calculations.   

7.5.1.6 Maturity  

Level-3. No heritage exists in either Landsat or ALI processing for this algorithm. 
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In step 6, 7, and 8 some number of lines may need to be skipped in order to eliminate any transients 
from the beginning of the shutter collect.  This was done with some of the SWIR bands for ALIAS 
processing. 
 
Note that only pre-acquisition shutter data is used in the main algorithm where coefficients are 
calculated.  From the EDU test data we’ve concluded that we can get away with only one shutter 
collect and there isn’t that much difference, and the pre-acquisition collect is probably easier to use in 
this algorithm.  However, we may decide later that we need both.   
 
There may be enough similarity between using the pre- and post- shutter acquisition averages that 
we may be able to not use the post shutter acquisition averages.   
 
The coefficients a0 that are calculated may be stable enough from collect to collect that it may be 
possible to calculate them only once for use on all images.   
 
A tolerance may be added on the integration time check.   
 
It may be better to make Section 3 its own algorithm apart from sections 1 and 2 if the coefficients 
calculated there must be calculated more often than the coefficients calculated in Section 2.   

7.5.2  OLI Bias Determination  

7.5.2.1 Background 

Removing the detector’s bias from each detector’s data is a necessary first step in the conversion 
from the raw detector signal to radiance (and reflectance) as part of product generation.  The bias 
determination algorithm estimates the bias to remove from each pixel.  There are several ways in 
which the bias can be estimated.  One way uses a per-detector bias estimated by averaging shutter 
data on a per detector basis.  Another way uses a pair of coefficients a1 and C1 to relate the average 
per-SCA VRP response to the average per-imaging detector dark response.  These coefficients are 
then applied to the per-SCA VRP response to estimate the average per-detector dark response.  
Frame to frame variation in the bias can also be estimated by using the VRP data and a coefficient a0 
that relates the per-frame behavior of the VRPs to the per frame behavior of the detector dark 
response within a scene.   
 
The selection of bias model parameters used to derive the bias to be applied is specified via 
parameters/flags set in the processing work order. These flags are defined as options below. 
 

7.5.2.2 Input  

 

Description Level Source  Type  

VRP cross track averages corresponding to 
the scene (AVRP) 

NBands x 
NSCAs x 
Ndetectors x 
Nframes 

Calculated 
from 
image 
data Float 
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Description Level Source  Type  

Dropped frames in VRP data 

Nbands x 
NSCAs x 
Ndetectors x 
Nframes Mask Integer 

Impulse noise in VRP data 

Nbands x 
NSCAs x 
Ndetectors x 
Nframes Mask Integer 

Saturated pixels in VRP data 

Nbands x 
NSCAs x 
Ndetectors x 
Nframes Mask Integer 

VRP operability list 

Nbands x 
NSCAs x 
Ndetectors x 
Nframes CPF Integer 

Pre-acquisition shutter average (Sa) 

Nbands x 
NSCAs x 
Ndetectors BPF Float 

Post-acquisition shutter average (Sb) 

Nbands x 
NSCAs x 
Ndetectors BPF Float 

Bias model parameter (a0) 
Nbands x 
NSCAs BPF Float 

Bias model parameter (a1) 

Nbands x 
NSCAs x 
Ndetectors BPF Float 

Bias model parameter (C1) 

Nbands x 
NSCAs x 
Ndetectors BPF Float 

CPF Bias (bCPF) 

Nbands x 
NSCAs x 
Ndetectors CPF Float 

 
Output 
 

Description Level Target  Type  

Bias 

Nbands x 
NSCAs x 
Ndetectors x 
Nframes 

Bias 
Removal 
or file Float 

 

7.5.2.3 Options 

 Output bias values to file (default off) 

 bias selection 

 Per-detector bias (no estimate of per frame variation included) 
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1. Pre-acquisition shutter average (Sa) 
2. Post-acquisition shutter average (Sb) 
3. Average of pre- and post-acquisition shutter averages (Sab, default) 
4. CPF bias (bCPF) 
5. Estimate using a1, C1, and the per-SCA VRP averages 

 Per-frame bias (estimate of per frame variation included) 

 Source of a0, a1, and C1  
1. Current BPF 
2. Selected date/time for alternate BPF 

 Five options for calculating C 
1. Pre-acquisition shutter average (Sa) 
2. Post-acquisition shutter average (Sb) 
3. Average of pre- and post-acquisition shutter averages (Sab, default for the 

per frame bias) 
4. CPF bias (bCPF) 
5. Estimate using a1, C1, and the per-SCA VRP averages 

7.5.2.4 Procedure 

 
If a per-detector bias is selected where the option number is included in 1-4, then retrieve the 
selected bias values from the BPF.  If option 3 has been selected, then calculate SAB, the average of 
SA and SB. 

      dsbSdsbSdsbS BAAB ,,,,
2

1
,,   (1) where d is detector, 

s is SCA, and b is band.   
 
If a per-detector bias using option 5 is selected, then retrieve a1 and C1 from the BPF.  Calculate the 
per-detector bias estimate with these parameters. 
 
For each band excluding the pan band 

 For each SCA 

 Find the cross-track average of all of the VRP detectors. 

   



dN

d

VRP

d

VRP fdsbQ
N

fsbA
1

,,,
1

,,  (1) where f is line, QVRP 

is the VRP detector response for the specific band, Nd is the number of VRP 
detectors in a band, and AVRP is the VRP average for frame f.  Note that any 
anomalous pixels will be excluded from calculations.   

 Calculate the per-SCA average of the VRP data across all frames. 

   



N

f

VRPVRP fsbA
N

sbA
1

,,
1

,

 (2)

 

 For each detector 

 Calculate the per-detector estimate of the bias mean. 

       dsbCsbAdsbadsbE VRPavg ,,,,,,, 11   (3) 

Where Eavg is the estimate of the bias average.   

 For the pan band, follow the procedure for the other bands, only treat the odd and even frames 

separately.  Note again that all anomalous pixels are excluded from calculations.   
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    ,...6,4,2,,,,
1

,,
1

,  


ffdsbQ
N

fsbA
dN

d

VRP

d

evenVRP  (3) 

    ,...5,3,1,,,,
1

,,
1

,  


ffdsbQ
N

fsbA
dN

d

VRP

d

oddVRP  (5) 

    ,...6,4,2,,,
1

,
1

,,  


ffsbA
N

sbA
N

f

evenVRPevenVRP

 (4) 

    ,...5,3,1,,,
1

,
1

,,  


ffsbA
N

sbA
N

f

oddVRPoddVRP

 (5)

 

       dsbCsbAdsbadsbE evenevenVRPevenevenavg ,,,,,,, ,1,,1,   (6) 

       dsbCsbAdsbadsbE oddoddVRPoddoddavg ,,,,,,, ,1,,1,   (7) 

 Write the per-SCA VRP cross track averages to the database. 

 

The result of any of these options should be an array containing a single value for every detector of 
every band, with the exception being the Pan band where for every detector there is an odd frame 
estimate and an even frame estimate.  Expand this array such that there is one bias value for every 
frame of the image to be corrected, except for in the case of the Pan band where the even frame 
estimate should be expanded to only the number of even frames, and the odd frame estimates 
expanded to only then number of odd frames.  The result will be a single value for every pixel in the 
image to be corrected where every frame belonging to the same detector is identical. Note that 1.5 
DN should have been added to non-barrel-shifted data during convert to float. This is to account for 
the average error due subtracting the lower 12 of 14-bit data from the upper 12 of 14-bit data.   
 
If the selected option is to have the bias include an estimate of the per-frame variation, calculate the 
per-frame bias based on bias model parameters from the specified BPF.   
 

 For each band excluding the pan band 

 For each SCA 

 Retrieve the bias model parameters (a0) from the specified BPF.   

 Calculate the per-SCA average of the VRP data across all frames.  

   



N

f

VRPVRP fsbA
N

sbA
1

,,
1

,  (8) where VRPA is the 

VRP data average and N is the number of frames.   
 

 For each SCA, detector, and frame 

 If one of the options 1-4 for calculating C is selected 

 Retrieve the values of S, where S is per detector bias values from the source 
selected from the previous list.   

 Calculate the constant value C.         sbAsbadsbSdsbC VRPo ,,,,,,   (9) 

where S is the selected per detector bias.  Note that no pixels marked as bad 
or anomalous are included in this calculation.   

 Otherwise, if option 5 is chosen, then C is calculated in exactly the same way as 

in (9) except S is Eavg, as written in (10).         sbAsbadsbEdsbC VRPoavg ,,,,,, 

 (10) 
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 Calculate the per frame bias estimate.  

       dsbCfsbAsbafdsbbias VRP ,,,,,,,, 0   (11) where bias is the 

bias estimate.  

 For the pan band, follow the procedure for the other bands, only treat the odd and the even 
frames separately.  

     ,...6,4,2,,,
1

,
1

,,  


ffsbA
N

sbA
evenN

f

evenVRP

even

evenVRP  (12)

    



oddN

f

oddVRP

odd

oddVRP ffsbA
N

sbA
1

,, ,...5,3,1,,,
1

,  (13)

        sbAsbadsbSdsbC evenVRPevenoeveneven ,,,,,, ,,  (14)

        sbAsbadsbSdsbC oddVRPoddooddodd ,,,,,, ,,  (15)

        dsbCfsbAsbafdsbbias evenevenVRPeveneven ,,,,,,,, ,,0   (16)

        dsbCfsbAsbafdsbbias oddoddVRPoddodd ,,,,,,,, ,,0   (17) 

 
Note that dropped frames will be excluded from calculations and will be set to zero in bias.   
 
Send the bias to Bias Removal, and if the option is selected, to file.   
 

7.5.2.5 Maturity 

Level 3, although portions of this algorithm originated from ALIAS and the L7 IAS before that, the per-
frame bias calculation is new.   
 
The coefficients a0, a1, and C1 may be stable enough from collect to collect that it would be possible 
to calculate it less often than every interval.   
 
There may be enough similarity between using the pre- and post- shutter acquisition averages that 
we may be able to not use the post shutter acquisition averages.   
 
Instead of a simple average of pre- and post-acquisition shutter averages, an interpolation function 
could be used so that either a per-frame or per-scene bias would be used.  This would only occur if 
there was a significant drift in the pre-to-post-acquisition shutter averages.  



LDCM-ADEF-001 
Version 3 

 

 

7.5.3 OLI Bias Removal 

7.5.3.1 Background 

Conversion to radiance (L1R) occurs in 3 steps: bias removal; response linearization; and gain 
(absolute and relative) application. This algorithm addresses the first step in generating the L1R 
radiance product, removing bias.  Applying gain and linearizing the detector response are addressed 
in separate algorithms.  Bias removal is accomplished by subtracting a value (in DN) from each pixel 
of the input image.  This value varies by detector for all bands, and also by frame. 
 
Options to select between a CPF bias and biases derived from shutter data acquired near the collect 
are available for special processing.  An option for bias temperature sensitivity correction (described 
in a separate algorithm) is applied within this algorithm. 
 
Input 
 

Descriptions Level Source Type 

Scene (L0R) 

Nbands, x NSCAs 
x NDetectors x 
NLines 
 L0R Float 

Per line correction 

Nbands, x NSCAs 
x NDetectors x 
NLines 
 Bias Determination Float 

Per detector 
correction* 

(Nbands,+1)x 
NSCAs x 
NDetectors  CPF Float 

Temperature 
Correction Factor 
(CFT – Unitless) 

Nbands, x NSCAs 
x NDetectors 

Temperature Sensitivity 
Correction Float 

*(Nbands+1) accounts for the pan band being separated into odd and even detectors 
 

Output  
 

Descriptions Level Target Type 

Bias Corrected Scene  

Nbands, x NSCAs 
x NDetectors x 
NLines 
 Response Linearization Float 

Choice of Bias 1 L1R Metadata String 

Temperature 
Sensitivity Correction 
Flag 1 L1R Metadata Integer 
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7.5.3.2 Options 

- Apply temperature sensitivity correction (default off) 
- Choice of bias 

o From CPF 
o From bias determination algorithm (default) 

 

7.5.3.3 Procedure 

For each band, SCA, detector and line 

1. If temperature sensitivity correction is selected, multiply the temperature correction factor CFT 
by the corresponding bias.  

    fdsbbiasdsbCFbias T ,,,,,'   (1) 

where b is band, s  is SCA, d is detector, and f is line, and if the bias is to come from the CPF, 
then f in (1) is one.   

2. Subtract the per-line or per-detector bias from the corresponding input scene pixel.  If 
temperature sensitivity correction is selected, use (2).  Otherwise, use (3). 

 

      fdsbbfdsbQfdsbQ ,,,',,,,,,'   (2) 

      fdsbbfdsbQfdsbQ ,,,,,,,,,'   (3) 

where Q is the input scene data Q’ is the output bias corrected scene data, and if the bias is to 
come from the CPF, then f in b and b’ in (2) and (3) is one.   

 

7.5.3.4 Maturity    

Level 2 (ALIAS reuse)  
The only difference between this algorithm and the algorithm used in ALIAS is the per-line biases.  
Depending on OLI test data, this may or may not be needed operationally.  If per-line biases aren’t 
needed, this algorithm will be simplified by removing the line variables in equation (1) and (2). 
 
The temperature correction factor may also be changed to be additive, or possibly both a 
multiplicative and additive term may be needed. 
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7.5.4 OLI Characterize Radiometric Stability (16-day) 

 

7.5.4.1 Background  

Radiometric stability of an instrument is fundamental to low uncertainty in the radiometric calibration 
of data products generated from its data. OLI has requirements on its band average stability over 
several time intervals, specifically 60 second (about 2 scenes), up to 16-day (one repeat cycle) and 
16-days up to 5 years (mission lifetime).  This algorithm specifically addresses the 16 day radiometric 
stability as given as: 
 
OLI-1001 For Bands 1-8, over any time period up to 16 days, after radiometric correction per 

5.3.1.2, with one set of gain coefficients that were determined prior to the 16 day period, 
the scene averaged OLI image data for radiometrically constant targets with radiances 
greater than or equal to L-typical shall not vary by more than plus or minus 1% (95% or 
2 sigma confidence interval) of measured radiance. 

OLI-1522 For Band 9, over any time period up to 16 days, after radiometric correction per 5.3.1.2, 
with one set of gain coefficients that were determined prior to the 16 day period, the 
scene averaged OLI image data for radiometrically constant targets with radiances 
greater than or equal to Ltypical shall not vary by more than plus or minus 2% (95% or 2 
sigma confidence interval) of measured radiance 

 
After launch the 16-day Radiometric Stability will be used for OLI Key Performance Requirement 
(KPR) verification. 
 
Radiometric Stability KPR: 
The key performance metric is the variation in the band average response of the instrument to a 
constant radiance (greater than or equal to Ltypical) over any period of time up to 16 days. Of the 
measurements made over these periods, 95% need to be within 1.2% of the average value for all 
bands but the cirrus band. 
 
This algorithm characterizes the stability of the OLI bands radiometric response using the on-board 
calibration devices.  In particular, the working Stim lamps will be used every day and the working 
solar diffuser will be used nominally every 8 days.  This algorithm, though not directly related to 
requirements could also be run on shutter data to characterize dark response stability. 
 
This algorithm will run on bias-corrected and linearized digital numbers from the Lamp Response 
Characterization and/or Histogram Statistics Characterization database tables; they do not require 
separate analysis of image data.   
 

7.5.4.2 Dependencies 

Histogram Statistics Characterization  
Lamp Characterization 
Diffuser Characterization 
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7.5.4.3 Inputs  

The inputs to this algorithm come from either the output of other algorithms (DB) or from a set of 
calibration parameters (CPF). Table 1 lists the inputs of this algorithm. 
 
 
    
Table 1: Algorithm Inputs 

Descriptions Symbol Units Level Source Type 

Lamp Acquisition info: 
date, time, ID 

   DB  

Number of samples  Counts  DB Int 

Level-1 Statistics (bias-
corrected, linearized) 

Qi, i DN Nband X 
NSCA x 
Ndet 

DB (lamp 
response 
table) 

Float 

      

Diffuser acquisition 
info: date, time, ID 

   DB  

Number of diffuser 
samples 

 Count  DB  

Earth-sun distance d []  JPL model float 

Level-1 Statistics (bias-
corrected, linearized) 

Qi, i DN Nband X 
NSCA x 
Ndet 

DB (solar 
diffuser 
table) 

Float 

Inoperable detectors, 
out-of-spec detectors 

   CPF integer 

Relative Gains rCPF [] Nband X 
NSCA x 
Ndet 

CPF float 

Moving window size 
(multiple window sizes 
possible, different sizes 
for lamp and diffuser) 

W Days   integer 

      

 
 

7.5.4.4 Output 

Descriptions Symbol Units Level Source Type 

Time interval samples 
(multiple arrays 
depending on window 
sizes) 

     

Window size  Days    

Number of samples  Nsamples     

Traveling average 
means 

 ̅, si DN Nband X 
NSCA x 
Ndet x 
Nsamples 

 Float 
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Traveling average 
uncertainties 

CV, 
uncCV 

[] Nband X 
NSCA x 
Ndet x 
Nsamples 

  

Time periods where 
the band-average 
traveling average does 
not meet spec 

     

      
 

7.5.4.5 Options 

 Report data to ascii report files as well as IDL save file and plots. 
 
Prototype Code 
Stability.pro 
Traveling_average.pro 
Ploterror.pro, oploterror.pro 
Fpm_legend.pro, leg.pro 
Tvread.pro 
 

7.5.4.6 Procedure 

For each appropriate collect, for each band: 
1. Extract Lamp Characterization and Diffuser Characterization database table data for each detector; Qi, 

σi, Nvalid.  

a. For the lamp, only extract the working lamp data, since the other bulb pairs won’t be used often 

enough to provide meaningful trends. 

b. For the panel, use only the working panel data 

2. Calculate FPM-average means from per-detector means 

3. Calculate band-average means from per-detector means, QBA 

4. For diffuser data, correct the band-average signal for the earth-sun distance 

a.          
5. For each traveling average window (lamp data, use window sizes of 6, 12 and 16 days; panel, use 

window size of 16 days) for each per-detector, fpm average and band average: 

a. Calculate traveling average mean and stdev:  ̅ and s. 

b. [Secondary test for KPR] check if two times the CV minus two times the absolute uncertainty in 

the CV is greater than the specification value.  This is a less stringent test than the Chi
2
 test. 

i. Calculate uncertainty in stdev in each sample in the traveling average:    
    

   
 

 

√       
  

(this is the relative uncertainty in s) 

ii. Calculate uncertainty in mean for each sample in the traveling average:        ̅  
 

√ 
 (this 

is the absolute uncertainty in  ̅) 
    ̅

  ̅ 
 

 

 ̅̅√ 
 (this is the relative uncertainty in  ̅  

iii. Calculate Coefficient of Variation (CV) and the uncertainty in the CV for each sample in 

the traveling average 

      
 

 ̅
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  √(

    

   
)
 

 (
    ̅

  ̅ 
)
 

 =  √
 

       
  

  

 ̅  
 

c. [Primary test for KPR] Calculate Chi
2
 to test the hypothesis that the variance is less than the 

specification value. 

i. H0: s
2
 <= specification, HA: s

2
 > specification 

ii.      ,   
  (

    

   
 ̅)

 

,  = 0.05 

iii.    
   

  
  

iv.     
 = chisqr_cvf( 0.05,  ) [IDL command for Chi

2
 95% value.] 

v. H0 passes if        
  and the band-average is not out-of-spec. 

6. For the band-average results, flag bands where the Chi
2
 H0 is rejected. Mark periods as out-of-

specification based on the Chi
2
 test; decide whether to flag the band as out-of-specification. 

 
 

 

7.5.4.7 Maturity 

The code is meant for the IAS tool box and thus, is not robust and hands-off as are the usual IAS 
algorithms. I expect that I will watch the output pop-up as I run this on a monthly basis and will add 
and subtract functionality as I see fit. 
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Sample plots: 
Lamp collects to be used for analysis 

 
 
Lamp 16-day traveling average for the band- average signal.  There are some 16 day periods where I 
don’t have a valid lamp collect for (due to the way I made up these data). 
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Lamp 4-day traveling average for the band-average signal.  There are some 4 day periods where I 
don’t have a valid lamp collect for (due to the way I made up these data). 

 
 
CV of 16-day lamp band-average traveling average, with requirement indicated by dashed line.  If 
CV-2*unc is greater than the specification value, the period would fail the requirement. 

 
 
 
 
Panel data to be used in analysis (all fabricated) 
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Panel 16-day traveling average.  Two FPMs in the collections were outliers. 
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CV of 16-day panel band-average traveling average. If CV-2*unc is greater than the specification 
value, the period would fail the requirement. Data are well under the 0.01 requirement. 

 
 
 
Earth-Sun Distance Calculation  
The JPL Ephemeris table (DE421) describes the orbits of the sun and planets with very high precision 
over relatively long time scales8.  The file is stored as a series of Chebyshev coefficients which can 
be interpolated to essentially any desired temporal accuracy.  The IDL tool that I use to read from the 
JPL file requires the date as input and outputs a three element position array.  To convert to earth-
sun distance in AU: 
 
                ;need month, day, year to 
                ydn2md, year, doy, month, day 
                pos = run_ephem( month, day, year ) 
                dist = double( sqrt( pos(0)^2 + pos(1)^2 + pos(2)^2. ) ) 
                earth_sun_distance = dist / aukm       ;e-s dist correction 
 
 

7.5.5 OLI Nonlinear Response Characterization (OLI) 

 

7.5.5.1 Background 

 

The output of the OLI instrument is quantized output (Q) in units of digital number (DN).  This Q is 
expected to be related to the input signal of the detectors, but that relationship may not be linear.  

                                            
8 http://lheawww.gsfc.nasa.gov/users/craigm/bary/ 

http://lheawww.gsfc.nasa.gov/users/craigm/bary/
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Each detector may have unique non-linear irregularities in response that must be corrected in 
processing. 
 
Figure 1 shows a response slope for a typical detector from Band 1, SCA 1.  The integration time is 
linearly related to input radiance and is normalized to the radiance setting of the integrating sphere 
(DSS) used in the Ball Aerospace radiometric test collections.  It can be seen that the detector 
response is very linear within its dynamic range.  It is expected that non-linear behavior occurs just 
before the high and low saturation levels.  There is some non-linear behavior, however, even in the 
center of the response -- Figure 2 shows a plot of the residuals of a linear fit made within the 
detector's dynamic range.  All detectors studied exhibit this type of behavior. 
 

 
 
From test collections made either prelaunch or in orbit, a set of parameters can be derived to linearize 
the detector response.  The preferred data should be Integration Time Sweep (ITS) collections made 
with the diffuser panel as a background. 
 
The intended form of the linearization equation is piecewise quadratic, with three distinct regions.  
The cutoff points between the regions – the points where the functions intersect – are determined by 
equating the adjacent functions.  The first (bottom) region extends from zero up to the first minimum 
of the linear fit residual plot.  The second (middle) region extends up to the last experimental point 
within the detector's dynamic range.  The third (top) region covers the most non-linear portion of the 
detector response – from the top of the detector's dynamic range to the high analog saturation point. 
 

 

 

Inputs 

Descriptions Symbol Units Level Source Type 

L0 (Bias corrected) 
Mean for each 
integration time 

 
Q 

 
DN 

Nband x 
Ndet x 
Nlevels 

Db 
(Histogram) 

Float 
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collection 

Radiance level for 
each integration time 
collection 

R 
W/m2 sr 
μm 

Nlevels 
Db 
(Histogram) 

Float 

Integration time for 
each collection 

i  Nlevels  Float 

 
 

7.5.5.2 Outputs 

Descriptions   Symbol Units Level Target Type 

Remapping function 
cutoff thresholds  DN 

Nscas x 
Nbands x 
Ndetectors x 
Ncutoffs CPF Float 

Remapping function 
parameters   

Nscas x 
Nbands x 
Ndetectors x 
Ncoefficients x 
(Ncutoffs+1) CPF Float 

Mean absolute residual  DN 

Nscas x 
Nbands x 
Ndetectors Report file Float 

Maximum residual  DN 

Nscas x 
Nbands x 
Ndetectors Report file Float 

 
Note:  Ncutoffs equals 2 in the current implementation. 
 

7.5.5.3 Options 

 
The cutoff point table below (in Procedure section 2.1)  contains an array of floating point values that 
are input to the work order but that should be editable by the operator. 

7.5.5.4 Procedure 

 
1.0 Prepare Diffuser Data 

 

Each integration time sweep collection for OLI will involve a Diffuser collection taken at an integration 

time setting, which is given in the metadata.  For each collection the mean DN value for each detector 

should be stored in the database by the Histogram Statistics procedure. 

 

To prepare data for linearity characterization, the diffuser collections to use should be identified and the 

per-detector means obtained.  For each collection the solar angle and viewed radiance for each band 

should be calculated.  Once collated, the prepared data should be an array of [Q,R,i] ([mean DN, viewed 

radiance, integration time]) for every band and detector. 

 



LDCM-ADEF-001 
Version 3 

 

2.0 Linearity Characterization 

2.1 Find preliminary cutoff points. 

 

The cutoffs are initially chosen as the available effective radiances that are nearest to the 

radiances from the following table: 

 

Band Band name First cutoff 

R (W/m
2 

sr 

μm) 

Second cutoff 

R (W/m
2 

sr 

μm) 

1 CA 147.25 265.05 
2 B 121.00 211.75 
3 G 113.61 198.81 
4 R 96.01 192.02 
5 NIR 67.87 135.74 
6 1SW 14.90 26.08 
7 2SW 7.36 11.04 
8 P 195.16 362.44 
9 CRS 23.01 64.43 
 

The effective radiance of each integration time sweep collection is calculated: 

 

R(i) = Rmax*i 

 

The collection whose effective radiance is nearest to the first cutoff point is labeled ilow: 

 

Qlow = Q(d, ilow) 

Rlow = R(ilow) 

 

The collection with effective radiance nearest to the second cutoff point is labeled Qhigh (with 

corresponding Rhigh and ihigh).   

 

These labels are made once for each band.  These 'a priori' radiance cutoff levels should be work 

order parameters that are adjustable by the IAS analysts. 

 

2.2 Create ideal line 

 

Once the cutoff points have been found, the ideal line for each detector can be calculated.  On 

OLI, linear behavior is assumed to pass through the origin (0 DN, 0 Radiance).  The slope of the 

ideal line is then: 

 

M(d) = Qhigh/ Rhigh = Q(d, ihigh)/(Rmax*ihigh) 

 

An ideal line curve is then created, with one point for every integration time: 

 

Qideal(d,i) = M(d)*Rmax*i 

 
2.3 Polynomial fit 



LDCM-ADEF-001 
Version 3 

 

 
The parameters of the linearization are then found by fitting the actual data to the ideal 
line.  This is done in three regions:  0 to ilow, ilow to ihigh, and ihigh to the highest available 
effective radiance. 
 
The fit is currently done with the IDL routine POLY_FIT, which uses the matrix inversion 
method that can be found in Numerical Recipes.  Any implementation of a two-
dimensional polynomial fit can be used.  The output of each fit for each region should be 
quadratic coefficients such that: 
 

Q'(d,r,i)   =   c(r,2)*Q(d,r,i)2 + c(r,1)*Q(d,r,i) + c(r,0)      Qideal(d,r,i) 
 
where Q'(d,r,i) = The linearized DN values (one for every i). 

c(r,n)  = The nth order quadratic coefficient for region r. 
 

2.4 Determine actual cutoff points. 

 
The actual cutoff points should be calculated after the quadratic coefficients, so that the 
fit between regions is as smooth as possible.  The cutoff points are calculated by finding 
the point at which the fitted curves for two regions meet.  This point can be calculated 
with the quadratic equation: 
 

Q low= 
 b   √b2  4ac

2a
 

 
where a =  The difference in the second-order coefficients for regions 1 and 2. 
  a = c(2,2) – c(1,2) 
 b =  The difference in the first-order coefficients for regions 1 and 2. 
  b = c(2,1) – c(1,1) 
 c =  The difference in the zeroth-order coefficients for regions 1 and 2. 
  a = c(2,0) – c(1,0) 
 
The quadratic equation has two solutions, due to the ± in the equation, and neither 
solution is guaranteed to be a real or positive number.  Both solutions should be 
calculated, and the real component compared to the 'a priori' cutoff point.  The solution 
that is closest to the first 'a priori' cutoff value Qlow should be chosen as the final cutoff 
value. 
 
Similarly, Q'high is calculated between the second and third regions (c(3,n) – c(2,n)), and 
its two solutions are compared to the second 'a priori' cutoff, Qhigh. 
 

2.5 Report output. 

 
After the parameters have been created, the data should be linearized using them and 
residuals to the ideal line should be calculated.  This array of residuals is used by the 
IAS analyst to check the accuracy of the linear characterization. 
 
Residuals(d,i)  =  Q'(d,i) – Qideal(d,i) 
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The mean and maximum absolute residual for each detector should be reported in an 
output file.  

 

7.5.5.5 Maturity 

 
Possible changes to this algorithm are: 
 

 Change in Algorithm – The linearity correction algorithm could change, which would necessitate a 

change to the linearity characterization. 

  
   
 

7.5.6 OLI Response Linearization 

7.5.6.1 Background/Introduction 

The output of the OLI instrument is quantized output (Q) in units of digital number (DN).  This Q is 
expected to be related to the input signal of the detectors, but that relationship may not be linear.  
Each detector may have unique non-linear irregularities in response that must be corrected in 
processing. 
 
Figure 1 shows a response slope for a typical detector from Band 1, SCA 1.  The integration time is 
linearly related to input radiance and is normalized to the radiance setting of the integrating sphere 
(DSS) used in the Ball Aerospace radiometric test collections.  It can be seen that the detector 
response is very linear within its dynamic range.  It is expected that non-linear behavior occurs just 
before the high and low saturation levels.  There is some non-linear behavior, however, even in the 
center of the response -- Figure 2 shows a plot of the residuals of a linear fit made within the 
detector's dynamic range.  All detectors studied exhibit this type of behavior. 
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From the Ball test collections, a set of parameters can be derived to linearize the detector response.  
The intended form of the linearization equation is piecewise quadratic, with three distinct regions.  
The cutoff points between the regions – the points where the functions intersect – are determined by 
equating the adjacent functions. 
 
The first (bottom) region extends from zero up to the first minimum of the linear fit residual plot.  The 
second (middle) region extends up to the last experimental point within the detector's dynamic range.  
The third (top) region covers the most non-linear portion of the detector response – from the top of 
the detector's dynamic range to the high analog saturation point. 
 
There are two limitations in the current calibration dataset.  There are not enough data points at the 
bottom and middle of the detector response to fit a quadratic function, so the square term for those 
regions will be set to zero.  Also, the top region lacks enough data to actually see non-linear behavior.  
This will give us a poor polynomial fit for the top region.  Future pre-flight calibration collections will 
address this issue.  Data in this region is not expected to be seen during flight; the detector dynamic 
ranges are designed to encompass the entirety of Earth-based target radiances. 
 
 

7.5.6.2 Input 

Description Level Source Type 

Scene (L0R) 

Nscas x 
Nbands x 
Ndetectors x 
Nlines  Float 

Remapping function cutoff 
thresholds 

Nscas x 
Nbands x 
Ndetectors x 
Ncutoffs CPF Float 

Remapping function parameters 

Nscas x 
Nbands x 
Ndetectors x 
Ncoefficients x 
(Ncutoffs+1) CPF Float 

The planned implementation is for two cutoff points (Ncutoffs = 2) and three sets of quadratic 
coefficients (Ncoefficients = 3). 
 

7.5.6.3 Output 

Description Level Target Type 

  Scene (linearized) 

Nscas x 
Nbands x 
Ndetectors x 
Nlines  Float 
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7.5.6.4 Procedure 

Response linearization should be a simple replacement of the incoming value with a linearized 
response value.   
 
The linearized value will be calculated for each sample point by an algorithm.  These algorithms will 
be determined by pre-launch calibration of the detectors.  As described above, this algorithm is a 
multi-segment quadratic function with the detector Q value as its only variable.  Parameters for the 
linearization function will be stored in the CPF.  For this method the required parameters are three 
sets of quadratic coefficients (one set for each sloped segment), and two cutoff points. 
 

1.1. For each input frame 
1.2. For each band, SCA, and detector 

1.2.1. Compare input Q with cutoff values and select appropriate quadratic coefficients. 
 
The input Q value is compared to the cutoff thresholds in the CPF, to determine which 
segment of the linearization to use. 
If input is less than cutoff #1, then segment 1 is used. 
If input is greater than or equal to cutoff #1 but less than cutoff #2, then  segment 2 is 
used. 
If input is greater than or equal to cutoff #2, then segment 3 is used. 
 

1.2.2. Evaluate the quadratic function at the input Q: 
 

output = qp[0, s] + qp[1, s] * input + qp[2, s] * (input)2 
 
where input = the input value, Q, in DN. 
 output = the output value, Q1, in linearized DN. 
 qp[x, s] = linearization parameter x, for segment s. 
   These parameters come from the CPF. 

 
1.2.3. Return the output value. 

 

7.5.6.5 Maturity 

 
A process to analyze the on-orbit integration time sweep data and produce linearization Calibration 
Parameters will be discussed and produced at some later time.  
 
Currently CPF parameters exist only for a few FPM-Band combinations.  Expect to have a more 
extensive test data set in the future. 
 
More finely resolved test data for linearization may be generated for the flight array sometime in 2011 
when the OLI pre-flight testing occurs. 
 
Other possible changes that may occur are: 
 

 Lookup Table – The remapping could also be implemented as a look-up table (LUT), which 
will return the “linearized” value (Q1) for each instrument Q value.  This table will be different 
for each detector and will return a floating-point number.  The LUT is populated from the re-
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mapping function for each detector.  This can be pre-calculated and stored as part of the 
calibration, or can be calculated at run time.  This method may be quicker than calculating the 
re-mapping function as the curve fit functions and cut-off points don’t have to be evaluated for 
each sample.  It also allows a different function (other than quadratic) to be used to fit the 
linearization data.  The LUT could also be generated with manual adjustments and delivered at 
part of a calibration input if necessary.  A drawback is that a large floating point LUT (up to 
4096 elements) for each detector must be held in memory during processing. 

 
 Change in Algorithm – The current linearization algorithm has been adapted from the TIRS 

linearization algorithm as suitable for OLI.  A different algorithm may be specified by Ball 
Aerospace, which will force us to adopt it. 

 

7.5.7 OLI Alternate Response Linearization (OLI) 

7.5.7.1 Background 

The OLI detectors will have a non-linear relationship between the radiance viewed and the DN value 
output by the detectors.  Because of this, the response of the detectors must be linearized as part of 
radiometric calibration.  
 
The correction for non-linearity involves remapping bias corrected detector response data onto a 
linear curve.  In the alternate response linearization algorithm, this is done in two stages; one linearity 
correction, and one per-detector non-uniformity correction (NUC).  In practice these corrections are 
similar and use the same algorithm (but different lookup tables (LUTs)), making linearity correction a 
two-step process. 
 
The standard response linearization procedure uses a quadratic equation, but the instrument vendors 
have delivered correction parameters as full-sized lookup tables that cover all possible values in 14-
bit space.  The alternate response linearization algorithm is intended as an implementation of the 
vendor algorithms, with the sole difference that the very large vendor-provided LUTs have been 
compressed for performance reasons into  
piecewise continuous arrays that contain paired input and output values.  The piecewise continuous 
LUT provides the same results as the full-sized LUT to within 0.001 DN, but take up approximately 
one-thirtieth of the disk space. 
 
This algorithm will be used in the IAS as an occasional check to verify that the ground system is 
capable of linearizing the detectors using the parameters provided by the vendors.  It is not intended 
for LPGS use or for use on every scene. 
  
The Alternate Response Linearization procedure will also be run on TIRS data.   LUTs for TIRS will 
be generated but do not yet exist.  The algorithm will be exactly the same; only the size of the arrays 
will differ. 
 

7.5.7.2 Input 

 

 

Description Symbol Units Level Source Type 
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Scene (L0rc2 - bias 
corrected) 

Q DN 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes  Float 

Artifact Mask 
AM Unitless 

Nbands x 
NSCAs  Int 

Linearity Correction LUT  

LIN Unitless 

Nbands x 
NSCAs x 
Ndetectors  

x Nvalues 

RLUT file 
(an 
extension 
of the CPF) Float 

Uniformity Correction 
LUT  

NUC Unitless 

Nbands x 
NSCAs x 
Ndetectors  

x Nvalues 

RLUT file 
(an 
extension 
of the CPF) Float 

 

7.5.7.3 Output 

Description Symbol Units Level Target Type 

Scene (L0rc2 - bias 
corrected, linearized) 

Q* DN* 

Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

 Float 

 

7.5.7.4 Options 

 Apply Linearity correction (default on) 

 Apply Non-uniformity correction (default on) 
 

7.5.7.5 Procedure 

Response linearization should be a simple replacement of the incoming value with a linearized 
response value. 
 
For each band there are two LUTs that are condensed versions of the LUTs provided by Ball.  Each 
LUT has a pair of values – an index value and an output adjustment value – for every SCA and 
detector.  The first LUT is intended to correct for SCA-wide nonlinearities.  Ball refers to this as the 
'linearity' correction (abbreviated as LIN).  The second LUT is intended to correct per-detector 
nonlinearities.  Ball refers to this as the 'nonuniformity' correction, or NUC.  Despite their distinct 
names, both are currently per-detector corrections using the exact same algorithm. 
 
Whenever alternate response linearization is performed, both the LIN and NUC corrections are run.  
The options to turn off one or the other correction exist only as a means to debug the RLUTs. 
 
A search is made in INPUT LUT to find the index in the list whose values bracket the incoming DN 
value.  Those bracketing indices are then used to get the bracketing values from the VAL LUT.  The 
adjustment is a scaled interpolation between those two bracketing adjustment values.  The output 
value (DN*) is the input DN plus the calculated adjustment. 
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The paired LUTs are: 
 
 INPUT[band, sca, det, index] 
 VAL[band, sca, det, index] 
 
Although these LUTs are dependent upon band, sca, and det, they are referred to as INPUT[index] 
and VAL[index] below for clarity.  Note also that the size of the LUTs varies between detectors.  The 
INPUT and VAL array are always the same size as each other, but the arrays used by one detector 
may not be the same size as the arrays used by any other detector.  The maximum size of these 
arrays is fixed at 1000 by the compression algorithm (described below). 
 
With 
 
 index = The largest index into the INPUT array where 

INPUT[index] ≤ DN. 
 
 (The values INPUT[index] and INPUT[index+1] should bracket the incoming DN value.  Finding 

this index will entail a quick search through the INPUT array.) 
 
Then the adjustment is an interpolation between the LUT values: 
 
 Adj = VAL[index] + (VAL[index+1] - VAL[index]) * 

(DN - INPUT[index]) / (INPUT[index+1] - INPUT[index]) 
 
 DN* = DN + Adj 
 
 
This process should be used for the LIN LUT and then the NUC LUT, for every pixel in an image. 
 
Note that because index+1 is used in the algorithm, pixels whose values equal the 14-bit integer 
maximum (16383) should not be processed.  This is far beyond saturation in most bands and should 
not be an issue. 
 
The specific algorithm that compresses the vendor-provided LUTs into the INPUT and VAL LUTs is 
not important to the alternate response linearization algorithm, but it does dictate the size of the 
LUTs.  Any compression algorithm may be used, as long as it results in LUTs of the same format and 
with the same fidelity to the original LUTs. 
 
To clarify , the procedure for the compression algorithm is as follows: 
 
For each detector in each band, the first non-zero adjustment in the vendor LUT (VLUT) is found as 
index i0. Between the indices i0 and i0+1, the adjustment changes by a delta adjustment (   .  The 
linear equation describing the adjustment is then: 
 
                            
 
The index i0 is placed in the INPUT LUT, and the VLUT adjustment at that index is placed into the 
VAL LUT. 
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This equation is checked against the VLUT value at subsequent indices (i+1, i+2...) until the 
difference between this extrapolated adjustment and the actual VLUT adjustment is greater than the 
threshold value (currently set at 0.001 DN).  When the threshold is exceeded, the linear extrapolation 
is then reset; a new i0 is set at the index where the threshold was exceeded and becomes the next 
entry in the INPUT LUT, while the VLUT adjustment at the new i0 becomes the next entry in the VAL 
LUT.  Then a new delta is calculated, and the iterations resume with the new extrapolation. 
 
At the end of the process, a final point is placed into the arrays; the index 16,383 and the associated 
adjustment value at that index.  This insures that the linearization algorithm will always find two 
indices to bracket any incoming DN value. 
 
This compression algorithm is run for both the LIN and NUC LUTs provided by the vendor, for every 
fpm, band, and detector.  The output becomes the RLUTs used by the alternate response 
linearization algorithm. 
 
 

7.5.7.6 Maturity 

Level 2 (No Landsat or ALI reuse) 
 
Possible complications or changes that may be made in the response linearization function are: 
 

 Simplified INPUT array – A change to the LUT compression algorithm could be made so that 
the compressed LUTs are no longer of variable length.  This could simplify the INPUT array, 
making the index search through it easier, or possibly obsolete the INPUT array entirely and 
allow the index to be a linear function of the incoming DN.  Whether this is possible or not, and 
what the trade off in size will be, is yet to be demonstrated. 

 Unpacked INPUT array – To improve performance, the INPUT LUT (whatever its form) could 
be unpacked in memory before processing into a straight lookup array, with one value per 
integer value from 0 to 16,383.  This would improve performance without increasing the size of 
the RLUT files, but might introduce memory issues. 

 Double Per-Detector Lookup – Currently Ball's algorithm describes one SCA-wide correction 
and one per-detector NUC, but the 'SCA-wide' correction is filled as a per-detector array.  This 
capability should be retained to match Ball's algorithm.  If Ball's algorithm changes so that the 
SCA LUT is truly independent of the detectors then the LDCM version should change to match 
that. 
 

 

7.5.8 OLI Detector Response Characterization (Solar Diffuser)     

7.5.8.1 Background 

The Primary radiometric calibration devices on OLI are solar diffusers.  These Spectralon panels are 
rotated in position in front of the OLI aperture and the spacecraft is oriented so as to bring sunlight in 
the solar diffuser port so that sunlight is reflected into the OLI aperture. There are 2 solar diffusers on-
board OLI, a Primary and pristine. The current plan calls for the Primary diffuser to be deployed 
approximately weekly during normal operations.   The pristine diffuser will be deployed on a less 
frequent basis and used  to monitor degradation of the Primary panel.  The OLI diffuser data provides 
a valuable source for deriving radiometric gain updates for L1r processing, performing instrument 
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characterizations and monitoring uniformity and stability requirements.   Both radiance and 
reflectance based gains will be derived and stored.                                                                                                                

 

To derive radiance gains, both bias and nonlinearity corrected OLI data (0Rc) values (in DN) and 
diffuser spectral radiance values (W/m2-sr m) are required. With the exception of a correction for 
Earth-Sun distance, the diffuser spectral radiance values are relatively static as the sun reflects off 
the diffuser at a fixed angle and the diffusers are expected to change slowly in reflectance 
characteristics.  The radiance values adjusted to a reference earth-sun distance can be stored in the 
CPF. (Note. there may be multiple versions of these values i.e. pre-launch, post-launch and current 
that could be stored in a single CPF or as separate CPFs). The Earth-Sun distance correction will be 
derived from JPL ephemeris data. Gains will be generated and output as per detector relative gains, 
and band-averaged gains.  Similar outputs for reflectance-based gains will be derived  based on 
spectral reflectance values (unitless) in place of the spectral radiance values. 

 

  

Approximately 500 frames of data with the solar diffuser illuminated will be acquired per typical 
collect. However, there are some less frequent acquisitions  that will change the size of these data 
sets. These collects will be acquired at variable integration times for non-linearity characterization and 
only the nominal integration time portion of these collects will be processed by this algorithm. A 
second acquisition scenario involves 60 second long solar diffuser collects; these collects are used to 
evaluate the short-term stability of the OLI response.  

 

Ephemeris and attitude data will be processed and used to confirm the solar pointing during each 
solar acquisition. This processing may occur in part separately prior to use in this algorithm. It is 
assumed that all ancillary data for verification of the acquisition will come from the wideband ancillary 
data. Separately, the MOC will provide the CVT a report on the solar calibration maneuver indicating 
whether the maneuver was executed as planned, e.g., the solar pointing was as required. 

To track pristine and Primary diffuser datasets a diffuser parameter needs to be identified, associated 
with the appropriate inputs and output parameters and stored in the trending DB. Artifacts will be 
accounted for in the L0rc inputs to processing.  

 

Assessment of algorithm outputs will be performed by comparing the “original” solar radiance and 
reflectance calibrated products, to “new” solar products derived with the newly derived gains. While 
not performed by this algorithm, these product generation steps should be considered a routine part 
of  “solar characterization process”.  The evaluation of these products and reports will be performed 
‘off-line’ 

Inputs 

Descriptions Symbol Units Level Source Type 

L0rc1 (Bias corrected   Nband Db Float 
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and linearized) Means  Qnet DN x Ndet (Histogram) 

L0rc Stdev1 Qnet DN Nband 
x Ndet 

Db 
(Histogram) 

Float 

Start time  GMT  Db  Float 

Stop time  GMT  Db  Float 

Number of lines used    Db 
(Histogram) 

Int 

Inoperable Detectors    Nband 
x Ndet 

CPF Int 

Attitude Control 
System Quaternion 

Coefficients  

Q0,Q1,Q
2,Q3 

  Ancillary 
Preprocessin

g  

Fltarr 

Diffuser Radiance2 
@nominal SZA, E-S 

Distance (1A.U.)  

L  W/m2 sr 
m 

NDT x 
Nband 
x Ndet 

CPF  Float 

         

Diffuser Deployment 
Angle 

 degrees  Ancillary File Float 

Earth –Sun Distance 3  des AU  Auxiliary File   Float 

Diffuser Bidirectional 
Reflectance Factor2   

 

 

 NDT x 
Nband 
x Ndet 

CPF or 
Ancillary 

Float 

 
Integration Time  

   Header  or 
DB 

 

Diffuser Type (DT) i.e. 
Pristine or Primary 

   L0R  

Start_time    L0R  

Stop_time    L0R  

Collection Type     L0r, 
Metadata 

 

Sun Zenith Angle 
Mean  

s degrees  Report, Db  

Sun Zenith Angle 
Stdev   

s degrees  Report, Db Float 

Sun Azimuthal Angle 
Mean  

s degrees  Report, Db Float 

Sun Azimuthal Angle 
Stdev   

s degrees  Report, Db Float 

Notes: 
1 Mask artifacts presumed to be accounted for in the imagery,  prior to generating 
  histogram statistics. Histogram statistics should also include  the solar integration time 
  sweep data acquired at the nominal integration time.  
2 Parameters must be stored separately identifiable by the Diffuser Type (DT i.e. 
  Pristine or Primary).  
3 From JPL data 
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7.5.8.2 Outputs 

Descriptions   Symbol Units Level Target Type 

Start time     Report, Db Float 

Stop time     Report, Db Float 

Lines averaged     Report, Db Int 

Relative Gains Mean 2 
Grel  Nband x 

Ndet Db Float 

Relative Gain Stdev2 
G rel  Nband x 

Ndet Db Float 

Radiance-Band Avg 
Gains Mean 2 

 
G 

DN/ 

W-m2-sr-m     Nband Report, Db Float 

Radiance-Band Avg 
Gains Stdev 2 

G DN 
Nband Report, Db Float 

Reflectance-Band Avg 
Gains Mean 2 

G DN 
Nband Report, Db Float 

Reflectance-Band Avg 
Gains Stdev 2 

G DN 
Nband Report, Db Float 

 Diffuser Type  DT   Report, Db Int 

Deployment Angle   degrees  Report, Db Float 

View Sun Zenith Angle 
Mean3

 

v degrees 

 Report, Db Float 

View Sun Zenith Angle 
Stdev3 

v degrees 
Nband Report, Db Float 

View Sun Relative 
Azimuthal Angle Mean3 

v degrees 
Nband Report, Db Float 

View Sun Relative 
Azimuthal Angle 
Stdev3 

v degrees 

 Report, Db Float 

Incident Sun Zenith 
Angle3 

s degrees 
 Report,Db Float 

Incident Sun Zenith 
Angle Stdev3 

s degrees 
 Report,Db Float 

 

7.5.8.3 Options 

Summary report to be generated with every solar processing run.  

7.5.8.4 Procedure 

Note, while all procedure steps will be identical for both Diffuser Types (DT)  Primary panel (both 
nominal and Time Sweep acquisitions)  and the Pristine panel, certain inputs (as identified by the 
input table) needs to be identified/processed by its Diffuser Type (DT).   
 
1.0 Verify solar acquisition:   
 

1.1       Read in ancillary data and verify/output solar collect information e.g. 
Diffuser Deployment Resolver Position 

       Collect Sequence  
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Integration Time   
Verify the integration time is nominal.   

 
      IF not verified THEN stop processing ELSE  
 

1.2       Derive Solar Angles:  
 
Sun angles are calculated in the LDCM Solar Calibration Frame of Reference system 
(LSCF).  In the  solar calibration mode the spacecraft is aligned to the LSCF i.e. the pitch 
axis is aligned to the sun (-Y), and the yaw axis to the projected nadir vector (+Z). Angle(s) 
should be constant over the entire acquisition with pointing control.. Fig 1 illustrates the 
vectors and angles wrt to a diffuser panel (small oval), mounted within the rotating 
calibration assembly (large oval).  
 

      s     =   incident angle between diffuser normal and sun vector direction 

v     =  view (scatter) angle between diffuser normal  and sensor  line-of 
  sight vector.  
 
  Both theta angles should be about 45 degrees wrt prelaunch 
  alignment of the diffuser prelaunch that should remain   
  constant throughout the mission.   
 

v    =   view (scatter) relative azimuthal angle between diffuser normal 
              and sensor line-of sight   
                

  
 
 
 
 
 
 

 
                                                                                                         +x (sc velocity) 
                                                                                                                    +y  
  
                                                  Sensor view (-z)       +z (nadir)  
                                 
sun         view                      Spacecraft Frame of Reference  
 
 
 
 
Diffuser Normal  

 
Fig 1 Diffuser Solar Angles Defined wrt Diffuser Normal Component  

                                  
1.2.1   Process S/C Attitude:  Extract spacecraft (ACS) quaternion coefficients from ancillary data 
preprocessing, corresponding to calibration interval.  
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1.2.2 Retrieve JPL Solar Ephemeris i.e. sx,sy,sz 
 

For all Attitude quaternion values in solar cal acquisition  
  

1.2.3 Transform sun vectors from earth-centered to LSCF  for all ephemeris points in acquisition.  
 
Xs,Ys,Zs =  TR * sx,sy,sz   using values from 1.2.1 and 1.2.2  
 

Where:    
 
TRansform  Matrix =  
    TR(0,0) = 1-2*(q2(i)^2+q3(i)^2) 
    TR(1,0) = 2*(q1(i)*q2(i)+q0(i)*q3(i)) 
    TR(2,0) = 2*(q1(i)*q3(i)-q0(i)*q2(i))   
    TR(0,1) = 2*(q1(i)*q2(i)-q0(i)*q3(i)) 
    TR(1,1) = 1-2*(q1(i)^2+q3(i)^2) 
    TR(2,1) = 2*(q0(i)*q1(i)+q2(i)*q3(i))      
    TR(0,2) = 2*(q0(i)*q2(i)+q1(i)*q3(i)) 
    TR(1,2) = 2*(q2(i)*q3(i)-q0(i)*q1(i)) 
    TR(2,2) = 1-2*(q1(i)^2+q2(i)^2) 
 

 
  

1.2.4 Derive array of sun angles using transformed sun components i.e.  
Xs, Ys, Zs,   
 
panel orientation components i.e.  
Xn = 0. 
Yn = -cos(45.) 
Zn = -sin(45.) 
 
and view direction components i.e. 
Xv =  0. 
Yv =  0. 
 Zv =  1 

 
Incident Solar Zenith Angle  
    
cosi = Xn*Xs + Yn*Ys+Zn*Zs  
sini = sqrt (1-cosi^2) 

s= atan(sini/cosi)  
 
View Solar Zenith Angle  
   
cosi = atan ( Xn*Xv + Yn*Yv+Zn*Zv)  
sini = sqrt (1-cosi^2) 

v = atan(sini/cosi)  
 
View Solar Relative  Azimuthal Angle  
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cosa = Xns*Xnv+Yns*Ynv+Zns*Znv 
sina = sqrt(1-cosa^2) 

v  = atan (sina/cosa)  
           
 

Where       Xns,Yns,Zns =   sun  normal , the cross product of  
         XnYnZn with XsYs,Zs i.e. 
  

         Xnv,Ynv,Znv =  view normal , the cross product of  
              XnYnZn with XYZ-view direction 

         components i.e. the only non-zero view 
         component (zv=1)  along the sensor view axis.  
         

            End Attitude  loop  
 

1.2.5 Derive sun angle means and standard deviations   
 

s  = mean(s)    &  s = Stdev(s)  

v  = mean(v)    &  v = Stdev(v)  

v  =mean(v)     &  v = Stdev(v)  

7.5.8.4.1 2.0 DERIVE RADIANCE GAINS: 



LDCM-ADEF-001 
Version 3 

 

FOR each Band  

 

2.1  Read per detector spectral radiances -  L (b,d) 
 
2.2       For date of acquisition, read in appropriate value of Earth-Sun distance, des 
 
             FOR each detector  

 

2.3   Read in L0rc means (<Qnet (b,d)>) and standard deviations (Qnet (b,d)) derived from histogram 
statistics 
 

2.4       Derive absolute per detector gain mean and standard deviation, i.e. 
 

G(b,d)    = des 
2 *  <Qnet (b,d)>/ L(b,d)   (3) 

G (b,d) = des 
2 *  Qnet (b,d)/ L(b,d)    (3a) 

 
            END detector loop 
 
2.5. Generate/output the band mean gain and standard deviation  (over all operable 
            detectors)  
 

GaBands(b) = < G(b,*)>  &   GaBands(b)  = Stdev(G(b,*))  (4)  
 
2.6       Generate/output the per detector mean relative gain and standard deviation , wrt to the per 
band average.  
 

Grel (b,d) = G(b,d)/ GaBands(b)  &  

  G rel (b,d)= G (b,d) /GaBands(b)   (5) 
 

END band loop  
 

7.5.8.4.2 3.0 DERIVE REFLECTANCE GAINS:  

 
For each  bands 
 
       For each detector:  
 

3.1 Read per detector bidirectional reflectance factors (b,d)  
 

3.2    Derive absolute per detector average reflectance gains G(b,d), 

and per detector reflectance gain standard deviations G(b,d) =  i.e. 
 

  G(b,d)     =   (Qnet (b,d) * des 
2 )/((b,d)  * cos (s))   (6) 

G(b,d) =   (Qnet (b,d) * des 
2 )/((b,d)  * cos (s))  (6a) 

 
  Where   Qnet (b,d) = per detector diffuser corrected response   
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    (b,d)  = diffuser reflectance factors  

    s    = solar zenith diffuser angle (nominally 45°) 
    des    = Earth-Sun distance  
  

End detector loop  
 
3.3 Generate/output the band mean gain and standard deviation  (over all operable detectors)  
 

GaBands(b) = < G(b,*)>  and   GaBands(b)  = Stdev (G(b,*))  (7)   
 

End bands 
 
 
4.0       Generate summary report for every processing run with hardcoded 
            formats. (Example format) 
 

SOLAR CALIBRATION SUMMARY REPORT  
 
 Report Date 
 Start Acq Time 
 Stop Acq Time 
 Total Acq Time  
 
 Diffuser Type:  (i.e. Pristine, Primary )  
 Collect Sequence Type: (i.e. Nominal, Integration Time Sweep, etc) 
 Integration Time:  
 
 Solar Distance and Diffuser Angles:  
  E-S Distance (AU) 
  Deployment Angle (degs) 

Solar Zenith Angle (Theta-i, degs) 
View Zenith Angle (Theta-v, degs)  

  Sun Azimuth Angle (Phi-v, degs)    
 Ephem Outliers:  
  

Image  Stats (Bias Corrected & Linearized)  
 BandID  Avg  Stdev  
 
 Diffuser  Radiance  & Diffuser Gains  

BandID  Avg              Avg     Stdev 
 
 Diffuser Reflectance & Reflectance Gains 

BandID Avg              Avg     Stdev  
  

Total Frames Processed:  
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7.5.8.5 Maturity  

- This algorithm can be adapted to process actual scene data for alternative relative gain derivation 
method.   
Issues:    

- Assessments of CPF spectral radiance values based upon 
              prelaunch measurements, could lead to in-line derivation of 
              radiance for each acquisition.   

- Hardcoded report format.  
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7.5.9 OLI Standalone 60 Second Radiometric Stability Characterization 

7.5.9.1 Background/Introduction 

Both the bias and the gain instrument stability of an instrument are contributing factors to variability 
within a radiometrically calibrated product.  The OLI has a “60 second stability”, a.k.a, short-term 
stability requirement specifically designed to control this within product variability. The specific 
requirement states: “Over any time period up to 60 seconds, after radiometric correction per 5.3.1.2, 
the scene-averaged OLI image data for radiometrically constant targets with radiances greater than 
or equal to L-typical shall not vary by more than plus or minus 0.5% (95% or 2 sigma confidence 
interval) of measured radiance.”  The 60-sec stability characterization requires scenes of temporally 
uniform radiance above Ltypical

9, e.g., long solar acquisitions.  Long  shutter data will also be analyzed 
to allow determination of the bias stability contribution to the overall stability. These datasets (L0r) at 
most will only be bias and non-linearity corrected. Additionally, solar data products (L1r) will allow 
characterization of the L1r product 60-second stability. In the processing flow, these collects should 
be regarded as “special” collects vs. “standard” dark or solar collects identifying the data collects 
types that will meet the scene(s) minimum length criteria required for this processing.  
 
There are two options for the analyst for processing these Scenes  
Option 1 – that is described in this ADD is the IAS processing that relies on Histogram statistics 
Characterization to collect the basic statistics on the Scenes and then populate the minimal 
radiometric stability metric as a standalone algorithm that is gathering information only on the 60sec 
stability. 
Option 2 – Is the a Toolkit algorithm that operates on the datasets directly and computes the basic 
statistics from the image data and then populate an extended radiometric stability metric that is 
gathering information to any stability period up to 60sec (as selected by the analyst) The toolkit 
version of this stability characterization has a separate ADD and data files for validation. 
 
The output produced by this option 1 algorithm depends on the input data provided, i.e. solar or 
shutter.  Response and gain differences statistics across time intervals of 60 seconds are calculated 
from these uniform radiance scenes and stored in the characterization database. As reflected in the 
OLI Ops-Con special 60 seconds long solar acquisitions and related 60 seconds long dark collects 
will be made at the nominal integration time and their statistical characteristics calculated by 
Histogram Statistics Characterization at multiple level of processing will be used as input to this 
algorithm.  This short-term stability characterization will produce five categories of outputs: 

1) Dark Shutter Raw data band level change in stability  
2) Solar bias and non-linearity corrected data band average stability 
3) Solar product band average stability in radiance 
4) Band average gain stability or L1R Product stability in % 
5) Detector by detector level relative gain stability in % 

 
The individual detector relative gain short-term stability will be used in the analysis for the non-
uniformity requirement stability and track actual performance characteristics against the system 
engineering allocations.  
Solar L1r data products histograms will be used to directly verify the 0.5% radiometric stability 
requirement.  The solar L1r product stability metric will be converted from radiance units to % so it 

                                            
9
 These will be limited to Long Solar diffuser and Long Shutter collects only.  



LDCM-ADEF-001 
Version 3 

 

can be evaluated directly against the 0.5% requirement. Solar data that is bias and nonlinearity 
corrected will be used to characterize the 60s band mean and relative gains stabilities.   
 
Note that the bias used for bias removal is derived from a model that is based on the pre and post 
solar collect event dark shutter collects which are also taken at the nominal integration time. 
An additional Toolkit implementation for this characterization will exist.  In that Toolkit implementation 
the algorithm will works directly on the image data and produce the basic Statistical information on 
the image or on a set of image subsets. It will generate more radiometric stability output categories 
for the investigating analyst.   
 

7.5.9.2 Inputs 

Descriptions Symbol Units Level Source 

Signal Mean  

Float 
[DN] or 
[w/m2 sr 
um] 

NBxNSxND 

Histogram
10

 

Stat Char 

Q  

Signal Max  

Float 
[DN] or 
[w/m2 sr 
um] 

NBxNSxND 
Histogram

10
 

Stat Char 

Qmax 

Signal Min  

Float 
[DN] or 
[w/m2 sr 
um] 

NBxNSxND 
Histogram

10
 

Stat Char 
Qmin  

Signal StDev 
 

  

Float 
[DN] or 
[w/m2 sr 
um] 

NBxNSxND 
Histogram

10
 

Stat Char σ 

Relative gains  
 

r [unitless] NBxNSxND CPF  

Scene Type (i.e 
O* or D*) 

Stype Char NB  
DB 
L0Rp 
Image file 

Processing Step 
(i.e. before or 
after Gain 
application) 

Pstep Integer NB 

Histogram 
Stat Char 
Position in 
processing 
flow (RPS 
Level)  

Impulse Noise 
Pixels Locations 

LM1 Integer 
NBxNSxND 
xL 

LM 

Saturated Pixel 
Mask11  

LM2 Integer NBxNSxND LM 

                                            
10

 Histogram data will be collected from different level of processing i.e. L0R for Dark Shutter data, L0Rc for Solar Diffuser 
and at L1R for Solar Diffuser product. 
11

 This mask should include any of the detectors that had been reported by the Saturation characteristics processing, i.e. 
high and low saturations in both digital and analog categories  

   

Q B,S,D

  

Max _Q(B,S,D)

  

Min _Q(B ,S,D )

  

Sigma_Q(B,S,D)



LDCM-ADEF-001 
Version 3 

 

Dropped Frames 
Mask  

LM3 Integer 
NBxNSxND 
xL 

LM 

Inoperable 
Detector List  

Dinop Float NBxNS CPF 

 
 
 
 

7.5.9.3 Outputs 

Descriptions Symbol Units Level Target 

Signal Variability, SCA 
average 

 Float 
[DN] or 
[w/m2 
sr um] 

NB x NS 

DB 

(Bias, 

Gains & 

Solar 

L1R  

Stability) 

Gain or L1r Product 
Variability, SCA 
average  

 Float 
[%] 

NB x NS 

DB 
(Gains & 

Solar 

L1R  

Stability) 

Relative gain or L1r 
Product Variability, per-
detector 12 

 
Float 
[%] 

NB x NSxN 

D 

DB 
(Gains & 

Solar 

L1R  

Stability) 

Scene Type (i.e O* or 
D*) 

Stype Char NB DB 

Processing Step Pstep Integer NB DB 

 
 
*Note: The developer should consider splitting these outputs into 2 or more DB tables; one for bias 
stability and the other for Gain stabilities.  It would keep the units for each table consistent.13  

7.5.9.4 Options 

Trending On/Off Switch: If trending is Off, output parameters are written to a text file. 
7.5.9.5 Prototype Code 

The source code is written in IDL 
IDL Version 7.0.8, Mac OS X (darwin x86_64 m64). (c) 2009, ITT Visual Information 

Solutions 

It was test on iMac OS-X 10.6.1  3.06 GHz Intel Core 2 Duo  

                                            
12

 We will not store in DB the Solar L1R calculated per detector gains 60 stabilities but it will be calculated and written to 
an output file if the option of trending is turned off. 
13

 Note that the new output table consolidated two solar processing outputs into a single variable that have the same 
dimension, while the meaning of the stored data depends on the input data.  This way we store both the percent of SCA 
absolute gain change and the percent SCA mean radiance change into a single DB column and similarly we store the 
percent per detector relative gain change and radiance signal stabilities in another DB column (this is possible since both 
are sharing the same dimension and have nearly the same calculations).   
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Source code include three modules from which one module serves as the main program that uses the 
others. 
The instructions how to run each test scenario are put as comments in the First page of the main 
module. 
 
Data outputs and inputs to modules at times use temporary IDL .sav files to store calculated 
variables. – those that could be generated by the developer they are not include in the package. 
 
For each data type the data storage of what would be the link to DB is save into a IDL .sav file 
formats– those output files were saved and will be attached in with the source code 
 
For L0r Dark data the generated parameters are store in - > IAS_Dark _output 
For L0r Solar data the generated parameters are store in - > IAS_Solar _output1 
For L1r Solar data the generated parameters are store in - > IAS_Solar _output2 
 
OUTPUT variables generated ARE not in the same data format as it should be for the fully developed 
system since it is only dealing with one SCA and one band therefore 2 dimensions are missing. 
 
The list of source code modules: 
 
IAS_60SRS_main.pro    - > main module 
Get_stat.pro  -> main stat calculation and ingesting of Histogram data module 
IAS_cal_stab_solar.pro -> calculate the Solar related output stability performance parameters 
 
Data inputs:   dark_shutter_hist ,  solar1_hist   ,   solar2_hist , rel_gains.sav 
 
Dark_shutter_hist is the histogram data from dark shutter data (it holds information on Mean, Min, 
Max, and Stdev) 
 
Solar1_hist is the histogram data from L0rc Bias removed and linearity correct L0r Solar data (it holds 
information on Mean, Min, Max, and Stdev) 
 
Solar2_hist is the histogram data from L1r Solar Diffuser Product data (it holds information on Mean, 
Min, Max, and Stdev) 
 
Data outputs: 
Three folders: Test ID#1, Test ID#2, Test ID#3 

Each holding the corresponding output: IAS_Dark_output, IAS_Solar_output1, 
IAS_Solar_output2  All stored in IDL .sav file formats 

 
7.5.9.6 Procedure 

Note that in order to characterize radiometric stability we call this algorithm at least 3 times:  Once to 
process long dark shutter histogram data, and twice to process the histogram data for the closest 
long solar collect (once using the L0rc1 intermediate Cal product histogram results and once using 
the L1R intermediate Cal product histogram results.)   
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The trend ID’s for long dark and long solar collects processing need to be found. Based on these 
trend ID’s and the processing level the correct histograms information can be imported to this 
algorithm. 

----- 

Calculating statistics  (get it from Hist Stat) 

----- 

1. Based on the Labeled Mask and detector operability list  omit those detectors when calculating 
SCA level averages. 

2. Populate histogram statistics metric per detector in the relevant variables and calculate the 
average across all detectors within an SCA.  

a. 

  

Q (B,S,D ) = Histogram_ per_detector _ mean _ signalQ  (1) 

b. 

  

Max _Q (B,S,D) = Histogram_ per _detector _ Max _ signal Qmax (2) 

c. 

  

Min _Q (B ,S,D ) = Histogram_ per_detector_ Min_ signal Qmin (3) 

d. 

  

Sigma_Q (B,S,D) = Histogram_ per _detector _ StDev σ (4) 

e.  (5) 

f. Note that calculations should only include operable and in-spec detectors.  (i.e. ignore 
pixels flagged as inoperable, saturated, dropped frame, impulse or fill.)  

--------- 

Calculating Stability of Signal 

--------- 

3. For each detector, calculate the 2-sigma the along track variation in the image that is at the 

length of t=60sec. 

a.     (6) 

------------- 

Processing data to generate outputs 

------------- 

4. Calculate the SCA average variability, i.e, the average across all detectors within each SCA: 

a.  (7) 

5. For dark data, record the SCA mean variabilities ( ) to  the database or output file (along 

with other specified outputs in the output table).  This is the end of the algorithm for dark data.   

6. For solar data also do this : 

a. Calculate the per-detector variability in terms of percent change. It illustrates the impact 
of individual detectors on the overall radiometric stability. 

i.  (8) 

  

Q B,S = mean(Q B,S,D)
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ii. where rD is the relative gain from CPF for L0Rc data and 1.0 for L1R data. 

b. Calculate the SCA average variability in terms of percent gain change: 

i.  (9)  

ii.  should be calculated using the same list of detectors used to produce the 

mean signal in equation (5) 

c. For L0Rc data, write the per-detector percent variability ( ) and the SCA average 

variability ( ) to the database or output file (along with other specified outputs in the 

output table). 

d. For L1R data, write the SCA average percent variability ( ) to the database or output 

file (along with other specified outputs in the output table). 

e. For L1R if output to file selected also write to file the per-detector variability ( ) and 

the SCA Radiance mean variability ( ) (along with other specified outputs in the 

output table). 
7.5.9.7 Maturity 

Level 2 (no reuse).  
Algorithm design is settle on the fact that we will have especially long solar and dark 

collects that are at least 60sec in length.  
Equation 6 was replaced to reflect BATC 2-sigma method to asses 60-sec stability that is based on 

the calculation of 60sec interval Standard Deviations statistics  per detector over the entire interval 

of t=60sec.  For that reason we elected to break this characterization into 2 flavors where the 1st is 
IAS standalone implementation where the statistics needed for this algorithm is calculated and 
passed directly from the relevant  Histogram statistics Characterization DB, and the 2rd flavor is the 
Toolkit implementation of the algorithm where calculations of the basic statistics run directly on the 
data and more complicated options of trending and processing are implemented.   The changes 
implemented for the IAS version is a simplification of original calculations. 
Future direction of the algorithm is dependent on OLI performance and an over time comparison 
between the basic 2-sigma based calculation stored in the IAS and the Toolkit Worst-case based 
calculations.  It could be that after the IOC period we will find a credible need for update of the IAS 
algorithm implementation, in that case we will submit a CCR to this and maybe histogram statistic 
ADDs. 
  
 

7.5.10 OLI Detector Response Characterization (Lamp) 

7.5.10.1 Background 

The OLI will have 2 stimulation lamp fixtures. Each fixture will contain 6 tungsten lamps.  A lamp in 
each fixture is paired (wired in series with) a lamp in the other fixture.  Of the 6 lamp pairs, 3 are 
designated primary (operate on side A electronics) and 3 redundant (operate on side B electronics).  
Only one lamp pair is to be powered at a time. One pair of lamps on each side of the electronics with 
be designated   “WORKING” with data to be acquired on a daily basis once operational. One pair of 
lamps will be designated “BACKUP” with nominally monthly usage  and one pair “PRISTINE” with 

   

Q B ,S
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semi-annual usage .  Use of any redundant lamp can only occur when the full instrument is switched 
to the B-side electronics.   
 
The current OLI concept of operations stipulates that the on-board lamps will be exercised daily. Data 
acquisition at the typical line rate of 4.236 ms/frame will begin several seconds prior to lamps turn-on, 
proceed with 2.75 minutes of lamp data, and continue until several seconds after the lamps have 
been turned off, yielding a total of approximately 3.34 minutes of data. However, the intent of the 
present algorithm is to provide trending statistics for characterizing post lamp warm-up detector 
responses. Therefore this algorithm will operate on 512(default value) lines of data taken 2.5 minutes 
after lamps turn-on and populate the database with the following statistics: 
 

a) the mean, standard deviations, skewness and kurtosis at the detector level, 
b) the averaged mean and standard deviation per band per sensor chip array (SCA) level, and 
c) the averaged mean and standard deviation per band 

 
The full 2.75 minutes of daily lamp data may be used for further lamp stability studies, or for 
assessment of Focal Plane Array (FPA), Focal Plane Electronics (FPE) or Lamp sub-system 
performances . Multiple within-orbit lamp collects separated by off time may also be prescribed for 
special study. Analysis of these extended datasets and lamp collects will be conducted off line as 
they are beyond the scope of the present algorithm. Associated telemetry from the stimulation lamps 
may be required to support the detector characterizations, for example: 
Lamp Housing Temperatures (2), Monitoring diode outputs (2), Lamp currents, Lamp voltages, 
monitoring diode temperatures (2), selected lamp, lamp on-time.  These telemetry data points will be 
included in the ancillary data within the wideband data. 
 
The initial effective lamp radiance for each detector (to be provided by BATC) will be available in the 
CPF. Using the appropriate lamp telemetry parameters, these will be corrected for the on-board 
conditions during the lamp imaging event and the result stored in the database for comparison with 
the Level1R statistics.   
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7.5.10.2 Input 

 

Descriptions Symb
ol 

Units Level Source Type 

Scene/Interval ID  unitless 1 dB 
(ancillary 
or MOC 
report) 

Text 

Bias and non-linear 
corrected (L0rc)   

 DN Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

  Integer 

Lamp Level1  Scaled DN 
or radiance 
units 

Nbands x 
NSCAs x 
Ndetectors 

x Nframes 

 

 Integer 
or Float 

Impulse Noise   Nbands x 
NSCAs x 
Ndetectors 

LM Integer 

Saturated Pixels   Nbands x 
NSCAs x 
Ndetectors 

LM Integer 

Inoperable Detectors   Nbands x 
NSCAs x 
Ndetectors 

CPF Integer 

Dropped Frames   Nbands x 
NSCAs x 
Ndetectors 
x Nframes 

LM Integer 

Selected Lamp Pair  unitless 1 dB 
(ancillary) 

Integer 

Data Start Time  UTC 1 dB 
(ancillary 
or MOC 
report)  

* 

Lamp on/off time  UTC 1 dB 
(ancillary 
or MOC 
report)  

* 

Start and number of 
lines to process 
Statistics start time 
(Time offset from 
lamp turn on) 

 Frame 
number 

2 ODL or 
dB(ancillar
y or MOC 
report) 

Integer 

Statistics data block 
size (nominally 512) 

  1 ODL or dB Integer 

Data Frame rate  Samples 1 dB Float 
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per second (ancillary 
or MOC 
report) 

Lamp current  Amps Ntelemetry dB 
(ancillary 
or MOC 
report)  

Float 

Lamp voltage  Volts Ntelemetry dB 
(ancillary 
or MOC 
report)  

Float 

Monitor voltage  Volts Ntelemetry dB 
(ancillary 
or MOC 
report)  

Float 

Lamp Housing 
Temperature 

 degrees 
Celsius 

Ntelemetry dB 
(ancillary 
or MOC 
report)  

Float 

Monitor Diode 
temperatures 

 degrees 
Celsius 

Ntelemetry dB 
(ancillary 
or MOC 
report)  

Float 

Focal Plane 
Temperatures 

 Kelvins 2 dB 
(ancillary 
or MOC 
report) 

Float 

* UTC in hhmmss.sss 

7.5.10.3 Output  

 

Descriptions Symb
ol 

Units Level Target Type 

Scene/Interval ID  unitless 1 dB Text 

Selected Lamp Pair   unitless 1 dB  Integer 

Lamp on Time  Seconds 1 dB Float 

Processing interval:      

Start/Stop 
Time 

 UTC  dB * 

Start/Stop 
Frame/Line 
Numbers 

 unitless  dB Integer 

Lamp Level0c 
statistics (mean, 
stddev, skewness, 
kurtosis): 
a. Per Band per SCA 
per Detector 

 DN Nbands x 
NSCAs x 
a)Ndetector

s 

b) Nbands 
x NSCAs 

dB Float 
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b. Per Band per SCA 
c. Per Band 

C) Nbands 

Lamp Level1R 
statistics (mean, 
stddev, skewness, 
kurtosis): 
a. Per Band per SCA 
per Detector 
b. Per Band per SCA 
c. Per Band 

 DN a)Nbands x 
NSCAs x 
Ndetectors 

b) Nbands 
x NSCAs 

C) Nbands  

dB Float 

      

Lamp Current A:      

Mean  Amps 1 dB Float 

Sigma  Amps 1 dB Float 

Lamp Voltage A:      

Mean  Volts 1 dB Float 

Sigma  Volts 1 dB Float 

Monitor Voltage A:      

Mean  Volts 1 dB Float 

Sigma  Volts 1 dB Float 

Lamp Housing 
Temperature A: 

     

Mean  Degrees 
Celsius 

1 dB Float 

Sigma  Degrees 
Celsius 

1 dB Float 

Monitor Diode 
Temperature A:  

     

Mean  Degrees 
Celsius 

1 dB Float 

Sigma  Degrees 
Celsius 

1 dB Float 

      

Lamp Current B:      

Mean  Amps 1 dB Float 

Sigma  Amps 1 dB Float 

Lamp Voltage B:      

Mean  Volts 1 dB Float 

Sigma  Volts 1 dB Float 

Monitor Voltage B:      

Mean  Volts 1 dB Float 

Sigma  Volts 1 dB Float 

Lamp Housing 
Temperature B: 

     

Mean  Degrees 1 dB Float 
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Celsius 

Sigma  Degrees 
Celsius 

1 dB Float 

Monitor Diode 
Temperature B:  

     

Mean  Degrees 
Celsius 

1 dB Float 

Sigma  Degrees 
Celsius 

1 dB Float 

      

Selected Lamp    1 dB Integer 

Focal Plane 
Temperatures at 
FPM7 and FPM14: 

   dB Float 

FPM 7 Mean   Kelvin 2 dB Float 

FPM 7 Sigma  Kelvin 2 dB Float 

FPM 14 Mean   Kelvin 2 dB Float 

FPM 14 Sigma  Kelvin 2 dB Float 

* UTC in hhmmss.sss 
 

7.5.10.4 Options 

Lamp warm-up interval input – Specifies Time (UTC) and image line number interval allowed for lamp 
warm-up. 
 
Report outputs – Enables output of statistics results and telemetry data (eg. Temperatures, diode 
voltages)  in text format. 
 

7.5.10.5 Procedure 

I. Read L0c and Level1R data. 

a. Calculate frame number at 2.5 minutes (stats_starttime) from lamp turn on, and frame 
number at end of statistics data block (default stats_nsamples=512):  

i. Stats_startframe=framerate*stats_starttime 

ii. Stats_endframe=stats_startframe+stats_nsamples 

b. Extract data block from stats_startframe to stats_endframe from the appropriate data 
files. 

II. For L0c and Level1R lamp statistics data block do: 

a. Calculate statistics for each detector (det), band, SCA.  

i. Initialize statistics arrays:  

988det,494detdet,,14

,9),,,det_det_(

)(),(),(tan),(







pnms nnnnSCA

nBandswherenSCAnBandspnnormsnfloat

kKurtosisSSkewnessdeviationdardSxMean 
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ms denote ms bands, pn denotes pan band 

ii. For each detector, Band, SCA compute: 

1. Mean, 

StartFrameEndFramenFrameswhere

x
nFrames

x
EndFrame

StartFramei

iSCAband



 


,
1

),(det,  

2. Standard Deviation, 



EndFrame

StartFramei

iSCAband xx
nFrames

2

),(det, )(
1

  

3. Skewness, 
3

3

),(det,

)(
1


















EndFrame

StartFramei

i

SCAband

xx
nFrames

S  

4. Kurtosis, 3

)(
1

4

4

),(det, 


















EndFrame

StartFramei

i

SCAband

xx
nFrames

K  

b. Calculate band averages per SCA means ( X ) and standard deviations( ): 

i. Initialize data arrays, ),(, nSCAnBandsfloatX   

ii. For each Band, SCA compute: 

1. 





1det

0det

),(det,),(
det

1 n

SCAbandSCABand x
n

X  

2. 





1det

0det

),(det,),(
det

1 n

SCAbandSCABand
n

  

c. Calculate per band mean and standard deviation. .  

i. Initialize data arrays, )(nBandsfloatLampMean  , )(nBandsfloatLampStdev   

ii. 





1

0

),()(

1 nSCA

fov

SCAbandBand X
nSCA

LampMean  

iii. 





1

0

),()(

1 nSCA

fov

SCAbandBand
nSCA

LampStdev   

III. Populate database with the L0c and Level1R statistics.. 

IV. Populate database with selected lamp telemetry 

a. Lamp voltages 

b. Lamp currents 

c. Diode currents 

d. Lamp housing temperatures 
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7.5.10.6 Maturity  

 
Level 2  (no heritage) Changes may be required once on orbit. 
 
Include detector responses at 30s intervals during the lamp warm-up period. 
 

7.5.11 OLI Lunar Irradiance Characterization   

 

7.5.11.1 Background 

Lunar acquisitions will be used to complement image quality assessments of the OLI. These will help 
detect changes in gain, provide a measure of radiometric stability, and reduce absolute radiometric 
uncertainties. 

  
Changes in relative gains are determined by comparing the measured lunar irradiances with modeled 
irradiances, which are calculated by the Robotics Lunar Observatory (RoLO), USGS/Flagstaff, using 
their lunar irradiance model. The interface between IAS and RoLO consists of a set of data 
interchange files. The IAS provides RoLO with the measured integrated lunar irradiances, image 
times and spacecraft position vectors. RoLO in turn generates a set of reports containing lunar 
observation geometrical parameters used by the model and comparisons of suitably scaled measured 
versus modeled irradiances. These reports will be ingested into the database for trending. 

 
The L1R lunar product will also be used for further geometrical processing and analysis including 
creation of geometrically corrected image products (resampled) and MTF characterizations.  

 
Operationally, it is expected that the moon will be imaged once a month (at approximate 7 degrees 
lunar phase angle) on several Sensor Chip Arrays (SCAs) with one “reference” SCA image always 
acquired. Information regarding which SCAs are illuminated is also expected from mission operations 
element since they will be programming the lunar maneuver. 
 
 
 
 
 
Input       

    

Descriptions   
Symbo
l Units Level  Source Type 

Scene (L1r)  
W/m2/sr/

m 

Nbands 
x NSCAs 
x 
Ndetector

s 

 Float 

ImpNoise    

Nbands 
x NSCAs 
x 
Ndetector

LM Int 
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s 

Sat Pixels   

Nbands 
x NSCAs 
x 
Ndetector

s 

LM Int 

Inop Dets   

Nbands 
x NSCAs 
x 
Ndetector

s 

CPF Int 

Odd/even detector 
offsets 

  

Nbands 
x NSCAs 
x 
Ndetector

s 

CPF  

Median Filter Size    CPF Int 

Dropped Frames   
Nbands 
x NSCAs 

LM Int 

SCA_illumination_flag   NSCAs 

Currently 
not 
available in 
the 
Ancillary/db. 
A 
mechanism 
to get this 
information 
is desired. 

Int 

Data/Imagery start/stop 
time [UTC] 

Tstart,Ten

d 

YYYYDD
Dhhmms
s.sss 

 Ancillary/db  
Text or 
Date 

Frame rate F Hz  Ancillary/db  Float 

Integration time I Ms  Ancillary/db Float 

Spacecraft 
ephemeris/Attitude 

 Km  Ancillary/db Float 

Moon-SC distance  Rm-sc Km  

Currently 
not 
available in 
Ancillary/db 
but can be 
calculated 
by IAS 
using 
existing 
code. 

Float 

Earth-Sun distance Re-s Km  
Currently 
not 

Float 
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available in 
Ancillary/db 
but can be 
calculated 
by IAS 
using 
existing 
code. 

Earth-Moon distance Re-m Km  

Currently 
not 
available in 
Ancillary/db 
but can be 
calculated 
by IAS 
using 
existing 
code. 

Float 

Earth-SC distance Re-sc Km  

Currently 
not 
available in 
Ancillary/db 
but can be 
calculated 
by IAS 
using 
existing 
code.  

Float 

Radiance Integration 
Thresholds 

  Nbands CPF Float 

 
 
Output 
 

Descriptions 
Symbo
l Units Level  Target Type  

Interface items to 
ROLO 

 

    

Time at center of lunar 
image [UTC] 

tm 
YYYYDD
Dhhmms
s.sss 

Nbands 
x NSCAs 

DB and 
text file 

Text or 
Date  

Apparent lunar YSize 
[mrad] 

Ysize mrad 
Nbands 
x NSCAs 

Db and 
text file 

Float 

Integrated Irradiances  SumIrr 
[microWa
tts / m^2 / 
nm] 

Nbands 
x NSCAs 

Db and 
text file 

Float 

SC PositionVector 
[J2000 GCI] 

 Km  
Db and 
text file 

Float 
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Interface items from 
ROLO  

     

Modeled Integrated 
Irradiances 

 
microW/
m^2/nm 

Nbands 
x NSCAs 

Db and 
text file 

Float 

Scaled Measured 
Irradiances 

 
microW/
m^2/nm 

Nbands 
x NSCAs 

Db and 
text file 

Float 

Irradiance percent 
differences  

 percent 
Nbands 
x NSCAs 

Db and 
text file 

Float 

Lunar diameter as 
observed from the SC 

 mrad 
Nbands 
x NSCAs 

Db and 
text file 

Float 

Oversampling Factor  
dimensio
nless 

Nbands 
x NSCAs 

Db and 
text file 

Float 

Dynamical barycentric 
Days 

 
Day 
 

 
Db and 
text file 

Float 

Selenographic 
longitude of the Sun 

 degrees  
Db and 
text file 

Float 

Selenographic latitude 
of the Sun 

 degrees  
Db and 
text file 

Float 

Selenographic 
longitude of spacecraft 

 degrees  
Db and 
text file 

Float 

Selenographic latitude 
of spacecraft 

 degrees  
Db and 
text file 

Float 

Distance of spacecraft 
from center of Moon 

 km  
Db and 
text file 

Float 

Heliocentric range of 
the Moon 

 Au  
Db and 
text file 

Float 

Factor to correct 
irradiance to standard 
distances 

 
dimensio
nless 

 
Db and 
text file 

Float 

Lunar phase angle  mrad  
Db and 
text file 

Float 

Position Angle of lunar 
axis, ccw from North 

 degrees  
Db and 
text file 

Float 

Lunar Mask  boolean 

Nbands 
x NSCAs 

x 
Ndetector

s 

Image File Int 

     

Other algorithm 
generated 
parameters 

     

Frame numbers at top 
and bottom of lunar 
image, location moon’s 
center (frame number, 
detector location) 

 N/A 
Nbands 
x NSCAs 

DB and 
text file 

Int 
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S/C attitude and 
attitude rates at top, 
middle and bottom of 
lunar image  

 

rads,rads
/s or 
arcsec,ar
csec/s 
[as 
provided 
in the 
ancillary 
db] 

Nbands 
x NSCAs 

DB and 
text file 

Float 

Sun-Earth-Moon 
ranges [km] 

 km  
DB and 
text file 

Float 

Note, Ints are 16-bit, Floats are 32-bit. 
 

7.5.11.2 Options 

 
1. Output lunar mask for verification. 
2. Text output of Integrated Irradiance, apparent lunar y-sizes,  start and stop frame numbers of 

lunar images, and location of the middle of the lunar images for each band and in every 
illuminated SCA. 

3. Alternate median filter size. 

7.5.11.3 Procedure 

I. Obtain illuminated SCA flag from ancillary database or other methods/sources. 
II. For each illuminated SCA calculate inputs to Rolo 

A. Read L1R metadata 
i. Image dimensions 
ii. Image start time 
iii. Frame rate 
iv. Integration time 

 
B. For each BAND 

i. Read image data, L1Riband,isca 
ii. If the input L1R data implemented any odd even offsets,  then  remove odd/even 

detector offsets from L1Riband,isca → L1Ciband,isca. Otherwise, L1Ciband,isca = L1Riband,isca 
iii. Create Lunar Mask, LMiband,isca: 

By thresholding. 
1. Remove artifacts (bright stars, etc) from image, eg: Filter each column with 

median filter, size = . (default=5). 
2. Obtain maximum radiance value, MaxRad iband,isca = max(L1Ciband,isca) 
3. Set  irradiance Threshold = MaxRad iband,isca *, where  is the radiance 

integration threshold factor (current default value = 0.8) 
4. LM = 1 where L1Ciband,isca ≥ Threshold, else LM = 0 

iv. Calculate Irradiance, SumIrriband,isca 
1. Sum radiance over lunar images, SumRadiband,isca = ∑ LRad*LM. 
2. Convert SumRAD iband,isca to Irradiance in µW/(m2.nm), SumIrr: 

For MS bands, SumIrr(1-7,9),isca=SumRAD(1-7,9),isca* 1.81077e-13 
For Pan band, SummIrr8,isca=SumRAD8,isca*4.52694e-14 
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These constant may be added to the CPF. 
v. Calculate apparent lunar y-size: 

1. For each detector locate start/end frame number where LM  = 1,  startidet, 
endidet 

2. Number of mask pixels in each column: Nidet=endidet-startidet 
3. Ysize iband,isca = Maximum(Nidet), at column location Dmax iband,isca. .I.e. Y-size is 

the maximum number of pixels set to 1 in the lunar mask and Dmax is the 
detector number where that maximum occurs. 

4. Ysize in mrads,: 

For MS bands, mYsize(1-7,9),isca =Ysize(1-7,9),isca *  ms 

 where detector solid angle is ms=4.2553e-5  

For Pan band, mYsize8,isca =Ysize8,isca*pan 

 where detector solid angle is pan=2.1277e-5 
 

 
vi. Calculate UTC time at center of moon, UTC_Moon(Band,SCA): 

1. Center of moon in image, FrameNumberMoonCenter = 
(start(Dmax)+end(Dmax)/)/2 

2. UTC_moon=(Image start time)+FrameNumberMoonCenter/(Frame rate) 
3. Alternatively, query image data time code at FrameNumberMoonCenter. 

vii. Read spacecraft ephemeris at UTC_moon: J2000 Position Vector(X,Y,Z). 
 

III. Outputs 
Obtain and populate database with integrated irradiance results and ancillary data. These 
include: 

i. Sun-moon-earth ranges, 
ii. Lunar Irradiance,  
iii. Lunar Y-sizes (in mrads and frame count), 
iv. Frame numbers at top and bottom of lunar edges.  
v. UTC time, spacecraft position vectors at center of lunar image. 

 
IV. Rolo interface: 

i. Query database, format and transmit results to Rolo. 
ii. Receive lunar model results from Rolo and populate database. 

 
 
Known/Potential Issues: 
 
One input specification is a flag to denote which SCA is being illuminated. Currently, such information 
is not available to IAS. An alternate, but less preferred, method is for IAS to use the imagery itself to 
determine which SCA is illuminated. 
 
The Moon-SC, Earth-Sun, Earth-Moon, and Earth-SC distances are also not currently available in the 
ancillary databases. The IAS can alternatively calculate this information using existing software. 
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7.5.11.4 Maturity 

  
1. Level 2 (reuse from ALIAS) 
2. Enable usage of L1G as input. 
3. Develop alternate methods for obtaining lunar masks. Eg 

a. Image classification to separate moon image from dark space. 
b. Lunar edge/limb determination as implemented for the RoLO model. 

4. Estimate apparent lunar y-size using spacecraft attitude information. This requires spacecraft 
attitude and attitude rates(Roll, Pitch, Yaw), and moon size from the spacecraft’s position. 

7.5.12 OLI Reflectance Conversion  

 

7.5.12.1 Background 

The standard Level 1T product will be a top of atmosphere reflectance product. This algorithm will 
convert the radiance image to a reflectance image in a per-scene operation.  The two products are 
linearly related to each other by a band specific coefficient that is proportional to the exoatmospheric 
solar irradiance in each band and the Earth-Sun distance for the scene’s day of acquisition. The per-
band coefficients will be determined once on orbit, after the first look at the diffuser.  For prelaunch 
testing, an estimate of the coefficient can be derived from the exoatmospheric solar irradiance.  The 
reflectance values will be between 0.0 and 1.0.  
 
Since all problem pixels should have been corrected by this point in the processing flow, this 
algorithm assumes that every image pixel is a valid radiance value.  Thus there is no consideration 
for dropped frames, inoperable detectors or saturated pixels. 
 
This algorithm will only process OLI data, not TIRS data.  The equivalent algorithm for TIRS data is 
Temperature Conversion. 
 

7.5.12.2 Inputs 

The inputs to this algorithm are the image, parameters from the CPF and a parameter from the JPL 
ephemeris table.  Table 12 lists the inputs of this algorithm. 
 

Table 16:  Algorithm Inputs 

Descriptions Symbol Units Level Source Type 

Radiance image data 

L W/m2 sr 
um 

Nband x 
NSCA x 
Ndet x 
Nframes  float 

Earth-Sun Distance 

d AU 

scalar 

JPL 
ephemeris 
table float  

Radiance to 
Reflectance Conversion 
Coefficients  

Rr sr/(w/m2 
um) 

Nband CPF  float 
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7.5.12.3 Output 

The outputs of this algorithm are the reflectance image and the coefficients needed to convert back to 
radiance.  The coefficients will be distributed with the final product. Table 13 lists the outputs of this 
algorithm. 
 

Table 17: Algorithm Outputs 

Descriptions Symbol Units Level Target Type 

Reflectance image  

 [] Nband x 
NSCA x 
Ndet x 
Nframes  float 

Reflectance to radiance 
conversion coefficients  

R (w/m2 
um)/sr Nband 

Radiance 
Rescaling float 

 

7.5.12.4 Options 

7.5.12.5 Procedure 

1. For each band, apply conversion coefficients (R) to radiance images (L1r). This equation 
converts the image radiance [W/m2 sr um] to reflectance [unitless]. 

a. 



  d2  L  R  (1) 

b. where L is the image radiance and d is the earth-sun distance (AU) for the day the 
scene was acquired. 

2. For each band, calculate reflectance-to-radiance conversion coefficient (R). 

a. 



R 
1

d2  R

 (2) 

b. This coefficient is passed to Radiance Rescaling. 
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7.5.12.6 Inputs 

Radiance-to-reflectance coeff: R  (arbitrary value) 
Radiance image mean:  L = 319.2  (an arbitrary high signal) 
Earth-sun distance: d = 1.0154351 (distance for June 12, an arbitrary date) 
 

7.5.12.7 Outputs 

Reflectance image mean:   = 0.550 

Reflectance-to-radiance coeff:  R = 580.737 
 
 

7.5.12.8 Maturity    

Level 2 . It is unlikely but another version of this algorithm may need to be implemented during the 
level 1G processing (or after), if the decision is made to generate a reflectance product where the sun 
angle used is specific to the image pixel.  Here, a latitude and longitude of each pixel combined with 
the image time, will be used to calculate a reflectance for the specific sun angle corresponding to 
each pixel. 
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7.5.12.8.1 Earth-Sun Distance Calculation  

The JPL Ephemeris table (DE421) describes the orbits of the sun and planets with very high precision 
over relatively long time scales14.  The file is stored as a series of Chebyshev coefficients which can 
be interpolated to essentially any desired temporal accuracy.  The IDL tool that I use to read from the 
JPL file requires the date as input and outputs a three element position array.  To convert to earth-
sun distance in AU: 
 

aukm = double(1.4959787e8) ; au in km 
dist = double( sqrt( pos(0)^2 + pos(1)^2 + pos(2)^2. ) ) 
earth_sun_distance = dist / aukm 
 

At this point, it is unclear what form the input to this algorithm will be.  Will it already be the earth-sun 
distance or will it be passed in as the 3-element Chebyshev coefficients?  I’m still presuming the 
earth-sun distance will be passed in, but if not, these equations will need to be added as Step 1. 
 
 
 

 
 
 

 

7.6 TIRS Radiometry Algorithms  

7.6.1 TIRS Dark Response Determination 

7.6.1.1 Background 

One component of the signal recorded by each TIRS detector is the result of the response to the 
thermal energy in the QWIP material, called the Dark Response.  This value varies by detector for all 
bands and is dependent on detector temperature, bias voltage, integration time and detector gain.  
Nominal values are determined during ground testing at the component level by using a cold shutter 
to mask practically all photon flux from the detectors.  In-flight, the two Earth-imaging “illuminated” 
bands cannot be shuttered from the photons emitted by the instrument structure and optics, thus their 
dark response cannot be directly measured.  A third TIRS band, the “dark” band, is permanently 
shuttered.  The response for this dark band is continuously measured and available along with the 
illuminated band data. If there is variation in the dark response on orbit, e.g., as due to detector 
temperature variation, this dark band will capture it. 
 
This algorithm analyzes the response from the dark band, compares it to the dark response from 
ground testing and calculates an estimate of the change in dark response.  This estimate can be 
extrapolated to a change in the dark response of the illuminated band data and applied to the 
radiometric calibration in later steps.  The application of the correction is dependent on the evaluation 
of how well the dark response of the dark band correlates to the dark response of the illuminated 
bands.  Since the dark response of a QWIP detector is a function of its individual gain, the difference 
in gains between the dark and illuminated detectors must be accounted for in the evaluation.  
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This algorithm can be run on sets of calibration observations as a stand-alone algorithm to evaluate 
the dark response correlation and stability. It can also be run on a scene-by-scene basis as part of 
the primary radiometric calibration.  In the former case, CPF values can be evaluated and adjusted to 
reflect the best in-flight knowledge of the dark response.  This process will also be necessary if the 
set points for integration time, bias voltage, detector temperature, or A/D offset level are changed in 
flight.  In the latter case, this algorithm is needed in-line for product generation. 
 
The TIRS instrument is expected to be stable in terms of radiometric gain and bias such that 
calibration updates should not be required on an orbital or daily basis.  In this scenario the dark 
response is treated as part of the overall background response and this algorithm may not 
substantially improve the precision of the radiometric calibration. In the event that the focal plane 
temperature shows low frequency variation, lower than per scene, this correction may improve the 
absolute radiometric calibration precision. 

7.6.1.2 Input 

 

Description Symbol Units Level Source Type 

Scene Mean (dark 
band only) Q  DN 

NSCA 
x Ndet 

DB (Histogram 
Statistics 
Characterization) Float 

Baseline Dark 
Response DB DN 

Nband 
x 
NSCA 
x Ndet CPF Float 

Relative Gain 
Coefficients GR Unitless 

Nband 
x 
NSCA 
x Ndet CPF Float 

Absolute Gain 
Coefficients GA msrmW

DN

2
 

Nband 
x 
NSCA CPF Float 

 

7.6.1.3 Output 

 

Description 
Symbo

l Units Level Target Type 

Dark Response D DN 

Nband 
x 
NSCA 
x Ndet 

Test CPF or Bias 
Removal Float 

 

7.6.1.4 Options 

 Output adjusted dark response to file (default off).  This is mainly for the standalone 
implementation of this algorithm, but could also be helpful for anomaly resolution. 

 Output baseline dark response or adjusted dark response (default is baseline dark response 
from the CPF). 
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7.6.1.5 Procedure 

5. Read the baseline dark response (DB) for each band/SCA/detector from the CPF (including the 
dark band) 

6. If baseline dark response option set, output the dark response (DB) and exit, else continue 
7. Read the gain coefficients (GA and GR) for each band/SCA/detector from the CPF (including the 

dark band) and calculate the per-detector absolute gain (G) 
 

),,(),(),,( dsbGsbGdsbG RA    (1) 

8. Read the scene average response (Q ) for each SCA/detector for the dark band from the 

histogram statistics for the input scene or calibration collection being processed. 
9. For each SCA: 

9.1. For each detector in the Dark band: 
9.1.1. Calculate the difference between the baseline dark response (

BD )and the scene 

average dark response (Q ), giving the dark response difference (
D ) 

 

),(),(),( dsQdsDds BD     (2) 

 
9.1.2. Divide the dark response difference (

D ) by the detector gain (G), giving the adjusted 

dark response difference (
A ) 

 

),(

),(
),(

dsG

ds
ds D

A


      (3) 

 

9.1.3. Calculate the average adjusted dark response difference ( S )across all operable dark 

detectors in the SCA, 



dN

d

A

d

S ds
N

s
1

),(
1

)(  (4) 

 
9.2. For each Band/Detector: 

9.2.1. Multiply the SCA average adjusted dark response difference by each detector’s gain and 
add the result to the baseline dark response for each detector, giving the adjusted dark 
response for the detector. 

 



DA (b,s,d) G(b,s,d)S (s)DB (b,s,d)  (5) 

 
Downstream algorithms can use either the baseline dark response (DB) or the adjusted dark response 
(DA), in either case it is represented as simply the dark response (D). 

7.6.1.6 Maturity 

Level 3. Further component and higher level testing of the TIRS QWIP detectors is necessary before 
the details of this algorithm are resolved. 
 
Depending on the stability of the dark response, we may need to store the results of the dark 
response determination in the characterization database. 
 
There may also be a need to provide the output of this algorithm to the ICs in the form of a BPF. 
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7.6.2 TIRS Bias Model Calibration 

7.6.2.1 Background 

Conversion from instrument digital counts (DN) to radiance (W/m^2-sr-µm) occurs in 3 steps: 
response linearization, bias removal, and gain application.  The bias that is removed in the second 
step is a combination of the dark and background response of the instrument, and is the total 
response of the instrument to “nothing”, or a very cold target.  On orbit the TIRS instrument will collect 
data while looking at deep space.  The per-detector means of the data from these collects can be 
used as an estimate of the cumulative dark and background responses of the instrument.   
This algorithm only needs to be implemented as a part of Ingest, and should not be run using long 
(meaning longer than the typical 2 seconds) space look collects.   

7.6.2.2 Input 

 

7.6.2.3 O
utput 

 

7.6.2.4 O
ptions 

 S

tart and stop date/time of desired means (T0 and T1).  Normally T0 should be the stop of the pre-

acquisition deep space collect andT1 should be the start of the post-acquisition deep space collect .   

7.6.2.5 Procedure 

Retrieve the histogram statistics from one collect each of TIRS space look data acquired prior to the 
desired start date/time (T0) and after the desired stop date/time (T1) and write these to the BPF 
database. 

7.6.3 TIRS Bias Removal 

7.6.3.1 Background 

Conversion from instrument digital counts (DN) to radiance (W/m^2-sr-µm) occurs in 3 steps: 
response linearization, bias removal, and gain application.  The second step (bias removal) is 
described in this document.  Although the name implies this algorithm just removes the detector bias, 
it actually removes the dark response and background response (which can come from the dark and 
background response determination algorithms or from per detector means of deep space look 
collects), as well as an offset that is part of the gain function that converts linearized, background 
subtracted DN to radiance.  Note that the order of these three steps is different than OLI because the 
“bias” being removed is a function of detector voltage and temperature and must be linearized before 
being subtracted. 
 
Bias removal is accomplished by subtracting a value (in linearized DN) from each pixel of the input 
image.  This value varies by detector for all bands.  The values are determined initially during ground 
testing and made available via the calibration parameter file (CPF).  In-flight calibration observations 

Description Symbol Units Level Source Type 

Per Detector Means 
from latest space look 
(TIRS) 

STIRS DN 

NbandsxNSCAxNdetectors 
Histogram 
Statistics Float 

Description Symbol Units Level Target Type 

Per Detector Means 
from latest space look 
(TIRS) 

STIRS DN 

NbandsxNSCAxNdetectors BPF Float 
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(space-look data) can be used to verify the per-detector background signal and adjust the CPF 
periodically if necessary.   

7.6.3.2 Input 

 

Description Symbol Units Level Source Type 

Scene (Linearized DN) QL DN 

Nband 
x 
NSCA 
x Ndet 
x 
Nframes 

Response 
Linearization Float 

Pre-acquisition Deep 
Space Averages Sa DN 

Nband 
x 
NSCA 
x Ndet BPF Float 

Post-acquisition Deep 
Space Averages Sb DN 

Nband 
x 
NSCA 
x Ndet BPF Float 

Dark Response D DN 

Nband 
x 
NSCA 
x Ndet 

Dark 
Response 
Determination 
or CPF Float 

Background Response B DN 

Nband 
x 
NSCA 
x Ndet CPF Float 

Gain Function Offset Go DN 

Nband 
x 
NSCA 
x Ndet CPF Float 

 
Output 
 

Description 
Symbo

l Units 
Leve

l Target Type 

Scene (Bias 
Subtracted, Linearized 
DN) QLB DN 

Nband 
x 
NSCA 
x Ndet 
x 
Nframe

s 
Gain 
Application Float 

 

7.6.3.3 Options 

 Dark and Background Response Selection 
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1. Pre-acquisition deep space averages (Sa) 

2. Post-acquisition deep space averages (Sb) 

3. Average of pre-and post-acquisition deep space averages (Sab) (default) 

4. dark and background responses from the CPF (or dark response determination in the case of dark 

response) 

7.6.3.4 Procedure 

 
1. If pre- or post-acquisition deep space averages have been selected, then retrieve the selected deep space 

averages.  Whichever is selected will be referred to as S(b,s,d) for the remainder of the algorithm, where  

d=detector, s=SCA, and b=band 

If the average of the pre-and post-acquisitions is selected then retrieve the selected deep 
space averages and calculate S using equation (1).   

      dsbSdsbSdsbS BA ,,,,
2

1
,,   (1) 

If the dark and background responses from the CPF are desired, then retrieve the dark and 
background responses from the CPF (or dark response determination in the case of dark 
response) and calculate S using equation (2).   

      dsbBdsbDdsbS ,,,,,,   (2) 

2. To calculate the total bias, add the gain function offsets to the combined dark and background responses.   

      dsbGdsbSdsbbias O ,,,,,,   (3) 

3. Remove the bias from the linearized scene.   

     dsbbiasfdsbQfdsbQ LLB ,,,,,,,,   (4) 

7.6.3.5 Maturity 

This algorithm will likely be correct for the flight FPA.  A native C implementation will be completed by 
the end of 2010 as part of the TIRS Science Data Processor pipeline, and the plan is to integrate it 
with the CalVal toolkit. 
 
All of test data used was simulated or calculated from TVAC2 test data during a collect where the 
focal plane was looking at a cold plate meant to simulate deep space. The gain offsets, however were 
calculated from OBC data.  The first useful in-flight Background Response CPF values will come from 
the “space-look” data collected during the 90 day checkout. 
 
Expect to have more extensive test data sets as other algorithms are completed.   
 

7.6.4 TIRS Nonlinear Response Characterization 
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7.6.5 TIRS Response Linearization 

7.6.5.1 Background/Introduction 

The TIRS readout electronics produce a quantized output (Q) in units of digital number (DN) 
representing the amount of signal measured by each detector.  This Q is expected to be related to the 
input signal in a non-linear way.  The non-linearity is different for each detector.  To simplify parts of 
radiometric correction and calibration, the Q must first be adjusted to compensate for this non-
linearity. 
 
Response linearization data are collected using multiple integrations times with a stable signal 
source.  During ground calibration the stable source is a shuttered dewar, a uniform calibration 
source, or the TIRS Calibration GSE.  On-orbit, the stable signal source can be either the on-board 
calibrator or the space view.  Plotting the Q vs. Integration Time illustrates the non-linearity in the 
detector response as the electron well fills.  This methodology assumes that linearity with integration 
time is equivalent to linearity with radiance. 
 
The 9803 Readout Multiplexers used in the TIRS focal plane have two distinct slopes.  The initial 
response of output signal versus input signal has a relatively high slope for approximately the first 
quarter of the detector saturation level (low-end slope).  The majority of the dynamic range of the 
detector/readout system (primary slope) has a response about 1/3 of the low-end slope.  Nearing 
analog saturation the response slope flattens out (high-end slope).  Additionally there are non-
linearities in each response slope due to the ROIC output buffer electronics, and the analog to digital 
circuitry.   
 
Figure 1 shows the response slopes for a typical detector/readout system from one of the TIRS 
SCAs.  For convenience the Integration Time is normalized to the point where the primary slope 
output signal would be 4095 DN. 
 

 

Figure 4. Typical QWIP Detector Response Shape 
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Figure 2 shows the inverted response plot with each response slope fit to a quadratic function.  This 
data is derived from the DCL detector level data.  There are not enough data points at this time to 
derive a quadratic function for the low-end slope, so the square term is set to zero.  The high-end 
slope also lacks enough data points at this time for a good fit.  The high-end slope is also likely to fit 
an exponential function better than a quadratic.  The theoretical form of the curve is not known at this 
time, but the piecewise quadratic/linear approximation has been determined to be valid. 
 

 
The instrument is designed so that the scene and OBC data will be in the primary slope portion of the 
response curve.  Depending on the focal plane temperature, integration time, bias voltage, and other 
factors, the dark band data and deep space looks may return levels in the range of the low-end slope.  
In order to correct the scene data using the dark response it is necessary to match the response of 
the low-end slope to the primary slope.  The cutoff point where the two slopes intersect is determined 
and the appropriate linearization correction is made.  The instrument will likely be tuned so the analog 
saturation point associated with the high-end slope is above the digital saturation point, and thus 
these data will never be seen.  Processing the high-end slope is included in case it is needed. 
 
The mapping function used in this algorithm is a quadratic for all three slopes..  The cutoff points are 
determined by equating the two adjacent quadratics functions.  Analysis has shown that a higher 
order polynomial does not add any benefit to the linearization to the low end slope or primary slope of 
the response curve 
 

7.6.5.2 Input 

Description Level Source Type 

Scene (L0R) 

Nscas x 
Nbands x 
Ndetectors x 
Nlines  Float 

Remapping function cutoff Nscas x CPF Float 
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thresholds Nbands x 
Ndetectors x 
Ncutoffs 

Remapping function parameters 

Nscas x 
Nbands x 
Ndetectors x 
Ncoefficients x 
(Ncutoffs+1) CPF Float 

The planned implementation is for two cutoff points (Ncutoffs = 2) and three sets of quadratic 
coefficients (Ncoefficients = 3). 
 

7.6.5.3 Output 

Description Level Target Type 

  Scene (linearized) 
Ndetectors x 
Nframes  Float 

 

7.6.5.4 Procedure 

Response linearization should be a simple replacement of the incoming value with a linearized 
response value.   
 
The linearized value will be calculated for each sample point by an algorithm.  These algorithms will 
be determined by pre-launch calibration of the detectors.  As described above, this algorithm is a 
multi-segment quadratic function with the detector Q value as its only variable.  Parameters for the 
linearization function will be stored in the CPF.  For this method the required parameters are three 
sets of quadratic coefficients (one set for each sloped segment), and two cutoff points. 
 

1.3. For each input frame 
1.4. For each detector 

1.4.1. Compare input Q with cutoff values and select appropriate quadratic coefficients. 
 
The input Q value is compared to the cutoff thresholds in the CPF, to determine which 
segment of the linearization to use. 
If input is less than cutoff #1, then segment 1 is used. 
If input is greater than or equal to cutoff #1 but less than cutoff #2, then  segment 2 is 
used. 
If input is greater than or equal to cutoff #2, then segment 3 is used. 
 

1.4.2. Evaluate the quadratic function at the input Q: 
 

output = qp[0, s] + qp[1, s] * input + qp[2, s] * (input)2 
 
where input = the input value, Q, in DN. 
 output = the output value, Q1, in linearized DN. 
 qp[x, s] = linearization parameter x, for segment s. 
   These parameters come from the CPF. 
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1.4.3. Return the output value. 
 

7.6.5.5 Maturity 

 
This algorithm will likely be correct for the flight FPA.  A native C implementation will be completed by 
NASA by August, 2010 as part of the TIRS Science Data Processor pipeline, and the plan is to 
integrate it with the CalVal toolkit.   
 
A process to analyze the on-orbit integration time sweep data and produce linearization Calibration 
Parameters will be discussed and produced at some later time.  
 
Expect to have a more extensive test data set as other algorithms are completed. 
 
More finely resolved test data for linearization will be generated for the flight FPA (not including the 
FPE), sometime in July, 2010 as the assembly level FPA tests are conducted. 
 
Other possible changes that may occur are: 
 

 Lookup Table – The remapping could also be implemented as a look-up table (LUT), which 
will return the “linearized” value (Q1) for each instrument Q value.  This table will be different 
for each detector and will return a floating-point number.  The LUT is populated from the re-
mapping function for each detector.  This can be pre-calculated and stored as part of the 
calibration, or can be calculated at run time.  This method may be quicker than calculating the 
re-mapping function as the curve fit functions and cut-off points don’t have to be evaluated for 
each sample.  It also allows a different function (other than quadratic) to be used to fit the 
linearization data.  The LUT could also be generated with manual adjustments and delivered at 
part of a calibration input if necessary.  A drawback is that a large floating point LUT (up to 
4096 elements) for each detector must be held in memory during processing. 

 
 True Inconsistency Handling – The inconsistency handling in the prototype code is included 

only because the initial test data (v3.0) is noisy and incomplete.  It should not be necessary in 
LDCM final implementation – the TIRS linearization parameters should be well-understood and 
without errors by launch.  If this turns out to not be the case, inconsistency handling may need 
to be included in the final code.  It will resemble the current handling but should be more robust 
and comprehensive. 

 
7.6.6 TIRS 40 Minutes Radiometric Stability Characterization 

7.6.6.1 Background/Introduction 

This algorithm provides for on-orbit characterization of the radiometric stability of the TIRS, 
specifically related to TIRS RD requirement (TIRS-547) “Thermal band data for all pixels, after 
radiometric calibration per 5.3.1.2, for radiometrically constant targets with radiances greater than or 
equal to the radiance corresponding to TTypical, shall not vary by more than plus or minus 0.7% (1-
sigma) of their radiance over a 40 minute period.” This algorithm is to be implemented, at least 
initially, as part of the Cal Val Tool Kit (CVTK). 
  
For the TIRS  apparent response stability is related to multiple contributing factors:  
1) Background response and dark response stabilities over the 40 minutes 
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2) The reference constant source stability stabilities over the 40 minutes 
3) Validity of CPF used to produce the radiometric product such parameters include the non-linearity 
correction and the conversion to radiance parameters. 
          In other words if any of these CPF parameters may have some thermal or temporal  

dependence that are not accounted for it would impact the interpretation of the actual response 
stability results. 

 
Furthermore, although primarily focused on product stability this tool can also be used to understand 
the stabilities of several of the instrument sub-systems.  Establishing baseline characteristics of the 
instrument stability will help in verifying the time it will take to return to nominal operation after lunar 
collects or other non-routine orbital operations. Baseline time duration for such return-to-nominal 
period would be based on telemetry information and could be complimented by the metric generated 
by this tool. 
 
Key telemetry information associated with TIRS stability includes: Temperatures, (OBC, Telescope, 
SSM, FPA, FPE, MEB); Current and Voltages (OBC and FPE).  
 
This algorithm uses deep space and OBC TIRS data to assess the within orbit product and 
instrument stability. 
The basic concept of this algorithm is to analyze TIRS statistics from multiple 60sec segments within 
the stability evaluation interval of 36 min or 1.5 orbit.  For each of the 60sec segments it compute the 
instantaneous stability parameters, which can be used then to gain understating on stability changes 
over the entire evaluation interval. Computing  the 60sec stability parameters the algorithm is based 
on Hist_stat processing outputs.   
 
Information about Input data types expected 
Two types of data collects will be used for these analyses. on board calibrator data  and deep space 
data.. The OBC data will be at or above the temperature of 290K  (current plan is to use 290K, 295K 
and 315K) then,  manual interpolation analysis will be required to transform the stability results into 
the requirement temperature of Ttypical. Currently during on-orbit commissioning the main data collects 
that will be used by this algorithm are the continuous 36min data of OBC or deep space data as well 
as a repeated sequence of 30 Cal-sequence files over 1.5 orbit with once every 5 minutes collect 
sequence of 1 min deep space and 1 min OBC will be available.   
  
This algorithm is designed primarily to work on TIRS data but could be converted to be applicable for 
both TIRS and OLI 36 minutes long collect.  This algorithm can operate on all 3 TIRS bands 
(10µm,12µm, blind) but practical use will need only the 10µm and 12 µm bands data for product level 
performance assessment.  For that reason the analyst can use a selection switch to select if this 
algorithm should process stability of TIRS blind data or just the imaging bands.  
Similar to the 60sec stability algorithm this algorithm would rely on Histogram statistics 
Characterization processing to collect the basic statistics from either multiple scenes given in a 
sequence to form a virtual long interval or sub-segments of a long interval (that may be split into 
multiple files).  The algorithm will populate the minimal set of radiometric stability metric as a 
standalone algorithm that is gathering the instantaneous stability information on each of the scenes or 
segments in the interval.  In the case the scene provided is one long 36 min dataset (composed of 
several mission files) the algorithm will pre-process the input data to produce multi-segments 
statistics information needed for processing using a moving window of 60sec. The interpretation of 
the results requires that the scenes are temporally constant radiance, e.g., deep space and OBC 
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acquisitions (those could be part of a special Cal sequence sweep with enough dwell time for the 
collections of the number of lines needed).  
For deep space collect we use (L0r) input that will only be non-linearity corrected.  For OBC collects 
we use both (L0rc) and (L1r) products as inputs.  
 
Information about Output produced and its interpretation 
The output of this tool enables trending of : instantaneous stability of segments for the response, and 
stability over the 36min duration or longer.   
 
The output mimics the 60s stability algorithm configuration where the output depends on the input 
data provided, i.e. OBC or deep space.  Stability statistics across the scene segments are calculated 
from these uniform radiance scenes and stored in the characterization database. Using collects made 
at the nominal integration time the statistics are calculated by Histogram Statistics. Multiple levels of 
processing will be used by this algorithm. Six categories of outputs will be produced: 

6) Background response band average stability (deep space, non-linearity corrected) 
7) OBC response band average stability –(background corrected and non-linearity 

corrected)  
8) Radiometrically corrected OBC response stability in radiance 
9) Radiometrically corrected OBC response stability in % 
10) Optional – Detector-by-detector Radiometrically corrected OBC response stability in % 

(for operability characterization) 
11) Optional –Detector by detector background response stability (for operability 

characterization) 
 

The OBC L1r product stability metric will be converted from radiance units to % so it can be evaluated 
against the 0.7% requirement level. OBC L0rc data will be used to characterize the band mean net 
response stability in the various segments over the data duration interval (36 min or longer).   
 
Additional considerations 
 
It is recommended stability acquisitions be routinely collected and assessed, in the following 
conditions: after standard TIRS operations in either earth sun-lit or night part of the orbit, after Lunar 
or Solar collects with 5 minutes margin from the time TIRS returned to earth view nadir pointing (the 
5min period is driven by TIRS requirements and SC pointing stability allocated period). 
 
The output of this algorithm can be used by subsequent algorithms that trend detector level 
characteristics.   
TIRS radiometric conversion parameters are assumed invariant after the background corrected 
response is computed.  Trending of the output of this stability algorithm could assist in validating this 
assumption. 
 
Future developments on this characterization processing may include the use of OLI data and TIRS 
Earth - night ocean long passes. 
 
To obtain a better representation of the TIRS stability will require additional analysis and correction of 
any influences of low frequency drifts in the TIRS and OBC temperatures induced by the data 
collection conditions.  This will require the analysis to correlate between the trended results to the 
various subsystems telemetry information.  
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7.6.6.2 Inputs 

This algorithm works with two types of source data a single long continuous collect or multiple  short 
segments over a longer period..   
The expected input will be produced by Hist_stat or the special long data Hist_stat algorithms which 
would operate on either a pre-processed data given in the format of a set of 30 4200 lines files 
(covering the period of 150 minutes) illustrating 30 interval sub-segments, or pre-processed data 
given in the format of a set of 36 4200 lines files illustrating 36 interval sub-segments (covering the 
continuous 36 min collect).  
Inputs per segment are highlighted; inputs common to the full dataset are not highlighted. Note that 
when correlating telemetry data to this analysis it should be done in the same timing intervals of the 
segments used for the instrument response. 
 
 
 
 
 
 
 
 

Descriptions Symbol Units Level Source 

Interval Segment 
Signal Mean 

 

Float 
[DN] or 
[w/m2 sr 
um] 

NBxNSxND 

Long collect 
statistic 
Characterization 
15

  

Stat Char  

Interval Segment 
Signal Max 

 

Float 
[DN] or 
[w/m2 sr 
um] 

NBxNSxND 

Long collect 
statistic 
Characterization 
1
 Stat Char Qmax 

Interval Segment 
Signal Min 

 

Float 
[DN] or 
[w/m2 sr 
um] 

NBxNSxND 

Long collect 
statistic 
Characterization 
1
 Stat Char Qmin  

Interval Segment 
Signal StDev 
 

  

Float 
[DN] or 
[w/m2 sr 
um] 

NBxNSxND 

Long collect 
statistic 
Characterization 
1
 Stat Char σ 

Number of frames NBR_of_frames Long  

Long collect 
statistic 
Characterization 
1
 Stat Char 

number of 

                                            
15

 Histogram data will be collected from different level of processing i.e. L0R for Dark Shutter data, L0Rc for OBC and at 
L1R for OBC product. 

   

Q B,S,D

Q

  

Max _Q(B,S,D)

  

Min _Q(B ,S,D )

  

Sigma_Q(B,S,D)
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frames 

Interval segment 
ID or segment 
start line (line time 
tag) 

Seg_ID Float [s] NSEGMENTS 

Long collect 
statistic 
Characterization 
Acquisition time for 
the first frame of each 
segment t1 

Scene Type (i.e 
O* or D*) 

Stype Char NB  
DB 
L0Rp Image file  

Processing Step 
(i.e. before or 
after Gain 
application) 

Pstep String NB 

Histogram Stat 
Char Position in 
processing flow 
(RPS Level) 

Segment window 
size (lines) 

Seg_win Int  

Analyst input 
/pre-processing 
default set for 
60sec duration 
– i.e. 4200 lines 

Relative gains  r [unitless] NBxNSxND CPF  

Impulse Noise 
Pixels Locations 

LM1 Integer 
NBxNSxND 
xL 

LM 

Saturated Pixel 
Mask16  

LM2 Integer NBxNSxND LM 

Dropped Frames 
Mask  

LM3 Integer 
NBxNSxND 
xL 

LM 

Inoperable 
Detector List  

Dinop Float NBxNS CPF 

 
7.6.6.3 Outputs 

Outputs will mimic the provided segmentation of the input data (i.e. even if actual data was given as a 
single continuous collect since its inputs from the special long hist_stat processing will be chopped 
into multiple segments then the output DB will include results per segment – only in this case the 
segments are artificially produced by a moving window with in one or more mission data files). 
Per interval segment populate these outputs  
The algorithm will need to process the data from all segments before the analyst could assess the 
stability results for the full interval. 
For Segment I the output to DB is : 

Descriptions Symbol Units Level Target 

Signal Variability, SCA 
average 

 Float 
[DN] or 
[w/m2 

NB x NS 
DB 

(Bias, 

Gains & 

                                            
16

 This mask should include any of the detectors that had been reported by the Saturation characteristics processing, i.e. 
high and low saturations in both digital and analog categories  



LDCM-ADEF-001 
Version 3 

 

sr um] OBC 

L1R  

Stability) 

L1r Product Variability, 
SCA average  

 Float 
[%] 

NB x NS 

DB 
(Gains & 

OBC 

L1R  

Stability) 

SNR Variability, per-
detector 17 

 
Float 
[%] 

NB x NSxN 

D 

DB 
(Gains & 

OBC 

L1R  

Stability) 

Scene Type (i.e O* or 
D*) 

Stype Char NB DB 

Processing Step Pstep String NB DB 

Interval segment ID or 
segment start line (line 
time tag) 

Seg_ID Float NSEGMENTS DB  

Segment window size 
(lines) 

Seg_win Int  DB 

 
7.6.6.4 Options 

Trending On/Off Switch: If trending is Off, output parameters are written to a text file. 
Comp stat switch: ON – compute statistics, Off – import stat data from hist_stat (default) 
Collect type ID – Cont 36min  /  1.5 orbit data 
Window sizes – full (default) , 4200, User selected between 100-64000  ; if collect type ID is Cont 
36min the window size parameter will be used to define the segment size ; If Comp-stat switch is Off 
segment window size will be imported from hist_stat. 
Processed Blind_band – Yes / No 

7.6.6.5 Procedure 

Note that in order to characterize TIRS radiometric stability we call this algorithm at least 3 times:  
Once to process long Deepspace data, and twice to process the data for the closest long OBC 
collects (once using the net linearized response L0rc1 intermediate Cal product and once using the 
radiometric corrected L1R product.)   

----- 

Pre-Processing  (creating sub segments generating the input data needed and computing Hist_stat 
info for each segment)  The preprocessing brings either Collect type into a fixed input format. 

----- 

 

1- Pre Process the data (if in multi mission data files continuous or multi-segments of Cal-sequence) 

 

                                            
17

 We will not store in DB the OBC L1R calculated per detector gains 60 stabilities but it will be calculated and written to 
an output file if the option of trending is turned off. 
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Check if Collect type option is Cont 36min data 

If No – get sequence of 30 scenes IDs to processes through this ADD 

If yes chop the 36 min data into smaller segments in the size of Window_size input parameter 

i.e. Qinterval(b,s,d,l) - > { Q1(b,s,d,l) ; Q2(b,s,d,l) ; ….  Qn(b,s,d,l) }  

where the last line in Qn is the last line in Qinterval and all segment are set to 

equal size (Seg_win). 

For a default window size there should be 36 scene IDs generated. 

For all segments produce or obtain from DB the input histogram information 
needed for the algorithm. 

2-  On each scene or segment (30 or 36 segments) within the interval proceed to the following steps of 3-8 

 

----- 

Calculating statistics  (possibly can be retrieved from Hist Stat DB for the scene or segment) 

----- 

3- Based on the Labeled Mask and detector operability list omit those detectors when calculating 
SCA level averages. 

4- Populate histogram statistics metric per detector in the relevant variables and calculate the 
average across all detectors within an SCA.  

a.  (1) 

b.  Qmax (2) 

c.  Qmin (3) 

d.  σ (4) 

e.  (5) 

f. Get number_of_frames for the interval segment 

g. Get Interval segment ID from input (this will be related to the segment’s first line time 
tag) 

h. Note that calculations should only include operable and in-spec detectors.  (i.e. ignore 
pixels flagged as inoperable, saturated, dropped frame, impulse or fill.)  

--------- 

Calculating Stability of Signal 

--------- 

5- For each detector, calculate the 1-sigma the along track variation in the image that is at the 
length of the segment window or segment duration.  

 

                     ̅           (6) 

  

Q (B,S,D ) = Histogram_ per_detector _ mean _ signal Q

  

Max _Q (B,S,D) = Histogram_ per _detector _ Max _ signal

  

Min _Q (B ,S,D ) = Histogram_ per_detector_ Min_ signal

  

Sigma_Q (B,S,D) = Histogram_ per _detector _ StDev

  

Q B,S = mean(Q B,S,D)
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------------- 

Processing data to generate outputs 

------------- 

6- Calculate the SCA average variability, i.e, the average across all detectors within each SCA: 

b.  (7) 

7- For TIRS deep space data, record the SCA mean variabilities ( ) of every segment or 

scene within the interval to the database or output file (along with other specified outputs in the 
output table).  This is the end of the algorithm for processing TIRS deep space data.   

8- For TIRS OBC data process and record what is done up to step 7 and also do this : 

f. Calculate the per-detector variability in terms of percent change. It illustrates the impact 
of individual detectors on the overall radiometric stability. 

iii.  (8) 

iv. where rD is the relative linear gain used for conversion to at aperture radiance 
from CPF for L0Rc data and 1.0 for L1R data. 

g. Calculate the SCA average variability in terms of percent gain change: 

iii.  (9)  

iv.  should be calculated using the same list of detectors used to produce the 

mean signal in equation (5) 

h. For L0Rc data, write the per-detector percent variability ( ) and the SCA average 

variability ( ) of every segment or scene within the interval to the database or output 

file (along with other specified outputs in the output table). 

i. For L1R data, write the SCA average percent variability ( ) of every segment or 

scene within the interval to the database or output file (along with other specified 
outputs in the output table). 

j. For L1R if output to file selected also write to file the per-detector variability ( ) and 

the SCA Radiance mean variability ( )of every segment or scene within the interval 

(along with other specified outputs in the output table). 

------------------------------------------------------------------------------------------------ 

9- Once all segments or scenes had been processed analyst will work offline to extract information from 

DB to generate various plots and test correlations to telemetry data.  Most of this follow-on analysis is 

not automated or strictly defined by this algorithm but it may ultimately include plots of the SNR 

variability over the interval and use such plots to identify detectors are 5 time less stable than the overall 

band stability characteristics assisting with detector operability characterization.  Other likely plots are 

plots similar to lamp response trending – trending mean response Vs. time and stdev of response Vs. 

time in each segment over the 36 minute or longer interval. 

   

Q B ,S
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7.6.6.6 Maturity 

Level 2 (reuse portion of 60s stability algorithm).  
The algorithm essentially repeats the 60s stability computations (with slight modification) per segment 
within the long interval being evaluated.  The only part that is new is that it is capable of working with 
a sequence of individual small scenes or one long scene that get spliced into a moving window 
segments.  This ADD enable processing that can either work on the data directly – or to be a stand-
alone algorithm that uses the DB produced by a special variant of the histogram statistics algorithm 
which computes the information per segment for a long continuous collect.  The output table should 
be linked to an single interval ID , and the output metric is stored per segment will be linked to its 
corresponding interval.  Regardless of the version of the data input provided (a one long file or 
multiple segment files) the output in DB should be organized the same way.  
Change from 60s Stability - 2x Sigma in Eq. (6)  is now only 1 x Sigma 
 

7.6.7 TIRS Background Response Determination 

7.6.7.1 Background 

The significant components of the signal recorded by each TIRS detector are the Dark Response 
(from thermal energy of the focal plane), the Background Response (photon energy from the 
instrument structure and optics), and the Scene Response (photon energy from the optical target of 
the detector).  These input stimuli combine to produce an electrical potential across a capacitor that is 
read out by the ROIC electronics.  The conversion efficiency of the input energy to the electrical 
potential varies for each detector.  Each capacitor’s potential (considered a count of electrons in a 
detector well) is digitized by the ROIC A/D to a quantized signal (Q) in units of digital number (DN) 
though a transistor network that also varies for each detector.  Since these two conversions are 
difficult to separate in experimentation, and not possible in-flight, the totals system conversion of input 
(energy) to output (Q) is considered as a unit whenever possible. 
 
A key target used to determine the background response of the TIRS instrument is deep space where 
there is negligible scene response. The dark response is present in all measurements.  Since the 
focal plane temperature is carefully controlled, the dark response is assumed to be constant.  A 
correction for variation of the dark response on a scene-by-scene basis is calculated in another 
algorithm (Dark Response Determination). 
 
This algorithm analyzes the data taken while looking at space to determine the background response 
needed to remove the per-detector “bias”, which is the sum of the background and dark response.  
The baseline dark response, which is provided in the CPF, is subtracted from the bias to provide the 
background response. 
 
While this algorithm is designed to derive only the background response, the linearity function (or 
lookup table), background response, and gain should be looked upon as a hierarchy in the listed 
order, each set dependent on accurate values of the previous set. 
 
This algorithm calculates the output of the system in the normal science mode configuration 
(integration time), with negligible scene response.  In a perfectly linear system, this could be used as 
a simple offset from which other measurements are calibrated.  In a non-linear system, this 
determines where on the linearization curve the zero response is placed.  Linearization can then be 



LDCM-ADEF-001 
Version 3 

 

applied to the Scene data using the differential from this bias point, or applied to data from the 
combined input response allowing the bias level to be directly subtracted. 

7.6.7.2 Input 

 

Description Symbol Units Level Source Type 

Scene Mean Q  DN 

Nscenes 
x Nband 
x NSCA 
x Ndet 

DB 
(Histogram 
Statistics) Float 

Baseline Dark 
Response DB DN 

Nband x 
NSCA x 
Ndet CPF Float 

 

7.6.7.3 Output 

 

Description 
Symbo

l Units Level Target Type 

Background 
Response B DN 

Nband x 
NSCA x 
Ndet CPF Float 

Background 
Response Standard 
Deviation B DN 

Nband x 
NSCA x 
Ndet Report Float 

7.6.7.4 Options 

 List of space-look scenes for analysis 

 Optional report 

7.6.7.5 Procedure 

1. Read the scene means for each space-look scene selected for analysis. 
2. Read the baseline dark response from the CPF. 
3. Subtract the baseline dark response from each scene mean. 
4. Determine the mean and standard deviation across all selected scenes’ mean of the background 

response for each band/SCA/detector.  The standard deviation allows the CVT to evaluate the 
Background Response.  The mean is the value to be placed in the CPF, if further analysis shows 
an improvement in product quality. 

 

7.6.7.6 Maturity 

Level 3 Further component and higher level testing of the TIRS QWIP detectors is necessary before 
the details of this algorithm are resolved. 
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7.6.8 TIRS Gain Determination 

7.6.8.1 Background 

The significant components of the signal recorded by each TIRS detector are the Dark Response 
(from thermal energy of the focal plane), the Background Response (photon energy from the 
instrument structure and optics), and the Scene Response (photon energy from the optical target of 
the detector).  These input stimuli combine to produce an  
electrical potential across a capacitor that is read out by the readout integrated circuit (ROIC) 
electronics.  The conversion efficiency of the input energy to the electrical potential is different for 
each detector.  Each capacitor’s potential (considered a count of electrons in a detector well) is 
digitized by the ROIC A/D to a quantized signal (Q) in units of digital number (DN) through a transistor 
network that also varies for each detector.  Since these two conversions are difficult to separate by 
pre-launch testing and not possible in-flight, the total system conversion of input (energy) to output 
(Q) is considered as a unit whenever possible. 
 
The calibration strategy of the TIRS instrument is to provide measurements with negligible scene 
response (looking at space), and measurements with known scene response (looking at the on-board 
calibrator).  This determines a measurement scale to be applied to the scene response detected 
when viewing the target (Earth).  The dark response is present in all measurements.  Since the focal 
plane temperature is carefully controlled, the dark response should be constant.  A correction for 
variation of the dark response on a scene-by-scene basis is calculated in another algorithm (Dark 
Response Determination). 
 
This algorithm processes the data taken viewing the on-board calibrator, which has already been 
corrected for dark and background response determined in part by viewing deep space, to determine 
the calibration gain function to apply to Earth scene data.  By design, the on-board calibrator will have 
a known spectral radiance, modeled as a black-body corrected for an emissivity near unity, and will 
illuminate each detector through the entire optical system,. The spectral radiance can be varied by 
changing the calibrator temperature set point. The TIRS detector response to the black-body data 
must be corrected for non-linearity as well as the dark and background response. 
 
The relationship between linearized, background subtracted DNs and radiance behaves fairly linearly 
within instrument’s designed range of operation.  Therefore, a linear gain function including a slope 
and an offset is determined to convert linearized, background subtracted DNs to radiance.   
 

7.6.8.2 Input  

 

Description Symbol Units Level Source Type 

Black-Body 
Scene Mean 
(non-linearity 
corrected) Q  DN 

Nscenes x Nband x 
NSCA x Ndetectors 

DB 
(Histogram 
Statistics) Float 

Weighted 
Average Black 
Body Spectral 
Radiance 
Lookup Table Llookup 

msrmW 2

 
Nband xNSCAxNdet 
Nradiances File* Integer 



LDCM-ADEF-001 
Version 3 

 

Pre-acquisition 
Deep Space 
Averages (non-
linearity 
corrected) Sa DN 

NscenesxNband x 
NSCA x Ndet BPF Float 

Post-acquisition 
Deep Space 
Averages (non-
linearity 
corrected) Sb DN 

NscenesxNband x 
NSCA x Ndet BPF Float 

Dark Response 
(non-linearity 
corrected) D DN 

NCPFxNband x NSCA 
x Ndetectors CPF Float 

Background 
Response (non-
linearity 
corrected) B DN 

NCPFxNband x NSCA 
x Ndetectors CPF Float 

Black-Body 
Temperature TBB K 

4†xNscenesxNsamples

/scene 

Ancillary 
data/DB Float 

Black Body 
Temperature 
Weighting 
Factors WBB Unitless 4† CPF Float 

* Llookup are calibration parameters that won’t change once determined prior to launch. 
†The ‘4’ here is from the number of thermistors on the black body 

7.6.8.3 Output 

 

Description 
Symbo

l Units Level Target Type 

Absolute Gains  Gabs 

msrmW

DN

2

 Nband x NSCA 

Test 
CPF/Repor
t Float 

Relative Gains Grel Unitless 
Nband x 
NSCAxNdetectors 

Test 
CPF/Repor
t Float 

Gains GS 

msrmW

DN

2

 
Nband x 
NSCAxNdetectors Report Float 

Gain Offset cG DN 
Nband x 
NSCAxNdetectors 

Test 
CPF/Repor
t Float 

Detector Gain 
Standard 
Deviation G 

msrmW

DN

2

 
Nband x NSCA x 
Ndetectors Report Float 
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Date range of 
black-body 
scenes   1 Report Text 

7.6.8.4 Options 

 Date range of black-body scenes for analysis 

 Optional report 

 Dark and Background response selection 
1. Pre-acquisition deep space averages (Sa) 

2. Post-acquisition deep space averages (Sb) 

3. Average of pre-and post-acquisition deep space averages (Sab) (default) 

4. dark and background responses from the CPF (or dark response determination in the case of dark 

response) 

7.6.8.5 Procedure 

For each spectral band, SCA, detector, and black-body scene selected for analysis: 
1. The combined dark and background response SBD will need to be removed from all black body 

collects.  First determine SBD based on the selected option.  If pre- or post-acquisition deep space 
averages have been selected, then retrieve the selected deep space averages and they will be 
SBD.   
 
If the average of the pre-and post-acquisitions is selected then retrieve the selected deep space 
averages and calculate SBD using equation (1) 

where: 
b is the spectral band 
s is the SCA 
d is the detector 

 

      dsbSdsbSdsbS BABD ,,,,
2

1
,,   (1) 

If the dark and background responses from the CPF are desired, then retrieve the dark and 
background responses from the CPF(s) (or dark response determination in the case of dark 
response) and calculate SBD  using equation 
  
(2). 

      dsbBdsbDdsbSBD ,,,,,,   (2) 

Now that the combined dark and background response has been determined, remove it from the 
per detector means using equation (3) where S represents a black body scene.  If the combined 
response is to have come from the CPF, make sure that each black body collect is corrected by a 
CPF that is valid for the time those data were collected.  This means that multiple (NCPF) CPFs 
may need to be used.  If not then NCPF=1.  Note that all these data should have previously been 
linearized.   
 

   dsbSdsbSQdsbSQ BDBS ,,),,,(,,,   (3) 

 
2. Calculate the average black body temperature for each scene.  Black body temperature samples 

are collected once per second.   
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   
samplesN

BB

Samples

sceneBB sampleStT
N

StT
1

, ,,
1

,  (4) 

where t is an index that identifies each thermistor and Nsamples is the 
number of samples.   

 
3. Calculate the weighted average of the black body temperatures 

 
 

   
 




4

1

,4

1

, ,
1

t

sceneBBBB

t

BB

avgBB StTtW

tW

ST  (5) 

4. Determine the average black body spectral radiances for each detector for each scene using avgBBT , and the 

black body spectral radiances lookup table.   

     dsbSTLdsbSL avgBBlookup ,,,,,, ,,   (6) 

5. Using a least squares fit, find the relationship (7) between BSQ and the average black body 

spectral radiances ( L ) for the corresponding black body scenes.  Write the gain offsets Gc  to the 

CPF.   

 
    

 dsbG

dsbcdsbSQ
dsbSL

s

GBS

,,

,,,,,
,,,




 (7) 

6. Calculate the absolute gains for each SCA and band from the gain slopes and write them to the CPF.   

   
det

1det

,,
1

,
N

Sabs dsbG
N

sbG  (8) 

7. Calculate the relative gains for each detector using the gain slopes and the absolute gains and write them to 

the CPF.   

 
 
 sbG

dsbG
dsbG

abs

s

rel
,

,,
,,   (9) 

8. Calculate the standard deviation of the relative gains across the entire focal plane.  Note here that Ndet 

represents the total number of detectors across the entire focal plane.   

   



det

1det

,
1

N

N

relG dbG
N

b  (10) 

 

       
det

1

2

det

,
1

N

GrelG bdbG
N

b   (11) 

9. If an output report is chosen, write the gain function slope (GS), the relative gains (Grel), the absolute gains 

(Gabs), offset(cG), and standard deviations ( G ) to the output report. 

 

7.6.8.6 Maturity 

Depending how large the weighted average spectral radiance lookup table is, linear interpolation may 
not be needed.  The trade-off is a larger lookup table or linear interpolation. 
 
Potential modifications to this algorithm include: 

1. Storing the per-scene detector gains in the characterization database. 
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2. The dark response determination algorithm may need to run prior to this algorithm if the 
baseline dark response isn’t sufficient.  This would add an option to this algorithm of which 
dark response should be used.  It also implies that the dark response would be per-scene. 
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Section 8 Lexicon 

 
Acronym Definition 
ACS Attitude Control System 
  
ASC  
ASCII American Standard Code for Information Interchange 
AVHRR Advanced Very High Resolution Radar 
B2B Band-to-Band 
BIH Bureau International de l’Heure 
CPF Calibration Parameter File 
DC  
DCE Data Collection Event 
DEM Digital Elevation Model 
DMA Defense Mapping Agency 
DOQ Digital Orthophoto Quadrangles 
ECF Earth Centered Fixed 
ECI Earth Centered Inertial 
ECR Earth Centered Rotating 
ECS EOSDIS Core System 
EF Earth Fixed 
EO-1 Earth Observing-1 
EOSDIS Earth Observing Station Data and Information System 
ER  
EROS Earth Resources Observation System 
ETM Enhanced Thematic Mapper 
GCP Ground Control Point 
GCTP General Cartographic Transformation Package 
GPS Global Positioning System 
GSD Ground Sample Distance 
HDF Hierarchical Data Format 
IAS Image Assessment System 
IEEE Institute of Electric and Electronic Engineers 
IFOV Instantaneous Field of view 
IRU  
LAS  
LOS Line-of-Sight 
MD Metrics Database 
MET Spacecraft Time 
MIT Massachusetts Institute of Technology  
MLH Maximum Likelihood Estimate 
MS Multispectral 
NASA National Aeronautics and Space Administration 
NBR Navigation Base Reference 
NEOS National Earth Orientation Service 
OB Orbit Reference Frame 
OLI Operational  Land Imager 
PAN Panchromatic 
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RMSE Root Mean Squared Error 
SCA Sensor Chip Assemblies 
SDP  
SDS  
SOM Space Oblique Mercator 
TAI International Atomic Time 
TIRS Thermal Infrared Sensor 
  
USGS U.S. Geological Survey 
UT-1 Universal Time 
UTC Universal Time-Coordinated 
UTCF  
UTM Universal Transverse Mercator 
WGS84 World Geodetic System 1984 
WLS Weighted Least Square 
WRS World-wide Reference System 
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